

Test No. 8

Topics of The Test

Physics	Vectors and Projectile + Laws of Motion)
---------	---	--	---

Chemistry	Some basic concepts of chemistry + Redox reaction.
Chemistry	Some basic concepts of chemistry + Redox reaction.

Biology	Zoology : Circulation Botany : Photosynthesis	

Test-8 (Objective)

Test No. 8

	[PHYSICS]	6.	In case of a projectile, what is the angle between the
1.	The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B}	0.	instantaneous velocity and acceleration at the highest point ?
2.	(A) $\alpha < \beta$ (B) $\alpha < \beta$ if $\vec{A} < \vec{B}$ (C) $\alpha < \beta$ if $\vec{A} > \vec{B}$ (D) $\alpha < \beta$ if $\vec{A} = \vec{B}$ Let the angle between two non-zero vectors \vec{A} and \vec{B} be 120° and its resultant be \vec{C} (A) C must be equal to $ \vec{A} - \vec{B} $ (B) C must be less than $ \vec{A} - \vec{B} $	7.	(A) zero (B) 45° (C) 90° (D) 18° A projectile is thrown upward with a velocity v_0 at an angle α to the horizontal. The change in velocity of the projectile when it strikes the same horizontal plane is (A) $v_0 \sin \alpha$ vertically downward
3.	 (C) C must be greater than A - B (D) C may be equal to A - B The resultant of two forces 3P and 2P is R. If the first force is doubled then the resultant is also doubled. 		(B) $2v_0 \sin \alpha$ vertically downward (C) $2v_0 \sin \alpha$ vertically upward (D) $v_0 \cos \alpha$ vertically downward
4.	The angle between the two forces is(A) 60°(B) 70°(C) 120°(D) 180°The resultant of two forces, one double then other in magnitude, is perpendicular to the smaller of the two forces. The angle between the two forces is	8.	The equation of a projectile is $Y = \sqrt{3}X - \frac{1}{2}gX^2$. The velocity of projection is (A) 1 m/s (B) 2 m/s (C) 3 m/s (D) 4 m/s
5.	 (A) 60° (B) 90° (C) 120° (D) 150° A stone is projected upwards and it returns to ground on a parabolic path. Which of the following remains 	9.	Two stones are projected with the same (magnitude) velocity but making different angles with the horizontal. Their ranges are equal. If the angle of projection of one is $\pi/3$, and its maximum height is y_1 , then the maximum height of the other will be
	 constant ? (A) Speed of the stone (B) Horizontal component of velocity (C) Vertical component of velocity (D) Kinetic energy of stone 		(A) $3y_1$ (B) $2y_1$ (C) $\frac{y_1}{2}$ (D) $\frac{y_1}{3}$

Space for Rough Work

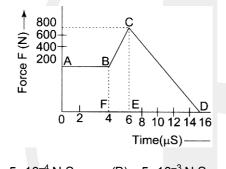
Tes	t-8 (Objective)		Horizon Test Series for Medical-2016
10.	A boy playing on the roof of a 10 m high building throws a ball with a speed of 10 m/s at an angle of 30° with the horizontal. How far from the throwing point will the ball be at height of 10 m from the ground ? [$g = 10 \text{ m/s}^2$] (A) 5.20 m (B) 4.33 m	13.	A ball is projected with velocity u at an angle α with horizontal plane. Its speed when it makes an angle β with the horizontal is (A) $u\cos\alpha$ (B) $\frac{u}{\cos\beta}$
11.	(C) 2.60 m (D) 8.66 m The horizontal range of projectile is $4\sqrt{3}$ times of its		(C) $u\cos\alpha\cos\beta$ (D) $\frac{u\cos\alpha}{\cos\beta}$
12.	 maximum height. The angle of projection will be (A) 40° (B) 90° (C) 30° (D) 45° A ball is thrown up with a certain velocity at an angle 	14.	A projectile is given an initial velocity of $\hat{i} + 2\hat{j}$. The cartesian equation of its path is (g = 10 m/s ²) (A) $y = 2x - 5x^2$ (B) $y = x - 5x^2$
	θ to the horizontal. The kinetic energy 'KE' of the ball varies with height <i>h</i> as $\kappa E \uparrow $ (A)	15.	(C) $4y = 2x - 5x^2$ (D) $y = 2x - 25x^2$ Rain water is falling vertically downward with velocity v . When velocity of wind is u in horizontal direction, water is collected at the rate of R m ³ /s. When velocity of wind becomes $2u$ in horizontal direction, the rate of collection of water in vessel is
	$o \xrightarrow{h \longrightarrow}$		(A) <i>R</i> (B) $\frac{R}{2}$
			(C) 2 R (D) $\frac{R\sqrt{4u^2 + v^2}}{\sqrt{u^2 + v^2}}$
		16.	A particle moves along the parabolic path $y = ax^2$ in such a way that the x-component of the velocity remains constant, say c. The acceleration of the particle is
			(A) $ac\hat{k}$ (B) $2ac^2\hat{j}$
		17.	(C) $ac^2 \hat{k}$ (D) $a^2 c \hat{j}$ Two cars A and B are going around concentric circular paths of radii r_A and r_B . If the two cars complete the circular paths in the same time then the ratio of angular speeds of A and B is
			(A) 1 (B) $\frac{r_{A}}{r_{B}}$
	(D) KE $h \rightarrow h$		(C) $\frac{r_{_B}}{r_{_A}}$ (D) $\frac{r_{_A}^2}{r_{_B}^2}$

