

2

Test No. 4

Topics of The Test

Physics	Unit, Dimension, Errors & Motion in 1D.	
Chemistry	Atomic Structure & Classification of Elements.	

Maths	Permutations and combinations.	

Test-4 (Objective)

Test No. 4

Line constant of proportionality $\frac{1}{4\pi\varepsilon_0}$ in Coulomb's law has the following units (A) C ⁻² Nm ² (B) C ² N ⁻¹ m ⁻² (C) C ² Nm ² (D) C ⁻² N ⁻¹ m ⁻² 2. 1 ns is defined as (A) 10 ⁻⁹ s of Kr-clock of 1650763.73 oscillations (B) 10 ⁻⁹ s of Cs-clock of 6521389.63 oscillations (C) 10 ⁻⁹ s of Cs-clock of 9192631770 oscillations3. How many wavelengths of the Kr ⁸⁹ are there in one metre ? (A) 658189.63 (B) 2348123.73	7. The air bubble formed by explosion inside water performed oscillation with time period T that is directly proportional to $p^a d^b E^c$, where <i>p</i> is the pressure, <i>d</i> is the density and <i>E</i> is the energy due to explosion. The values of a, b and c will be (A) -5/6, 1/2, 1/3 (B) 5/6, 1/3, 1/2 (C) 5/6, 1/2, 1/3 (D) None of these 8. In the relation $P = \frac{\alpha}{\beta} e^{-\frac{\alpha z}{k\theta}}$, <i>p</i> is the pressure, <i>z</i> the distance, <i>k</i> is Boltzmann constant and θ is the temperature, the dimensional formula of β will be (A) $[M^0L^2T^0]$ (B) $[ML^2T^1]$ (C) $[ML^0T^{-1}]$ (D) $[ML^2T^{-1}]$
 (C) 1650763.73 (D) 1553164.12 4. The dimensions of potential are the same as that of (A) work (B) electric field per unit charge (C) work per unit charge (D) force per unit charge 	9. The frequency <i>f</i> of vibration of mass m suspended from a spring of spring constant <i>k</i> is given by $f = cm^x k^y$ where <i>c</i> is dimensionless constant. The values of x and y are respectively (A) 1/2, 1/2 (B) -1/2, 1/2
 5. Which one of the following pair of quantities has same dimension ? (A) Force and work done (B) Momentum and impulse (C) Pressure and force (D) Surface tension and stress 6. The dimensions of magnetic field in M, L, T and C (coulomb) is given as 	(A) $1/2$, $1/2$ (B) $-1/2$, $1/2$ (C) $1/2$, $-1/2$ (D) $-1/2$, $-1/2$ 10. Find the dimensions of electric permittivity (A) $[A^2M^{-1}L^{-3}T^4]$ (B) $[A^2M^{-1}L^{-3}T^0]$ (C) $[AM^{-1}L^{-3}T^4]$ (D) $[A^2M^0L^{-3}T^4]$ 11. Position of a body with acceleration <i>a</i> is given by $x = ka^m t^n$. Here <i>t</i> is time. Find the dimensions of <i>m</i> and n (A) $m = 1, n = 1$ (B) $m = 1, n = 2$
(A) $[MLT^{-1}C^{-1}]$ (B) $[MT^{2}C^{-2}]$ (C) $[MT^{-1}C^{-1}]$ (D) $[MT^{-2}C^{-1}]$	(C) $m = 2, n = 1$ (D) $m = 2, n = 2$

