

2

Test No. 3

Topics of The Test

Physics	Unit, Dimension & Errors, Motion in 1D.	
Chemistry	Atomic Structure.	

Maths	Quadratic Equations & Inequation.	

Test-3 (Objective)

Test No. 3

Space for Rough Work

Tes	t-3 (Objective)	Horizon Test Series for Engineering-2010
11.	The position coordinates of a particle moving in X-Y as a function of time <i>t</i> are	16. Two spheres of same size, one of mass 2 kg ar another of mass 4 kg, are dropped simultaneously fro
	$x=2t^2+6t+25$	the top of Qutab Minar (height = 72 m). When they a 1 m above the ground, the two spheres have the sam
	$y = t^2 + 2t + 1$	(A) momentum (B) kinetic energy (C) potential energy (D) acceleration
	The speed of the object at $t = 10$ s is approximately (A) 31 (B) 51	17. The distance travelled by an object along a straig line in time <i>t</i> is given by $s = 3 - 4t + 5t^2$ the initial
12.	(C)71(D)81An aeroplane flies 400m north and 300m south and then flies 1200m upwards, then net displacement is(A)1500m(B)1400m	velocity of the object is (A) 3 unit (B) -3 unit (C) 4 unit (D) -4 unit
13.	(C) 1300m (D) 1200m A car moves a distance of 200m. It covers first half of the distance at speed 60 kmh ⁻¹ and the second half at speed $_V$. If the average speed is 40 kmh ⁻¹ , the value of $_V$ is (A) 30 kmh ⁻¹ (B) 13 kmh ⁻¹ (C) 60 kmh ⁻¹ (D) 40 kmh ⁻¹	 18. A bullet emerge from a barrel of length 1.2 m with speed of 640 ms⁻¹. Assuming constant acceleratio the approximate time that is spends in the barrel after the gun is fired is (A) 4 ms (B) 40 ms (C) 400 µs (D) 1 s
14.	A body of mass m thrown horizontally with velocity v from the top of tower of height h, touches the level ground at distance of 250 m from the foot of the tower. A body of mass, 2 m thrown horizontally with velocity	is $x = 0$ at $t = 0$, then its displacement after unit tim ($t = 1$) is (A) $v_0 + 2g + 3f$ (B) $v_0 + g/2 + f/3$
	$\frac{v}{2}$, from the top of tower of height 4 h will touch the level ground at a distance x from the foot of tower. The value of x is (A) 250 m (B) 500 m (C) 125 m (D) $250\sqrt{2}$ m	(C) $v_0 + g + f$ (D) $v_0 + g/2 + f$ 20. Two balls are dropped to the ground from differe heights. One ball is dropped 2 s after the other b they both strike the ground at the same time. If th first ball takes 5 s to reach the ground, then th difference in initial heights is (g = 10 ms ⁻²)
15.	A body of mass m moving along a straight line covers half the distance with a speed of $2ms^{-1}$. The remaining half of distance is covered in two equal time intervals with a speed of 3 ms ⁻¹ and 5 ms ⁻¹ respectively. The average speed of the particle for the entire journey is (A) $\frac{3}{8}$ ms ⁻¹ (B) $\frac{8}{3}$ ms ⁻¹	(A) 20 m (B) 80 m (C) 170 m (D) 40 m 21. Two bodies of different masses are dropped from heigh of 16 m and 25 m respectively. The ratio of the tim taken by them to reach the ground is (A) $\frac{25}{10}$ (B) $\frac{5}{10}$
	(C) $\frac{4}{3}$ ms ⁻¹ (D) $\frac{16}{3}$ ms ⁻¹	(C) $\frac{4}{5}$ (D) $\frac{16}{25}$

Test-3 (Objective)

22. An automobile travelling with a speed of 60 kmh⁻¹, can brake to stop within a distance of 20 m. If the car is going twice as fast, *ie.*, 120 kmh⁻¹, the stopping distance will be

(A)	20 m	(B)	40 m
(C)	60 m	(D)	80 m

23. The coordinates of a moving particle at any time *t* are given by $x = \alpha t^3$ and $y = \beta t^3$. The speed of the particle at time *t* is given by