Space for Rough Work

Tes	Test-8 (Objective)				Horizon Test Series for Medical-2016
19	And	articlo rovolving ir	a circular path completes first	22	
18.	one thirc	third of the circum	n a circular path completes first nference in 2sec, while next one rage angular velocity of particle	22.	A body of mass 2kg is moving along x-direction with a velocity of 2m/sec. If a force of 4N is applied on it along y-direction for 1 sec, the final velocity of particle will be
	(A)	$\frac{4\pi}{2}$	(B) $\frac{\pi}{3}$		(A) $2\sqrt{2}$ m/s (B) $\sqrt{2}$ m/s
	(C)	$\frac{4\pi}{3}$	(D) $\frac{5\pi}{3}$	23.	(C) $1/\sqrt{2}$ m/s (D) $1/2\sqrt{2}$ m/s A spring weighing machine inside a stationary lift reads 50 kg when a man stands on it. What would happen to the scale reading if the lift is moving upward with (i)
19.		-	displacement of a particle moving		constant velocity (ii) constant acceleration
		circle of radius a es with time <i>t</i> as	with constant angular speed ω		(A) $50 kgwt$, $\left(50 + \frac{50a}{g}\right) kgwt$
	(A)	2a sin ∞t	(B) $2a\sin\frac{\omega t}{2}$		(B) $50 kgwt, \left(50 + \frac{50g}{a}\right) kgwt$
	(C)	2acos <i>∞t</i>	(D) $2a\cos\frac{\omega t}{2}$		(C) $50 kgwt, \left(\frac{50a}{q}\right) kgwt$
20.		sider the following			
		ertion (A) : A cycl otiating a curve.	ist always bends inwards while		(D) $50 kgwt, \left(\frac{50g}{a}\right) kgwt$
		son (R) : By bendir hese statements.	ng he lowers his centre of gravity.	24.	A balloon of mass m is rising up with an acceleration a. The fraction of weight that must be detached from
	(A)	both A and R a explanation of A	are true and R is the correct		the balloon, in order to double its acceleration will be (assuming the air upthrust remain the same)
	(B)	both A and R an explanation of A	re true but R is not the correct		(A) $\frac{ma}{a+g}$ (B) $\frac{m}{a+g}$
	(C)	A is true but R is			ma 2ma
	(D)	A is false but R i			(C) $\frac{ma}{2a+g}$ (D) $\frac{2ma}{a+g}$
21.	the h		mass m each with velocity v with gun. If he fires n bullets per sec, the man will be	25.	A force produces an acceleration of 5m/s ² in a body and same force produces an acceleration of 15m/s ² in another body. The acceleration produced by the same
	(A)	$\frac{m}{v}n$	(B) <i>mnv</i>		force when applied to the combination of two bodies will be
	(C)	<u>mv</u>	(D) $\frac{vn}{m}$		(A) 3.75 m/s ² (B) 20 m/s ²
		n	(^b) m		(C) 10 m/s^2 (D) 0.667 m/s^2

Test-8 (Objective)

A force produces acceleration $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ (all in 26.


m/s²), when applied separately to n bodies. If these bodies are combined to from a single one, then the acceleration of the system will be, provided same force is taken into account

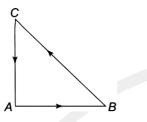
(B) $\frac{2}{n(n+1)}$ n (A) $\overline{2}$ $\frac{n^2(n+1)}{2}$

(C)
$$\frac{\pi}{2}$$
 (D) $\frac{\pi}{2}$

The magnitude of the force (in Newtons) acting on a 27. body varies with time t (in microseconds) as shown in figure. The magnitude of the total impulse of the force

on the body from $t = 4\mu s$ to $t = 16\mu s$ is N.s.

- (A) 5×10⁻⁴ N.S. (B) 5×10⁻³ N.S. (C) 5×10⁻⁵ N.S. (D) 5×10⁻² N.S.
- An engine of mass 5×10⁴ kg pulls a coach of mass 28. 4×10⁴ kg. Suppose that there is a resistance of 1N per 100 kg acting on both coach and engine, and that the driving force of engine is 4500 N. The acceleration of the engine and tension in the coupling will respectively be
 - (A) 0.04 m/s², 2000 N
 - (B) 0.4 m/s², 200 N
 - (C) 0.4 m/s², 20 N
 - (D) 4 m/s², 200 N


Horizon Test Series for Medical-2016

- 29. A block is kept on a horizontal table. The table is undergoing simple harmonic motion of frequency 3Hz in a horizontal plane. The coefficient of static friction between the block and the table surface is 0.72. Find the maximum amplitude of the table at which the block does not slip on the surface ($g = 10 \text{ ms}^{-2}$)
 - (A) 0.01 m (B) 0.02 m
 - (C) 0.03 m (D) 0.4 m
- 30. A particle describes a horizontal circle on the smooth surface of an inverted cone. The height of the plane of the circle above the vertex is 9.8 cm. The speed of the particle will be
 - (A) 9.8 m/s (B) 0.98 m/s
 - (C) 0.098 m/s (D) 98 m/s
- 31. When we kick a stone, we get hurt due to which one of the following properties of the stone?
 - (A) Inertia (B) Velocity
 - (C) Reaction (D) Momentum
- 32. Mark correct options
 - (A) The body of greater mass needs more force to move due to more inertia
 - (B) Area under force versus time graph gives impulse
 - (C) Microscopic area of contact is about 10⁻⁴ times the actual area of the contact
 - (D) All of the above
- 33. Essential characteristic of equilibrium is
 - (A) Momentum equals zero
 - (B) Acceleration equals zero
 - (C) K.E. equals zero
 - (D) Velocity equals zero

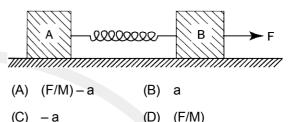
Space for Rough Work

Test-8 (Objective)