Space for Rough Work

Tes	t-4 (Objective)	Horizon Test Series for Engineering-2016
12. 13.	In the gas equation $\left(p + \frac{a}{V^2}\right)(V - b) = RT$, the dimensions of a are (A) $[ML^3T^{-2}]$ (B) $[M^{-1}L^3T^{-1}]$ (C) $[ML^5T^{-2}]$ (D) $[M^{-1}L^{-5}T^2]$ The dimension of <i>k</i> in the equation $W = \frac{1}{2}kx^2$ is	 18. The position of a particle x (in metre) at a time <i>t</i> second is given by the relation r = (3tî - t²ĵ + 4k̂). Calculate the magnitude of velocity of the particle after 5 s. (A) 3.55 m/s (B) 5.03 m/s (C) 8.75 m/s (D) 10.44 m/s 19. A body starts from rest with uniform acceleration. If its velocity after n second is v, then its displacement in the last 2 s is
14. 15.	(A) $[ML^{0}T^{-2}]$ (B) $[M^{0}LT^{-1}]$ (C) $[MLT^{-2}]$ (D) $[ML^{0}T^{-1}]$ If 3.8×10^{-6} is added to 4.2×10^{-5} giving due regard to significant figures, then the result will be (A) 4.58×10^{-5} (B) 4.6×10^{-5} (C) 4.5×10^{-5} (D) None of the above A student performs an experiment for determination of $g\left(=\frac{4\pi^2 l}{T^2}\right), l \approx 1$ m, and he commits an error of Δl . For T he takes the time of n oscillations with the stop watch of least count ΔT and he commits a human error of 0.1 s. For which of the following data, the measurement of g will be most accurate ?	(A) $\frac{2\nu(n+1)}{n}$ (B) $\frac{\nu(n+1)}{n}$ (C) $\frac{\nu(n-1)}{n}$ (D) $\frac{2\nu(n-1)}{n}$ 20. A body of mass m moving along a straight line covers half the distance with a speed of 2ms^{-1} . The remaining half of distance is covered in two equal time intervals with a speed of 3 ms ⁻¹ and 5 ms ⁻¹ respectively. The average speed of the particle for the entire journey is (A) $\frac{3}{8}$ ms ⁻¹ (B) $\frac{8}{3}$ ms ⁻¹ (C) $\frac{4}{3}$ ms ⁻¹ (D) $\frac{16}{3}$ ms ⁻¹
16. 17.	(A) $\Delta L = 0.5, \Delta T = 0.1, n = 20$ (B) $\Delta L = 0.5, \Delta T = 0.1, n = 50$ (C) $\Delta L = 0.5, \Delta T = 0.01, n = 20$ (D) $\Delta L = 0.1, \Delta T = 0.05, n = 50$ A body is falling freely under gravity. The distances covered by the body in first, second and third minute of its motion are in the ratio (A) 1:4:9 (B) 1:2:3 (C) 1:3:5 (D) 1:5:6 A person moves 30 m north and then 20 m towards east and finally $30\sqrt{2}$ m in south-west direction. The displacement of the person from the origin will be	21. The numerical ratio of average velocity to average speed is (A) always less than one (B) always equal to one (C) always more than one (D) equal to or less than one 22. A body of mass m is thrown upwards at an angle θ with the horizontal with velocity v . While rising up the velocity of the mass after <i>t</i> second will be (A) $\sqrt{(v \cos \theta)^2 + (v \sin \theta)^2}$ (B) $\sqrt{(v \cos \theta - v \sin \theta)^2 - gt}$

- displacement of the person from the origin will be(A) 10 m along north (B) 10 m along south
- (C) 10 m along west (D) zero

Η

(D) $\sqrt{v^2 + g^2 + g^2 - (2v\cos\theta)gt}$

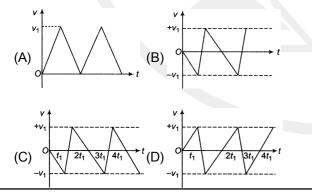
(C) $\sqrt{v^2+g^2t^2-(2v\sin\theta)gt}$

4

Space for Rough Work

Test-4 (Objective)

23. Two bodies of different masses are dropped from heights of 16 m and 25 m respectively. The ratio of the time taken by them to reach the ground is