(A)
$$3t\sqrt{\alpha^2 + \beta^2}$$
 (B) $3t^2\sqrt{\alpha^2 + \beta^2}$
(C) $t^2\sqrt{\alpha^2 + \beta^2}$ (D) $\sqrt{\alpha^2 + \beta^2}$

- 24. A particle located at x = 0 at time t = 0, starts moving along the positive x-direction with a velocity v that varies as $v = \alpha \sqrt{x}$. The displacement of the particle varies with time as
 - (A) t^2 (B) t(C) $t^{1/2}$ (D) t^3
- 25. A parachutist after bailing out falls 50 m without friction. When parachute opens, it decelerates at 2 ms⁻². He reaches the ground with a speed of 3 ms⁻¹. At what height, did he bail out ?

(A)	91 m	(B)	182 m
(C)	293 m	(D)	111 m

26. A particle moves for 20 s with velocity 3 ms⁻¹ and then moves with velocity 4 ms⁻¹ for another 20 s and finally moves with velocity 5 ms⁻¹ for next 20 s. What is the average velocity of the particle ?

(A)	3 ms ⁻¹	(B)	4 ms
v v	••	(-)	

- (C) 5 ms⁻¹ (D) zero
- 27. Two balls of same size but the density of one is greater than that of the other are dropped from the same height, then which ball will reach the earth first (air resistance is negligible)?
 - (A) Heavy ball
 - (B) Light ball
 - (C) Both simultaneously
 - (D) Will depend upon the density of the balls

- Horizon Test Series for Engineering-2016
- 28. A particle starts from rest at t = 0 and moves in a straight line with an acceleration as shown in figure. The velocity of the particle at t = 3s is

29. A particle starts from rest. Its acceleration (a) versus time (t) is as shown in the figure. The maximum speed of the particle will be

30. A boy beings to walk eastward along a street infront of his house and the graph of his displacement from home is shown in the following figure. His average speed for in the whole time interval is equal to

Space for Rough Work

Tes	t-3 (Objective)		Horizon Test Series for Engineering-2016
31.	$\label{eq:chemistrend} \begin{array}{l} \mbox{[CHEMISTRY]} \\ \mbox{Which one of the following sets of ions represents a collection of isoelectronic species ?} \\ (A) K^+, Cl^-, Ca^{2+}, Sc^{3+} \\ (B) Ba^{2+}, Sr^{2+}, K^+, S^{2-} \\ (B) N^{3-}, O^{2-}, F^-, S^{2-} \\ (C) Li^+, Na^+, Mg^{2+}, Ca^{2+} \end{array}$	37. 38.	The ionisation enthalpy of hydrogen atom is 1.312×10^{6} J mol ⁻¹ . The energy required to excite the electron in the atom from $n_1 = 1$ to $n_2 = 2$ is (A) 8.51×10^{5} J mol ⁻¹ (B) 6.56×10^{5} J mol ⁻¹ (C) 7.56×10^{5} J mol ⁻¹ (D) 9.84×10^{5} J mol ⁻¹ According to Bohr's theory, the angular momentum of an electron in 5th orbit is
32.	An isotone of ${}^{76}_{32}$ Ge is (A) ${}^{77}_{32}$ Ge (B) ${}^{77}_{33}$ As (C) ${}^{77}_{34}$ Se (D) ${}^{78}_{36}$ Sc		(A) $25\frac{h}{\pi}$ (B) $1.0\frac{h}{\pi}$ (C) $10\frac{h}{\pi}$ (D) $2.5\frac{h}{\pi}$
33. 34.	Isotopes are (A) atoms of different elements having same mass number (B) atoms of same elements having same mass number (C) atoms of same elements having different mass number (D) atoms of different elements having same number of neutrons The electronic configuration of an element in ultimate and penultimate orbitals is ($n = 1$)s ² ($n = 1$)p ⁶ ($n = 1$)d ^x ns^2 . If $n = 4$ and $x = 5$ then number of protons in the nucleus is (A) 35 (B) < 724 (C) 25 (D) 30	39.40.41.	 The radius of hydrogen atom is 0.53 Å. The radius of hydrogen atom is 0.53 Å. The radius of a Li²⁺ is of (A) 1.27 Å (B) 0.17 Å (C) 0.57 Å (D) 0.99 Å Which of the following statements does not form a part of Bohr's model of hydrogen atom ? (A) Energy of the electrons in the orbit is quantised (B) The electron in the orbit nearest the nucleus has the lowest energy (C) Electrons revolve in different orbits around the nucleus (D) The position and velocity of the electrons in the orbit cannot be determined simultaneously Energy of H-atom in the ground state is -13.6 eV, hence energy in the second excited state is
35.	A gas absorbs photon of 355 nm and emits at two wavelengths. If one of the emission is at 680 nm, the other is at (A) 1035 nm (B) 325 nm (C) 743 nm (D) 518 bm	42.	 (A) -6.8 eV (B) -3.4 eV (C) -1.51 eV (D) -4.53 eV In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inner-orbit jumps of the electron for Bohr orbit
36.	The energy required to break one mole of CI—CI bondsin Cl2 is 242 kJ mol ⁻¹ . The longest wavelength of lightcapable of breaking a single CI—CI bond is(A) 594 nm(B) 640 nm(C) 700 nm(D) 494 nm		in an atom of hydrogen ? (A) $3 \rightarrow 2$ (B) $5 \rightarrow 2$ (C) $4 \rightarrow 1$ (D) $2 \rightarrow 5$