34. Three forces start acting simultaneously on a particle moving with velicity \vec{v} . These forces are represented in magnitude and direction by the three sides of a triangle ABC (as shown). The particle will now move with velocity

- (A) less than \vec{v}
- (B) greater than \vec{v}
- (C) $|\vec{v}|$ in the direction of largest force BC
- (D) \vec{v} remains unchanged
- 35. When forces F_1 , F_2 and F_3 are acting on a particle of mass *m* such that F_2 and F_3 are mutually perpendicular, then the particle remains stationary. If the force F_1 is now removed then the acceleration of the particle is

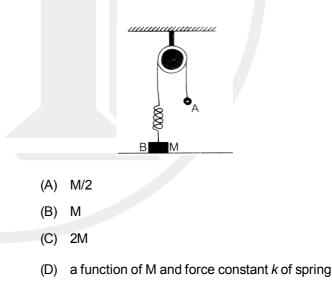
(A)	$\frac{F_1}{m}$	(B) $\frac{F_2F_3}{mF_1}$
(C)	$\frac{(F_2 - F_3)}{m}$	(D) $\frac{F_2}{m}$

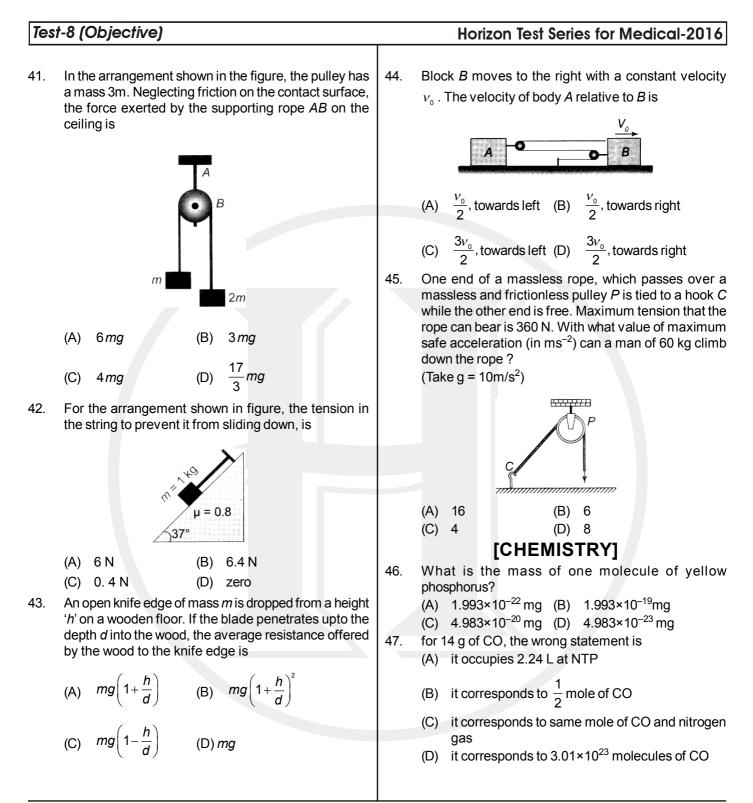

36. A block rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.8. If the frictional force on the block is 10 N, the mass of the block (in kg) is (Take $g = 10 \text{ m/s}^2$) (A) 1.6 (B) 2.0

(C) 2.5 (D) 4.0

37. A pushing force making an angle θ to the horizontal is applied on a block of weight *W* placed on a horizontal table. If the angle of friction be ϕ , the magnitude of force required to move the body is equal to

(A)	$\frac{W\cos\phi}{\cos(\theta+\phi)}$	(B)	$\frac{W\sin\phi}{\cos(\theta+\phi)}$
(C)	$\frac{W\tan\phi}{\sin(\theta+\phi)}$	(D)	$\frac{W\sin\phi}{\tan(\theta+\phi)}$


38. Two bodies A and B each of mass *M* are connected together by a massless spring. A force F acts on the mass B as shown in figure. At the instant shown, the mass A has acceleration *a*. What is the acceleration of mass B ?


39. A block of mass 2 kg is placed on the floor. The coefficient of static friction is 0.4 lf a force of 2.8 N is applied on the block parallel to floor, the force of friction between the block and floor (taking $g = 10 \text{ m/s}^2$) is

(A)	2.8 N	(B)	8 N
(C)	2 N	(D)	Zero

40. In the adjoining diagram, the ball A is released from rest when the spring is at its natural length (neither stretched nor compressed). For the block B of mass M to leave contact with the ground at some time, the minimum mass of A must be