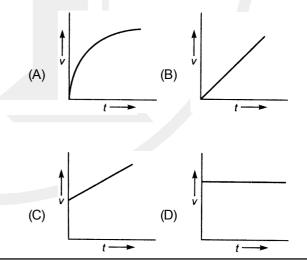

(A)	<u>25</u> 16	(B)	$\frac{5}{4}$
(C)	$\frac{4}{5}$	(D)	16 25

- 24. Two balls of same size but the density of one is greater than that of the other are dropped from the same height, then which ball will reach the earth first (air resistance is negligible)?
 - (A) Heavy ball
 - (B) Light ball
 - (C) Both simultaneously
 - (D) Will depend upon the density of the balls
- 25. A particle starts from rest and experiences constant acceleration for 6 s. If it travels a distance d_1 in the

first two second, a distance d_2 in the next two seconds

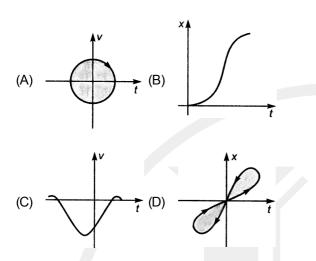
and a distance $d_{\scriptscriptstyle 3}$ in the last two second, then

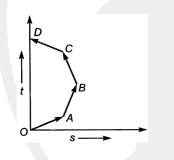

- (A) $d_1: d_2: d_3 = 1:1:1$
- (B) $d_1: d_2: d_3 = 1:2:3$
- (C) $d_1: d_2: d_3 = 1:3:5$
- (D) $d_1: d_2: d_3 = 1:5:9$
- 26. Consider a rubber ball freely falling from a height h = 4.9 m onto a horizontal elastic plate. Assume that the duration of collision is negligible and the collision with the plate is totally elastic. Then the velocity as a function of time will be


27. A body is at rest at x = 0. At t = 0, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through x = 0 moving in the positive x-direction with a constant velocity. The position of the first body is given by x_i(t)

Horizon Test Series for Engineering-2016

after time *t* and that of the second body by $x_2(t)$ after the same time interval. Which of the following graphs correctly describes $(x_1 - x_2)$ as a function of time *t*?


28. A body starts from rest and moves with uniform acceleration. Which of the following graphs represents in motion ?


Space for Rough Work

Test-4 (Objective)

29. Look at the graph (A) to (D) carefully and indicate which of these possibly represents one dimensional motion of a particle ?

30. Which of the following options is correct for the object having a straight line motion represented by the following graph?

- (A) The object moves with constantly increasing velocity form O to A and then it moves with constant velocity.
- (B) Velocity of the object increases uniformly
- (C) Average velocity is zero
- (D) The graph shown is impossible

[CHEMISTRY]

- 31. An isobar of ${}_{20}Ca^{40}$ is (A) ${}_{18}Ar^{40}$ (B) ${}_{20}Ca^{38}$ (C) ${}_{20}Ca^{42}$ (D) ${}_{18}Ar^{38}$ 32. Which of the following is correct ? (A) ${}_{1}H^{1}$ and ${}_{2}He^{3}$ are isotopes (B) ${}_{6}C^{14}$ and ${}_{7}N^{14}$ are isotopes
 - (C) ${}_{19}K^{39}$ and ${}_{20}Ca^{40}$ are isotones
 - (D) ${}_{9}F^{19}$ and ${}_{11}Na^{24}$ are isodiaphers
- 33. Particle nature of electron was experimently demonstrated by
 - (A) Max Bon (B) J.J. Thomson
 - (C) de-Broglie (D) Schrondinger
- 34. The work function (Φ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metal is :

	Metal	Li	Na	ĸ	Mg	Cu	Ag	Fe	Pt	W
	<i>φ</i> (eV)	2.4	2.3	2.2	3.7	4.8	4.3	4.7	6.3	4.75
	(A) 2				(B)	4				
	(C) 6				(D)	8				
35.	The er is –13 the ex (A) – (C) –	.6 eV. cited 122.4	The state ∙eV	poss of L	ible (i ²⁺ is (B)		gyva 6eV			
36.										
	(A) -	5hcR 36			(B)		cR 3			