Tes	t-3 (Objective)	1	Hor	izon Test Seri	es fo	or Engineering-2016
43.	If the ionisation potential for hydrogen atom is 13.6 eV, then the ionisation potential for He ⁺ ion should be (A) 13.6 eV (B) 6.8 eV	50.	Whick electr respe	h of the follow ons, number o ctively in n-orbit	/ing i f orbi ?	s correct for number of itals and type of orbitals
	(C) 54.4 eV (D) 72.2 eV		(A) 4	4,4 and 8	(B)	4,8 and 16
44.	The H atom electron dropped from $n = 3$ to $n = 2$, then		(C) 3	32,16 and 4	(D)	4,16 and 32
	energy emitted is	51.	The c	orbital angular r	nome	entum of an electron in a
	(A) 1.9 eV (B) 12 eV		d-orbi	italis		
	(C) 10.2 eV (D) 0.65 eV			r= h		Γ h
45.	In an atom, an electron is moving with a speed of 600 m/s with an accuracy of 0.005%. Certainity with which		(A)	$\sqrt{6} \frac{1}{2\pi}$	(B)	$\sqrt{2}\frac{1}{2\pi}$
	(h = 6.6×10^{-34} kg m ² s ⁻¹ , mass of electron, e = 9.1×10^{-31} kg)		(C)	$\frac{h}{2\pi}$	(D)	$\frac{2h}{2\pi}$
	(A) 1.52×10^{-4} m (B) 5.10×10^{-3} m	52.	In a m	ulti-electron ato	m, wh	ich of the following orbitals
	(C) 1.92×10^{-3} m (D) 3.84×10^{-3} m		descri	ibed by the three	quar	tum numbers will have the
46.	The velocity of two particles A and B are 0.05 and 0.02		fields	?	JSEIIC	e of magnetic and electric
	ms ⁻¹ respectively. The mass of B is five times the mass		(a)	n = 1, l = 0, m = 0)	
	of A. The ratio their de-Broglie's wavelength is		(h)		`	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(d)	n = 2, l = 0, m = 0	J	
47.	The de-Broglie wavelength of a tennis ball of mass 60g		(c)	n = 2, I = 1, m = 1		
	moving with a velocity of 10 m/s is approximately		(d)	n = 3, l = 2, m = 1		
	(Planck's constant, $h = 6.63 \times 10^{-34}$ Js)		(e)	n = 3l = 2m = 0	ר	
	(A) 10^{-55} m (B) 10^{-51} m		(\mathbf{O}) ($\mathbf{\Delta}$) ((d) and (e)	(B)	(c) and (d)
10	(C) 10^{10} m (D) 10^{20} m		(C)	(b) and (c)	(D)	(e) and (b)
40.	(A) $6.135 \times 10^{-29} \text{ kg}$ (B) $3.60 \times 10^{-29} \text{ kg}$	53	The n	umber of orbital	s nres	sent in the shell with $n = 4$ is
	(C) 6.135×10^{-33} kg (D) 3.60×10^{-27} kg	00.	(A) 1	16	(B)	8
49.	Which one of the following sets of guantum numbers		(C) 1	18	(D)	32
	represents the highest energy level in an atom ?	54.	The e	lectrons identifie	ed by	quantum numbers
	(A) $n = 4, l = 0, m = 0, s = +\frac{1}{2}$		I.	n = 4,1 = 1	II.	n = 4, l = 0
	2		III. –	n = 3.1 = 2	IV.	n = 2.1 = 1
	(B) $n = 3, l = 1, m = 1, s = +\frac{1}{2}$		Can b lowes	be placed in orde	er of i	ncreasing energy from the
	(0) $n=3/22m=220=1$		(A) I	V< < <		
	(c) $II = 3, I = 2, III = -2, S = +\frac{1}{2}$		(B) I	< V< <		
	1		(C) I	< <		
	(D) $n = 3, l = 0, m = 0, s = +\frac{1}{2}$		(D) I	< < V<		