Space for Rough Work

Space for Rough Work

Tes	t-8 (Objective)	Horizon Test Series for Medical-2016
48. 49.	How many moles of magnesium phosphate, Mg ₃ (PO ₄) ₂ will contain 0.25 mole of oxygen atom ? (A) 0.02 (B) 3.125×10^{-2} (C) 1.25×10^{-2} (D) 2.5×10^{-2} The equivalent weight of potassium permanganate in alkaline solution is equal to (A) $\frac{1}{5}$ th of the molar mass of KMnO ₄	55. Total number of protons in 10 g of calcium carbonate is $(N_A = 6.023 \times 10^{23})$ (A) 12.04×10 ²⁴ (B) 4.06×10 ²⁴ (C) 2.01×10 ²⁴ (D) 3.24×10 ²⁴ 56. When 22.4 L of H ₂ (g) is mixed with 11.2 L of Cl ₂ (g), each at STP, the moles of HCl (g) formed is equal to (A) 1 mole of HCl(g) (B) 2 moles of HCl(g) (C) 0.5 mole of HCl(g)
	(B) $\frac{1}{6}$ th of the molar mass of KMnO ₄	 (D) 1.5 mole of HCl(g) 57. In a closed vessel, 5 moles of A₂(g) and 7 moles of
	. 1	$B_{2}(g)$ are reacted in the following manner,
	(C) $\frac{1}{3}$ rd of the molar mass of KMnO ₄	$A_2(g) + 3B_2(g) \rightarrow 2AB_3(g)$
50.	(D) $\frac{1}{10}$ th of the molar mass of KMnO ₄ In an experiment, 4 g of M_2O_x oxide was reduced to	What is the total number of moles of gases present in the container at the end of the reaction ?(A) 22/3(B) 7/3(C) 14/3(D) 8/3
	 2.8 g of the metal. If the atomic mass of the metal is 56 g mol⁻¹, the number of O-atoms in the oxide is (A) 1 (B) 2 	58. Cyclohexanol is dehydrated to cyclohexane on heating with conc. H ₂ SO ₄ . If the yield of this reaction is 75%, how much cyclohexene will be obtained from 100g of cyclohexanol ?
	(C) 3 (D) 4	(A) 61.5 g (B) 75.0 g
51.	The volume of $2N H_2SO_4$ solution is 0.1 dm ³ . The volume of its decinormal solution (in dm ³) will be(A) 0.1(B) 0.2(C) 2(D) 1.7	(C) 20.0 g (D) 41.0 g 59. Volume of a gas at NTP is 1.12×10^{-7} cm ³ . The number of molecules in it is (A) 3.01×10^{12} (B) 3.01×10^{24} (C) 3.01×10^{23} (D) 3.01×10^{20}
52.	The correctly reported answer of the addition of 4.523, 2.3 and 6.24 will have significant figures (A) two (B) three (C) four (D) for	 60. The number of moles of H₂ in 0.224 L of hydrogen gas at STP (273 K, 1 atm) is (A) 0.1 (B) 0.01 (C) 0.001 (D) 1
53	(C) four (D) five	61. <i>x</i> moles of potassium dichromate oxidises 1 mole of
53.	The maximum number of molecules are present in (A) 15 L of H_2 gas at STP (B) 5 L of N_2 gas at STP (C) 0.5 g of H_2 gas (D) 10 g of O_2 gas	ferrous oxalate in acidic medium. Here x is (A) 3 (B) 1.5 (C) 0.5 (D) 1.0 62. 100 mL of PH ₃ on heating forms P and H ₂ , the volume change in the reaction is
54.	A gas mixture contains O_2 and N_2 in the ratio of 1:4 by weight. The ratio of their number of molecules is	 (A) an increase of 50 mL (B) an increase of 100 mL (C) an increase of 150 mL
	(A) 1:8 (B) 1:4 (C) 3:16 (D) 7:32	(D) a decrease of 50 mL
	Snace for F	Sough Work

Test-8 (Objective)	Horizon Test Series for Medical-2016
Test-8 (Objective)63. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCI?(A) 0.044(B) 0.333 (C) 0.011(D) 0.02964. 40 g of a sample of carbon on combustion left 10% of it unreacted. The volume of oxygen required at STP for this combustion reaction is (A) 22.4 L(B) 67.2 L (C) 11.2 L(D) 44.8 L65. How many grams of NaOH will be required to neutralise 12.2 g benzoic acid? (A) 12.2 g(A) 12.2 g(B) 16 g (C) 40 g(C) 40 g(D) 4 g66. In which of the following reactions, H2O2 acts as a reducing agent?(A) HOCl + H2O2 $\xrightarrow{H^+}$ H3O ⁺ + Cl ⁻ + O2 (B) Mn ²⁺ + H2O2 $\xrightarrow{OH^-}$ $2Fe^{3+}$ + 2OH ⁻ (C) $2Fe^{2+}$ + H2O2 $\xrightarrow{OH^-}$ $2Fe^{3+}$ + 2OH ⁻ (D) PbS(s) + 4H2O2(aq) $\xrightarrow{H^+}$ PbSO4(s) + 4H2O(l)67. Which one of the following cannot act as a reducing agent?(A) CO2 (C) NO2 (C) NO2 (C) NO2 (C) MO4 (D) MnO4 (D) MnO4 (C) 268. The equivalent weight of MnSO4 is equal to its molecular weight when it is converted to (A) Mn2O3 (B) MnO2 (C) MnO4 (C) mether oxidised only (D) MnO42 (C) neither oxidised on reduced (D) both oxidised and reduced	70. Which is the best description of behaviour of bromine in the reaction given below? $H_2O + Br_2 \longrightarrow HBr + HOBr$ (A) Proton accepted only (B) Both oxidised and reduced (C) Oxidised only (D) Reduced only 71. What is the oxidation number of vanadium in Rb ₄ Na[HV ₁₀ O ₂₈]? (A) +8 (B) +5 (C) +3 (D) +1 72. The oxidation number of P in Mg ₂ P ₂ O ₇ is (A) +2 (B) +5 (C) -3 (D) +3 73. The oxidation number and the electronic configuration of sulphur in H ₂ SO ₄ is (A) +4, 1s ² , 2s ² , 2p ⁶ , 3s ² (B) +2, 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁴ 74. The oxidation number of iron in Fe ₃ O ₄ is (A) +2 (B) +3 8 2