(D

7hcR

144

6

Space for Rough Work

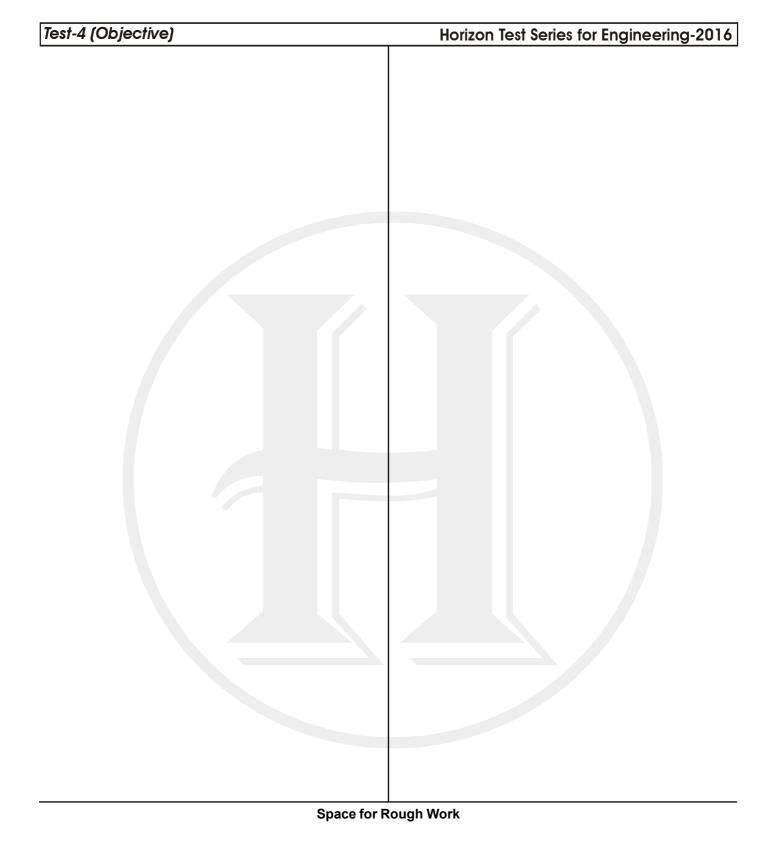
3hcR

(C)

Test	-4 (Objective)	Horizon Test Series for Engineering-2016
37. 38.	For a Bohr atom angular momentum M of the electron is (n = 0, 1, 2,) (A) $\frac{nh^2}{4\pi}$ (B) $\frac{n^2h^2}{4\pi}$ (C) $\frac{\sqrt{\pi h^2}}{4\pi}$ (D) $\frac{nh}{2\pi}$ The Bohr's orbit radius for the hydrogen atom (n = 1) is approximately 0.53 Å. The radius for the first excited state (n = 2) orbit is (A) 0.27 Å (B) 1.27Å (C) 2.12 Å (D) 3.12 Å The first emission line in the electronic spectrum of	43. The orbital angular momentum for an electron revolving in an orbit is given by $\sqrt{l(l+1)} \frac{h}{2\pi}$. This momentum for an s-electron will be given by (A) $+\frac{1}{2} \cdot \frac{h}{2\pi}$ (B) zero (C) $\frac{h}{2\pi}$ (D) $\sqrt{2} \cdot \frac{h}{2\pi}$ 44. The electronic configuration of Cr ³⁺ is (A) $[Ar]3d^44s^2$ (B) $[Ar]3d^34s^0$
40.	hydrogen in the Balmer series appears at cm ⁻¹ (A) $\frac{9R}{400}$ cm ⁻¹ (B) $\frac{7R}{144}$ cm ⁻¹ (C) $\frac{3R}{4}$ cm ⁻¹ (D) $\frac{5R}{36}$ cm ⁻¹ A body of mass 10 mg is moving with a velocity of 100 ms ⁻¹ . The wavelength of de-Broglie wave associated with it would be (h = 6.63×10^{-34} Js) (A) 6.63×10^{-35} m (B) 6.63×10^{-34} m (C) 6.63×10^{-31} m (D) 6.63×10^{-37} m	 (C) [Ar]3d²4s¹ (D) [Ar]3d⁵4s¹ 45. The observation that the ground state of nitrogen atom has 3 unpaired electrons in its electronic configuration and not otherwise is associated with (A) Pauli's exclusion principle (B) Hund's rule of maximum multiplicity (C) Heisenberg's uncertainty relation (D) Ritz combination principle 46. The element with atomic number 117 if discovered would be placed in (A) noble gas family (B) alkali family
42.	Uncertainty in the position of an electron (mass = 9.1×10^{-31} kg) moving with a velocity 300 ms ⁻¹ , accurate upon 0.001% will be (h = 6.63×10^{-34} Js) (A) 19.2×10^{-2} m (B) 5.76×10^{-2} m (C) 1.92×10^{-2} m (D) 3.84×10^{-2} m Which of the following sets of quantum numbers is correct for an electron in 4 <i>f</i> -orbital ? (A) $n = 4, l = 3, m = +4, s = +1/2$ (B) $n = 4, l = 4, m = -4, s = -1/2$ (C) $n = 4, l = 3, m = +1, s = +1/2$ (D) $n = 3, l = 2, m = -2, s = +1/2$	(C) alkaline earth family (D) halogen family 47. What is the name of element with atomic number 105? (A) Kurchatovium (B) Dubnium (C) Nobelium (D) Holmium 48. Identify the transition element. (A) $1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^2$ (B) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^2, 4s^2$ (C) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^2$ (D) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^1$