Tes	t-3 (Objective)	Horizon Test Series for Engineering-2016
68.	Let <i>p</i> and <i>q</i> be real numbers such that $p \neq 0, p^3 \neq q$ and $p^3 \neq -q$. If α and β are non-zero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = -q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is (A) $(p^3 + q)x^2 - (p^3 + 2q)x + (p^3 + q) = 0$ (B) $(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$ (C) $(p^3 - q)x^2 - (5p^3 - 2q)x + (p^3 - q) = 0$ (D) $(p^3 - q)x^2 - (5p^3 + 2q)x + (p^3 - q) = 0$ If α, β are the roots of the equation $\lambda(x^2 - x) + x + 5 = 0$ and if λ_1 and λ_2 are two values	72. If α, β and γ are the roots of the equation $x^3 - 8x + 8 = 0$, then $\sum \alpha^2$ and $\sum \frac{1}{\alpha\beta}$ are respectively (A) 0 and -16 (B) 16 and 18 (C) -16 and 0 (D) 16 and 0 73. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $px^2 + qx + r = 0$, then (A) $p^2 + q^2 - 2pr = 0$ (B) $p^2 - q^2 + 2pr = 0$ (C) $p^2 - q^2 - 2pr = 0$ (D) $p^2 + q^2 + 2qr = 0$ 74. The quadratic equation whose roots are $\sin^2 18^\circ$ and $\cos^2 36^\circ$, is (A) $16x^2 - 12x + 1 = 0$
70.	of λ obtained from $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{4}{5}$, then $\frac{\lambda_1}{\lambda_2^2} + \frac{\lambda_2}{\lambda_1^2}$ is equal to (A) 4192 (B) 4144 (C) 4096 (D) 4048 If α, β be the roots of $x^2 - a(x-1) + b = 0$, then the	(F) $10x - 12x + 1 = 0$ (B) $16x^2 + 12x + 1 = 0$ (C) $16x^2 - 12x - 1 = 0$ (D) $16x^2 + 10x + 1 = 0$ 75. If α and β are the solutions of the quadratic equation $ax^2 + bx + c = 0$ such that $\beta = \alpha^{1/3}$, then
	value of $\frac{1}{\alpha^2 - a\alpha} + \frac{1}{\beta^2 - a\beta} + \frac{2}{a+b}$ is (A) $\frac{4}{a+b}$ (B) $\frac{1}{a+b}$ (C) 0 (D) -1	(A) $(ac)^{1/3} + (ab)^{1/3} + c = 0$ (B) $(a^{3}b)^{1/4} + (ab^{3})^{1/4} + c = 0$ (C) $(a^{3}c)^{1/4} + (ac^{3})^{1/4} + b = 0$ (D) $(a^{4}c)^{1/3} + (ac^{4})^{1/3} + b = 0$ 76 If <i>b c</i> , <i>c</i> are positive and are in AP, then roots of the
71.	If $\alpha + \beta = -2$ and $\alpha^3 + \beta^3 = -56$, then the quadratic equation whose roots are α and β is (A) $x^2 + 2x - 16 = 0$ (B) $x^2 + 2x + 15 = 0$ (C) $x^2 + 2x - 12 = 0$ (D) $x^2 + 2x - 8 = 0$	(C) all p and r (D) no p and r