Tes	t-8 (Objective)	Horizon Test Series for Medical-2016
78.	Oxidation number of P in PO_4^{3-} , of S in SO_4^{2-} and that of Cr in $Cr_2O_7^{2-}$ respectively, are	86. The oxidation number of nitrogen in NaNO ₂ is (A) +3 (B) +5 (C) -3 (D) -5
	(A) +5, +6 and +6 (B) +3,+6 and +5 (C) +5,+3 and +6 (D) -3,+6 and +6	87. Carbon is in the lowest oxidation state in (A) CO_2 (B) CF_4
79.	The oxidation number of the sulphur atoms in peroxomonosulphuric acid (H_2SO_5) and	$ \begin{array}{cccc} (C) & CCI_4 & (D) & CH_4 \\ 88. & The oxidation number of xenon in XeOF_2 is \\ (A) & zero & (B) & 2 \end{array} $
	peroxodisulphuric acid $(H_2S_2O_8)$ respectively, are (A) +8 and +7 (B) +3 and +3 (C) +6 and +6 (D) +4 and +6	(C) 4 (D) 3 89. In the redox reaction, $xKMnO_4 + NH_3 \longrightarrow yKNO_3 + MnO_2 + KOH + H_2O$
80.	In which of the following reactions, there is no change in valency?	x and y are (A) $x = 4, y = 6$ (B) $x = 3, y = 8$
	(A) $SO_2 + 2H_2S \longrightarrow 2H_2O + 3S$ (B) $2Na + O_2 \longrightarrow 2Na_2O_2$ (C) $Na_2O_2 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O_2$	(C) $x = 8, y = 6$ (D) $x = 8, y = 3$ 90. In the reaction, $IO_3^- + SO_2 + 4H_2O \longrightarrow I_2 + SO_4^{2-} + 8H^+$
81.	(D) $4KCIO_3 \longrightarrow 3KCIO_4 + KCI$ The oxidation state of Fe in the brown ring complex	The coefficients of SO ₂ is (A) three (B) four (C) five (D) six [ZOOLOGY]
	[Fe(H ₂ O) ₅ NO]SO ₄ is (A) 0 (B) +2 (C) +1 (D) +3	91. In which one of the following pairs of terms both represent one and the same thing ? (A) Plasma – Serum
82.	In the conversion of Br_2 to BrO_3^- , the oxidation number of Br changes from (A) zero to +5 (B) +1 to +5	 (B) Atrioventricular – Pacemaker node (C) Leucocytes – Lymphocytes (D) Mitral valve – Bicuspid valve
83.	(C) zero to -3 (D) +2 to +5 Oxidation state of oxygen in F_2O is	92. Consider the following four statements (i) - (iv) and select the correct option.
	(A) +1 (B) -1 (C) +2 (D) -2	 (i) SA node is natural pacemaker of heart. (ii) Human heart has inter-auricular foramen.
84.	When sulphur dioxide is passed in an acidified $\rm K_2 Cr_2 O_7$ solution, the oxidation state of sulphur is changed from	 (iii) Right atrioventricular valve is a semilunar valve. (iv) Normal systolic and diastolic pressure of humans is 120 and 60 mm Hg respectively.
	(A) +4 to 0 (B) +4 to +2 (C) +4 to +6 (D) +6 to +4	(i) (ii) (iii) (iv) (A) F F T F
85.	+3 oxidation state is most common in (A) Ni (28) (B) Fe (26) (C) Zn (30) (D) Cu (29)	(B) F F T T (C) T T F T (D) T F F F
	Space for F	Rough Work

Tes	t-8 (Objective)	Horizon Test Series for Medical-2016
93. 94.	The blood cells which help in the transportation of fats are(A) Erythrocytes(B) Lymphocytes(C) Monocytes(D) NeutrophilsMyogenic heart is not present in which of the following?(A) Man(B) Limulus(C) Frog(D) Mussel	 (A) 55 ml (B) 60 ml (C) 70 ml (D) 80 ml 101. Heart sound which is longer is (A) lubb (B) dupp (C) both equal
95.	 (b) Theg (c) Theg (c) Theg (c) Theg (c) Theg (c) Autocont (c) Agranular cytoplasm (c) Coloured 	 (D) sometimes (A) and sometimes (B) 102. Tricuspid valves are found in (A) All mammals (B) All vertebrates (C) Prototherians (D) Walrus 103. The conduction of impulse from SA node moves to (A) AV-node (B) Bundle of His (C) Purkinje fibres (D) Cardiac muscles
96.	 Blood pressure is defined as the force with which blood (A) Pushes against the wall of the blood vessels (B) Is pushed to the legs (C) Comes out of the atrium (D) Comes out of the ventricle 	 104. The heart sound 'dup' is produced when (A) Tricuspid valve is opened (B) Mitral valve is opened (C) Mitral valve is closed (D) Semilunar valves at the base of aorta get closed
97. 98.	 Heart beats are accelerated by (A) Cranial nerves and acetylcholine (B) Sympathetic nerves and acetylcholine (C) Cranial nerves and adrenaline (D) Sympathetic nerves and epinephrine Blood will lose most of the oxygen through 	 105. 'P' wave of ECG occurs before the (A) Onset of ventricular ejection (B) End of arterial contraction (C) Beginning of atrial contraction (D) None of the above
	(A) Arteries(B) Veins(C) Capillaries(D) Lungs	106. The difference between pulmonary arteries and veins is that(A) Former is associated with lungs and latter with
99.	 Myocardial infarction is caused by (A) Hardening of arteries (B) Lumpy thickness develops in the inner walls of heart (C) Clot may occur in the lumen of a coronary artery (D) Sudden interruption of blood flow towards a portion of heart 	 heart (B) Arteries have thicker walls (C) Veins are more elastic (D) Veins have valves 107. Which layer of the wall of blood vessel is made up of circular smooth muscles ? (A) Outer (B) Middle
100.	In a cardiac output of 5250 ml per minute, with 75 heart beats per minute, the stroke volume is	(C) Inner (D) Both (A) and (B)