Tes	t-4 (Objective)	Horizon Test Series for Engineering-2016
49.	Which of the following statements is wrong ? (A) The stability of hydrides increases from NH_3 to BiH_3 in group 15 of the Periodic Table.	55. The element having highest electron affinity is (A) bromine (B) iodine
	 (B) Nitrogen cannot form <i>d</i>π – <i>p</i>π bond. (C) Single N — N bond is weaker than the single P — P bond. 	 (C) fluorine (D) Chlorine 56. One mole of magnesium in the vapour state absorbed 1200 kJmol⁻¹ of energy. If the first and second ionisation energies of Mg are 750 and 1450 kJmol⁻¹ respectively, the final composition of the mixture is
50.	(D) N_2O_4 has two resonance structure. The correct sequence which shows decreasing order of the ionic radii of the elements is (A) $Al^{3+}>Mg^{2+}>Na^{+}>F^{-}>O^{2-}$ (B) $Na^{+}>Mg^{2+}>Al^{3+}>O^{2-}>F^{-}$ (C) $Na^{+}>F^{-}>Mg^{2+}>O^{2-}>Al^{3+}$ (D) $O^{2-}>F^{-}>Na^{+}>Mg^{2+}>Al^{3+}$	 (A) 31%Mg⁺ + 69%Mg²⁺ (B) 69%Mg⁺ + 31%Mg²⁺ (C) 86%Mg⁺ + 14%Mg²⁺ (D) 14%Mg⁺ + 86%Mg²⁺ 57. The order of first ionisation energies of the elements Li, Be, B, Na is
51.	 (b) O²⁻, F⁻, Na⁺, Mg²⁺ and Al³⁺ are isoelectronic. Their ionic radii show (A) a decrease from O²⁻ to F⁻ and then increase from Na⁺ to Al³⁺ 	 (A) Li>Be>B>Na (B) Be>B>Li>Na (C) Na>Li>B>Be (D) Be>Li>B>Na 58. Among, Al₂O₃, SiO₂, P₂O₃ and SO₂ the correct order of acid strength is
52.	(B) a significant increase from O^{2-} to AI^{3+} (C) a significant decrease from O^{2-} to AI^{3+} (D) an increase from O^{2-} to F^- and then decrease from Na ⁺ to AI^{3+} The electron afinity values (in kJ mol ⁻¹) of three halogens X, Y and Z are respectively –349, –333 and –325. Then, X, Y and Z respectively, are (A) F_2 , CI_2 and Br_2 (B) CI_2 , F_2 and Br_2 (C) CI_2 , Br_2 and F_2 (D) Br_2 , CI_2 and F_2	 (A) SO₂<p<sub>2O₃<sio<sub>2<al<sub>2O₃</al<sub></sio<sub></p<sub> (B) SiO₂<so<sub>2<al<sub>2O₃</al<sub></so<sub> (C) Al₂O₃<sio<sub>2<so<sub>2<p<sub>2O₃</p<sub></so<sub></sio<sub> (D) Al₂O₃<sio<sub>2<p<sub>2O₃</p<sub></sio<sub> (D) Al₂O₃<sio<sub>2</sio<sub> (D) Al₂O₃<sio<sub>2<p<sub>2O₃</p<sub></sio<sub> (D) Al₂O₃<sio<sub>2</sio<sub> (D) Al₂O₃ <l< td=""></l<>
53.	The electronic configuration of the element with maximum electron affinity is (A) $1s^2, 2s^2, 2p^3$	(A) $1s^{2}, 2s^{2}2p^{6}, 3s^{1}$ (B) $1s^{2}, 2s^{2}2p^{6}, 3s^{2}3p^{1}$ (C) $1s^{2}, 2s^{2}, 2p^{6}, 3s^{1}3p^{2}$
	(B) $1s^2, 2s^2, 2p^5$ (C) $1s^2, 2s^2, 2p^6, 3s^2, 3p^5$ (D) $1s^2, 2s^2, 2p^6, 3s^2, 3p^3$	 (D) 1s²,2s²2p⁶,3s² 60. In the Periodic Table metallic character of elements shows one of the following trend
54.	The electronic configurations of four elements are given below. Arrange these elements in the correct order of the magnitude (without sign) of their electron affinity. (i) $2s^22p^5$ (ii) $3s^23p^5$	 (A) decreases down the group and increases across the period (B) increases down the group and decreases across the period (C) increases across the period and also down the
	(iii) $2s^2 2p^4$ (iv) $3s^2 3p^4$ Select the correct answer using the codes given below (A) (i)<(ii)<(iv)<(iii) (B) (ii)<(i)<(iv)<(iii) (C) (i) $d(ii) d(ii) d(ii)$ (B) (ii) $d(ii) d(ii) d(ii)$	(D) decreases across the period and also down the group