Tes	t-3 (Objective)			Horizon Test Series for Engineering-2016
77.	If the difference betw $x^2 + ax + 1 = 0$ is less possible values of <i>a</i> is (A) (-3, 3) (C) (3, ∞)	ween the roots of the equation as than $\sqrt{5}$, then the set of (B) (-3, ∞) (D) (- ∞ ,-3)	82.	If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is (A) greater than 4ab (B) less than 4ab (C) greater than -4ab(D) less than -4ab
78.	If $(1-p)$ is a ro $x^{2} + px + (1-p) = 0$, (A) 0, 1 (C) 0, -1	ot of quadratic equation then its roots are (B) -1, 1 (D) -1, 2	00.	equation whose roots are $\frac{\alpha^2}{\beta + \gamma}, \frac{\beta^2}{\gamma + \alpha}, \frac{\gamma^2}{\alpha + \beta}$ is (A) $x^3 - 4x - 1 = 0$ (B) $x^3 - 4x + 1 = 0$ (C) $x^3 + 4x - 1 = 0$ (D) $x^3 + 4x + 1 = 0$
79.	If a, b, c are the side $a \neq b \neq c$ and $x^2 - 2(a+b+c)x + 3x$ roots, then (A) $\lambda < \frac{4}{3}$ (C) $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$ The roots of the equa	s of a triangle <i>ABC</i> such that $\lambda(ab + bc + ca) = 0 \text{has real}$ (B) $\lambda > \frac{5}{3}$ (D) $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$ tion $x^4 - 2x^3 + x = 380$ are	84.	If x is real, then $\frac{x^2 - 2x + 4}{x^2 + 2x + 4}$ takes values in the interval (A) $\left[\frac{1}{3}, 3\right]$ (B) $\left(\frac{1}{3}, 3\right)$ (C) (3, 3) (D) $\left(-\frac{1}{3}, 3\right)$ If both the roots of the quadratic equation $x^2 - 2kx + k^2 + k - 5 = 0$ are less than 5, then <i>k</i> lies in the interval
	(A) $5, -4, \frac{1 \pm 5 \sqrt{-3}}{2}$ (C) $5, 4, \frac{-1 \pm 5 \sqrt{-3}}{2}$	(B) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ (D) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$	86.	(A) $[4, 5]$ (B) $(-\infty, 4)$ (C) $(6, \infty)$ (D) $(5, 6]$ $\frac{3x^2 + 1}{x^2 - 6x + 8}$ is equal to (A) $3 + \frac{49}{13}$
81.	If the cube roots of un the equation $(x - 2)^3$. (A) $-1, -1, -1$ (B) $-1, -\omega, -\omega^2$ (C) $-1, 2 + 3\omega, 2 + 3\omega$ (D) $-1, 2 - 3\omega, 2 - 3\omega$	ity are 1, ω, ω^2 , then the roots of + 27 = 0 are		(A) $3 + \frac{2}{2(x-4)} - \frac{1}{2(x-2)}$ (B) $\frac{49}{2(x-4)} - \frac{13}{2(x-2)}$ (C) $\frac{-49}{2(x-4)} + \frac{13}{2(x-2)}$ (D) $\frac{49}{2(x-4)} + \frac{13}{2(x-2)}$

Space for Rough Work

Test-3 (Objective) Horizon Test Series for Engineering-2016 If $\frac{(x+1)}{(2x-1)(3x+1)} = \frac{A}{(2x-1)} + \frac{B}{(3x+1)}$, then 16A + 9B89. If $\frac{2x}{2x^2+5x+2} > \frac{1}{x+1}$, then 87. is equal to (A) -2 > x > -1 (B) $-2 \ge x \ge -1$ (C) -2 < x < -1 (D) $-2 < x \le -1$ (A) 4 (B) 5 90. Let $X = \begin{bmatrix} \frac{a+2b}{a+b} \end{bmatrix}$ and $Y = \frac{a}{b}$, where *a* and *b* are (C) 6 (D) 8 88. If $x^2 + 2ax + 10 - 3a > 0$ for all $x \in R$, then positive integers. If $y^2 > 2$, then (B) $x^2 < 2$ (A) −5 < a < 2 (B) a < −5 (A) $x^2 \le 2$ (C) $x^2 > 2$ (D) $x^2 \ge 2$ (C) a > 5 (D) 2 < a < 5 ф

Space for Rough Work

(12)