Space for Rough Work

Tes	t-8 ((Objective)				Horizon Test Series for Medical-2016				
108.	 Plasma protein also does the work of (A) Nutritive functioning (B) Physiochemical functioning (C) Transportive functioning (D) All of the above 							ing circulation, blood passes from the inferior vena a into the diastolic atrium of the heart because of Pushing of venous valves A pressure differential between the atrium and the vena cava The beating of the sinoatrial node		
109.	One (A) (C)	of the following bl Artery Vein	ood v (B) (D)	essels is without val Pulmonary artery Aorta		116.	(A)	Gravitational pull e cardiac cycle, diastole is The number of heart beats per minute		
	circu (A) (C)	ch of the followin latory system ? Molluscs Cardiac t beats are affecte	(B) (D)	the first to have of Annelids Enhinoderms	closed	117.		The relaxation period after contraction of the heart The forceful pumping action of the heart The contraction period after relaxation of the heart cardiac cycle time during normal heart beat is 0.8		
	(A) (C)	Carbon dioxide Vagus nerve	(B) (D)	Oxygen All of these			the e lead	onds which includes both systole and diastole. In event of fast running, the heart starts beating faster ing to decrease in cardiac cycle timings. decrease is due to		
112.			i, the mm l mm H m Hg	g	astolic		(A) (B) (C) (D)	Proportional decrease in the duration of diastole as well as systole Less duration of diastole and more duration of systole Same duration of diastole and less duration of systole Much more decrease in the duration of diastole		
113.	The (A) (B) (C) (D)	coronary sinus in Left margin Right margin Diaphragmatic s Lower border of	urface		ng its	118.	old p (A) (B)	than that of systole heart usually pumps blood with greater force in beople than the young because The oxygen content per unit volume of the blood decreases The elasticity of the arteries decreases The elasticity of the arteries increases		
114.	 Systolic pressure is higher than because (A) Arteries are contracting durin (B) Blood is pumped with a press by the heart during systol diastole 		g during systole a pressure in the ar systole but not c	rteries	119.	(D)	The nutrient content per unit of blood decreases ortal system is that in which A vein begins from an organ and ends in heart An artery breaks up in an organ and restarts by the union of its capillaries The blood from gut is brought into the kidneys			
	(C) (D)	Arteries resist de Volume of blood of diastole in the	d is hi	gher in systole tha	n that		(D)	before it is poured into the heart A vein breaks up in an organ into capillaries and restarts by their union as a new vein in the same organ.		

Tes	t-8 (Objective)				Horizon Test	Serie	es for Medical-2016
	(A) (B) (C) (D)	in has large lumen because Tunica interna and tunica in single coat Tunica media and tunica e single coat Tunica media is a single co Tunica interna, media and e minate is A nerve and artery Skeleton part and artery A nerve and a vein	xterna appear like a	125.	 (A) (C) Heat (A) (B) (C) (D) 	n old man's ECG, 1 Flat Very prominent rt rate is increased Anoxia Moderate CO ₂ e Elevated body te Increased intracr a vasorum supplie Pericardium Blood vessels	(B) (D) d by al xcess mpera ranial	Inverted Same as in adults I of the following except ature pressure
122. (A) (B) (C)	(D) Exar ECC P-Way Repole of the Depole of the Repole	A muscle and artery mine the diagrammatic repres S. Select an option with corres P Q S T Ve QRS complex arisation Repolarisation atria of the ventricles arisation Depolarisation atria of the ventricles arisation Repolarisation	ct matching. T-wave Depolarisation of the atria Repolarisation of the ventricles Depolarisation	128.	(A) (B) (C) (D) All c (A) (C)	media Vas deferens od pressure is mea sphygmomanom stethoscope electrocardiogram phenocardiogram of the following are Norepinephrine Vasopressin	asurec eter n vasoc (B) (D)	constrictor agents except Angiotensin Prostaglandins
(D) 123.	Depola of the	ventricles of the atria arisation Depolarisation ventricles of atria onnection with circulatory s ent Not only in heart and vertebrates and invertebrate lymphatics as well Vertebrate heart only Vertebrate heart and inverteb Vertebrate hearts, inverteb blood vessels	blood vessels of es, but in vertebrate ebrate hearts only	129. 130. 131.	(A) (B) (C) (D) Natu (A) (C)	nckebach phenom Complete heart to Partial heart bloc Ventricular fibrilla Myocardial infarc ure of blood plasm Acidic Neutral k the odd one out. Lymphocytes Leucocytes	olock ck ation ction	Alkaline None of the above Monocytes Neutrophils