(D) (iii)<(iv)<(i)<(ii)


(C) (i)<(iii)<(iv)<(ii)

Te	st-4 (Objective)	Horizon Test Series for Engineering-2016						
61.	[MATHEMATICS] 61. The remainder when 1!+2!+3!++n! is divided by 5 is (given that n ≥ 4)				68. A father with 8 children takes 3 at a time to the zoological garden as he can, without taking the same 3 children together more than once. Then, number of times each child will go is			
	(A) 1	(B) 2		(A)	56		(B)	36
	(C) 3	(D) 4		(C)	21		(D)	28
62.	the letters of the word LU occupy even places is	words which can be formed from CKNOW when the vowels always	 69. In a class tournament, all participants were to play one game with each other; 2 players fell ill after having player 3 games each. If total number of games played in the tournament is equal to 84, then total number of games played in the second second					ers fell ill after having played ber of games played in the
	(A) 120	(B) 720						was equal to
	(C) 400	(D) None of these		(A)	10		(B)	15
63.		s of letters <i>a, b, c, d, e, f, g</i> taken eg' nor 'cad' pattern appears is		(C)	12		(D)	14
	(A) 7!-2.5!+3!	(B) 7!-2.5!-3!	70.		e maximur 1 4 circles		f poi	nts of intersection of 5 lines
	(C) 7!5!+3!	(D) None of these		(A)	60		(B)	72
64.		umbers having all different digits can be formed using the digits al to	71.	Nu		ays in which lages, 2 for	16 0	None of these constables can be assigned
	(A) 192	(B) 32		ιομ		ayes, 2101	eac	1115
	(C) 1152	(D) 384		(A)	$\frac{(16)!}{8!(2!)^8}$		(B)	$\frac{(16)!}{(2!)^8}$
65.		ble by 3 is to be formed using the 5 without repetition. The total ch this can be done is			$\frac{(16)!}{(8!)^2}$			(2!)° None of these
	(A) 216	(B) 600					. ,	
	(C) 240	(D) 3125	72.				's of	480 that are of the form
66.		numbers that can be formed by				is equal to		
	using the digits 2, 4, 6, 8	3 (repetition of digits not allowed)		(A)			(B)	
	(A) 133320	(B) 533280		(C)	4		(D)	None of these
	(C) 53328	(D) None of these	73.	The	e value of	${}^{50}C_4 + \sum_{r=1}^{6} {}^{56}$	$-rC_3$	is
67.	-	h a lawn-tennis mixed double be couples if no husband and wife			⁵⁶ C ₃	<u>r=1</u>		⁵⁶ C ₄
	(A) 240	(B) 420		(C)	${}^{55}C_4$		(D)	$^{55}C_{3}$
	(C) 720	(D) None of these						-
	Space for Rough Work							