Space for Rough Work

Test-8 (Objective)	Horizon Test Series for Medical-2016
 132. A mature human erythrocyte has the typical characteristics of (A) A eukaryote cell (B) A prokaryote cell (C) Both a eukaryote cell and a prokaryote cell (D) Neither a eukaryote nor a prokaryote cell 	 139. In C₃ cycle for the fixation of every CO₂ molecules, the reduction and regeneration steps required (A) 3 ATP and 2 NADPH₂ (B) 2 ATP and 2 NADPH₂ (C) 2 ATP and 3 NADPH₂ (D) 3 ATP and 1 NADPH₂
 133. Buffer salts present in blood are (A) Potassium 	 (c) Contraction (c) and the following is true for photosynthesis ? (A) Reduction of CO₂ and water
 (B) Sodium (C) Sodium and potassium both (D) Cobalt, sodium and potassium 134. The mechanism of blood clotting was first described 	 (B) Oxidation of CO₂ and water (C) Reduction of CO₂ and oxidation of water (D) Oxidation of CO₂ and reduction of water 141. Which of the following is wrongly matched ?
by (A) Morawitz (B) Landsteiner (C) Willaim-Harvey (D) James Watson	 (A) Sorghum – Kranz anatomy (B) PEP carboxylase – Mesophyll cells (C) Blackman – Law of limiting factors
 135. If haemoglobin instead of staying within the corpuscles remains free in the plasma, then (A) The viscosity of blood will rise (B) It will cause acidosis (C) Oxygen-carrying capacity of blood will be reduced 	 (D) Photosystem-II – P₇₀₀ 142. Cyclic-photophosphorylation results in the formation of (A) NADPH (B) ATP AND NADPH
(D) All of the above. [BOTANY]	 (C) ATP, NADPH and oxygen (D) ATP
 136. CAM helps the plants in (A) secondary growth (B) disease resistance (C) reproduction (D) conserving water 	 143. In an experiment demonstrating the evolution of oxygen in Hydrilla, sodium bicarbonate is added to water in the experimental set-up. What would happen if all other conditions are favourable? (A) Amount of oxygen evolved decreases as carbon dioxide in water is absorbed by sodium bicarbonate.
137. Of the total incident solar radiation the proportion of PAR is(A) about 60% (B) less than 50%	(c) Amount of extraction dioxide increases.(C) Amount of extraction dioxide increases as the
 (C) more than 80% (D) about 70% 138. Cyclic photophosphorylation links to (A) PS-II (B) PS-I (C) dark reaction (D) both (A) and (B) 	 availability of carbon dioxide increases. (D) Amount of oxygen evolved increases as carbon dioxide in water is absorbed by sodium bicarbonate.

Tes	t-8 (Objective)					Horiz	zon Test	Serie	es for Medical-2016
144.		₃ -plants, the first on dioxide fixation phosphoglyceral	n is	e compound formed after		(D)	Wright	effect	(4)	Inhibitory effect of oxygen on photosynthesis
145.	(B) (C) (D) The I.	malic acid oxaloacetic acid 3-phosphoglycer mineral involved i Manganese	rate	photolysis of water are Calcium					(5)	Enhancement of photosynthesis by subjecting chlorophyll to the effect of two different wavelengths of light.
	 III.	Magnesium	IV.	Chloride			Α	в	С	D
	(A)	I and II only	(B)	I, II and IV only		(A)	4	5	2	3
	(C)	I, II and III only	(D)	I and IV only		(B)	5	3	1	4
146.		-		notosynthesis occurs with		(C)	5	4	1	2
		elp of				(C)	4	3	5	-
	(A)	PS-II	(B)	PS-I	149.			-		similatory power for the
	(C)	ferredoxin	(D)	cytochrome						cules in maize plant is
147.	Chlo	rophyll-a and b dif	fer in l	naving		(A)	72 ATF	P, 48 NAC	PH	
	(A)			a methyl group and hyde group in position X		(B) (C)		P, 60 NAE P, 72 NA		
	(B)			n aldehyde group and ethyl group in position X	150	(D)	180 AT	P, 72 NA leases fro	DPH	
	(C)			a carboxyl group and dehyde group in position X	150.	(A)	photor	espiration		dark respiration
	(D)	chlorophyll-a has has an aldehyde		nyl group and chlorophyll-b o in position X		(C)	CAM		(D)	all of these
148.		ch the phenomeno correct answer fro		d under column-II. Select given options.	151.	A	B			t ·
		Column-l		Column-II			فكر			
	(A)	Warburg effect	(1)	Change in gene frequency by chance		1		C cytf		
	(B)	Pasteur effect	(2)	Postponing severance in the leaves by applying cytokinin		PS	2H ₂ O	le [−]	0-	► PS-I
	(C)	Emerson effect	(3)	Decline in the consumption of respiratory substrate due to a change from		In th ?	ne above	schemat	ic diag	ram, which is plastocyanin
				anaerobic to aerobic		(A)	С		(B)	D
				respiration.		(C)	А		(D)	В

Tes	t-8 (Objective)			I	Horizon Test Series for Medical-	2016
152.			combination of e involved in the (155.	Cyclic photophosphorylation produces (A) NADPH (B) ATP (C) ATP + NADPH ₂ (D) ATP + NADPH ₂ -	L O
	ADP	(A	Atmos CO ₂ + H Carboxylation	I ₂ O	156.	 (C) ATP + NADPH₂ (D) ATP + NADPH₂ - Adenosine diphosphate contains (A) one high energy bonds (B) two high energy bonds (C) three high energy bonds 	r 0 ₂
	10000000	eneration CALVIN		P + NADPH ₂	157.	(D) four high energy bonds Compensation point refers to	
	ATP 1	(C) Reduction ADP + NAD	P ⁺		(A) little photosynthesis(B) beginning of photosynthesis	
		Sucro	se, Starch			(C) rate of photosynthesis equals to the respiration	ate of
	(A) (B)	A–PGA, B–RuE	se phosphate, C– 3P, C–Triose phos	phate	158.	(D) None of theseIn the given chart of photophosphorylation. What 'A' represent ?	at does
	(C) (D)		se phosphate, C– A, C–Triose phos				
153.	Phot yield		ter molecule in lig	ht reaction will		(e [−])→ e [−] →Fd	
	(A) (B)	2 electrons and 4 electrons and				(?)A	
	(C) (D)	4 electrons and 2 electrons and					
154.	lden	Identify the correct combinations of the following :					
	I.	Phosphoenol pyruvate	Enzyme PEP carboxylase	C ₄ acid		e	
	II.	Malate	Malic enzyme	C_4 acid		(A) PC (B) FRS	
	III.	RuBP	Ribulose-5- phosphate kinase	C ₃ acid	159.		
	IV.	Pyruvate	Pyruvate dikinase	C ₃ acid		(A) thin cuticle(B) multi-layered epide(C) Kranz type body(D) one-layered epide	
	(A)	III and IV	(B) I and II		160.	Core of chlorophyll is formed by	
	(C)	II and III	(D) I and IV			(A) iron(B) manganese(C) methyl group(D) magnesium	

Tes	Test-8 (Objective)									Horizon Test Series for Medical-2016					
161.	Photochemical reactions in the chloroplasts are directly involved in (A) fixation of carbon dioxide								(C)	Kranz anatomy occurs where mesophyll have small chloroplasts whereas bundle sheath have larger, agranal chloroplasts.					
	(B)		nesis o				starch		(D)	Kranz anatomy where mesophyll cells are diffused.					
	(C)	form	ation o	f pho	spho	glyce	ric acid	166.	0	antasomes occur on the surface of					
	(D)	•	•	of wat	er a	nd pho	osphorylation of ADP	100.	(A)	cristae (B) plasmalemma					
400	<u> </u>	to AT							(C)	nuclear envelope (D) thylakoids					
162.		risatio		fabla		0		167.		orm one molecule of glyceraldehyde phosphate in					
	(A)		ation o		•					vin cycle					
	(B)		ruction ation o			-			(A)	9 ATP and 36 NADPH are required					
	(C) (D)		ts of s		-				(B)	6 ATP and 6 NADPH are required					
163	. ,				-	prect	combination.		(C)	3 ATP and 3 NADPH are required					
100.	man		imn-l	ng wi			lumn-ll		(D)	3 ATP and 6 NADPH are required					
	Α.	Carboxylation (1) Oxygen evolution			168.		The graph below shows the relation between light								
	В.		sphoryl				otorespiration		intensity and the giving off and taking up of carbon dioxide by the leaves of a plant. Why is most carbon						
	C.		olysis		(3)		IBISCO			kide given off when the light intensity is zero units?					
	D.		sphogly	/-	(4)	Ch	emosynthesis		ur)	8 7					
	Е.		somor	as	(5)	AT	P		er ho						
		Α	В	С		D	E		50 cm ² per hour)						
	(A)	1	2	3		4	5		50 cr						
	(B)	3	5	1		2	4		per						
	(C)	2	3	5		4	1		(mg						
	(D)	1	3	4		2	5		dn u						
164.		Radioactive C ¹⁴ is given to carbon dioxide and released to atmosphere. This carbon dioxide is taken by RuBP							take						
							C^{14} is seen, in which		000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		pound								2					
	(A)) PGAL (B) PEP								Light intensity					
	(C)	RMF)		(D)	PG	A		(A)	Because it is just the start of the experiment					
165.	In Ha		nd Sla						(B)	Only respiration is taking place at this intensity					
	(A)		roplast			-			(\mathbf{C})	of light					
	(B)						ere mesophyll have		(C)	Only photosynthesis is taking place at this intensity of light					
			al chior	-		iei eas	s bundle sheath have		(D)	The rate of photosynthesis is equivalent to the					
		0								rate of respiration					

Test-8 (Objective)	Horizon Test Series for Medical-2016
 169. Photorespiration could easily be detected in (A) C₃ - plants (B) C₄ - plants (C) Both (A) and (B) (D) None of these 	 175. Assertion : Cyclic pathway of photosynthesis first appeared in some eubacterial species. Reason : Oxygen started accumulating in the
 170. Which one of the following is wrong in relation to photorespiration? (A) It is a characteristic of C₄ - plants (B) It is a characteristic of C₃ - plants (C) It occurs in chloroplasts 	 atmosphere after the non-cyclic pathway of photosynthesis evolved. 176. Assertion : Photosynthetically, C₄-plants are less efficient than C₃-plants
 (D) It occurs in day-time only 171. Grana is ill developed or absent in the chloroplast in the (A) stem of Hydrilla 	 Reason : The operation of C₄-pathway requires the involvement of only bundle-sheath cells. 177. Assertion : Under conditions of high light intensity and limited carbon dioxide supply, photorespiration has a
 (B) leaf of sunflower (C) bundle sheath of sugarcane leaf (D) mesophyll of grasses 172. Malic acid (4-C) is produced in which plant without Kranz anatomy ? 	useful role in protecting the plants from photoxidative damage. Reason : If enough carbon dioxide is not available to utilize light energy for carboxylation to processed, the excess energy may not cause damage to plants.
(A) Bryophyllum(B) Kalanchoe(C) Opuntia(D) All of these	178. Assertion : C_4 - photosynthetic pathway is more efficient than the C_3 - pathway.
173. The two pigment system theory of photosynthesis was proposed by(A) Blackman(B) Hill	Reason : Photorespiration is suppressed in C_4 - plants.
 (C) Emerson (D) Amon 174. Who proved that oxygen evolved in photosynthesis comes from water ? (A) Calvin 	179. Assertion : The atmospheric concentration of carbon dioxide at which photosynthesis just compensated for respiration is referred to as carbon dioxide compensation point.
(B) Mayer(C) Blackman(D) Ruben, Hassid and Kamen.	Reason : The carbon dioxide compensation point is reached when the amount of carbon dioxide uptake is less than that generated through respiration because the level of carbon dioxide in the atmosphere is more
Direction for (Q. No. 175 to Q. Nos. 180)	than that required for achieving carbon dioxide
(A) If both Assertion and Reason are true and Reason is the correct explanation of Assertion.	compensation point. 180. Assertion : Photorespiration decreases net
(B) If both Assertion and Reason are true but Reason is not correct explanation of Assertion.	photosynthesis.
(C) If Assertion is true but Reason is false.	Reason : Rate of respiration in dark and light is almost same in all plants.
(D) If both Assertion and Reason are false.	

Space for Rough Work