Te	st-4 (Objective)			Horizo	on Test Seri	es for Engineering-20	16
74.	 The number of ways that 8 beads of different colours be strung as a necklace is 		81.	81. The total number of ways of selecting 10 balls of unlimited number of identical white, red and blue equal to			
	(A) 2520	(B) 2880					
	(C) 5040	(D) 4320		(A) ${}^{12}C_2$		(B) ${}^{12}C_3$	
75.	such that $0 < x < 1$ and x	stinct rational numbers $x = p/q$, where $p, q \in \{1, 2, 3, 4, 5, 6\}$	00	(C) ${}^{10}C_2$	is to show or	(D) ${}^{10}C_3$	
	is.		02.			r 10 out of 13 questions in he must choose at least 4 fr	
	(A) 15	(B) 13			uestions. The	e number of choices available	e to
	(C) 12	(D) 11		him is			
76.	•	outcomes in a throw of n ordinary		(A) 196		(B) 280	
	dice in which at least one of the dice shows an odd number is			(C) 346		(D) 140	
	(A) $6^n - 1$	(B) $3^n - 1$	83.			ere to arrange the letters in vowels in alphabetical order	
	(C) $6^n - 3^n$	(D) None of these		(A) 120		(B) 240	
77.	order, that can be formed	s with three horizontal strips, in I using 2 identical red, 2 identical		(C) 360		(D) 480	
	green and 2 identical where (A) 4!	(B) 3. (4!)	84.	At an election, a voter may vote for any number of candidates, not greater than the number to be elected. There are 10 candidates and 4 are to be elected. If a			ted.
	(C) 2. (4!)	(D) None of these				one candidate, then the num	
78.		papers, a candidate has to pass e number of papers in which he		of ways in	which he can	n vote is	
		essful. The number of ways in		(A) 5040		(B) 6210	
	which he can be unsucc			(C) 385		(D) 1110	
	(A) 255	(B) 256	85.	Let T_denc	ote the number	r of triangles which can be forn	ned
70	(C) 193 There are 4 letters and 4	(D) 319 directed envelopes. The number				regular polygon of <i>n</i> sides	
79.		letters can be put in the wrong		$T_{n+1} - T_n =$	21, then <i>n</i> eq	quals	
	envelope is			(A) 5		(B) 7	
	(A) 8	(B) 9		(C) 6		(D) 4	
80.	(C) 16 The number of ways in shelves, 4 on each, is	(D) None of these which 12 books can be put in 3	86.	tickets req	uired in order	are 15 stations. The number r that it may be possible to be r station to every other is	
	(A) $12!/(4!)^3$	(B) $12!/[(3!)(4!)^3]$		(A) 15!/2		(B) 15!	
	(C) $21!/[(3!)^34!]$	(D) None of these		(C) 15!/1		(D) 15!/(13!2!)	

Test-4 (Objective)	Horizon Test Series for Engineering-2016
87. A rectangle with sides $2m - 1$ and $2n - 1$ is divided into squares of unit length by drawing parallel lines as shown in the diagram, then the number of rectangles possible with odd side length is $ \begin{array}{c} $	Question Nos. 88 to 90 All the letters of the word 'ARRANGE' are permuted. 88. Number of permutations if the two R's are never together is (A) 840 (B) 960 (C) 900 (D) None of these 89. Number of permutations if the two A's are together but the two R's are not (A) 280 (B) 240 (C) 300 (D) None of these 90. Number of permutations if neither two A's nor two R's are together is (A) 720 (B) 600 (C) 540 (D) 660
	augh Mark

Space for Rough Work

[12]