

Test No. 7

Topics of The Test

Physics	Motion in 1D and 2D + Vectors and Projectile Motion.	
-		

Chemistry	Some basic concepts of chemistry + Redox reaction	

Biology	Zoology : Circulation. Botany : Photosynthesis, Respiration and Molecular Biology.

5.

6.

7.

[PHYSICS]

- 1. The area under velocity-time graph for a particle in a given interval of time represents
 - (A) velocity (B) acceleration
 - (C) work done (D) displacement
- 2. The displacement-time graph of two moving particles make angles of 30° and 45° with the X-axis. The ratio of their velocities is

- (A) $\sqrt{3}:2$ (B) 1:1
- (C) 1:2 (D) $1:\sqrt{3}$
- The displacement of a particle starting from rest (at t = 0) is

$$s = 6t^2 - t^3$$

The time in second at which the particle will obtain zero velocity again is

- (A) 2 (B) 4
- (C) 6 (D) 8
- 4. A car moves from X to Y with a uniform speed v_a and returns to X with a uniform speed v_a . The average speed for this round trip is

(A)
$$\frac{2v_b v_u}{v_d + v_u}$$
 (B) $\sqrt{v_u v_d}$

(C)
$$\frac{V_{d}V_{u}}{V_{d}+V_{u}}$$
 (D) $\frac{V_{u}+V_{d}}{2}$

A stone falls under gravity. It covers distances h_1, h_2 and h_3 in the first 5 s, the next 5 s and the further next 5s, respectively. The relation between h_1, h_2 and h_3 is

(A)
$$h_1 = 2h_2 = 3h_3$$

B)
$$h_1 = \frac{h_2}{3} = \frac{h_3}{5}$$

(C)
$$h_2 = 3h_1 \text{ and } h_3 = 3h_2$$

- (D) $h_1 = h_2 = h_3$
- A ball is projected upwards from a height h above the surface of the earth with velocity v. The time at which the ball strikes the ground is

(A)
$$\frac{v}{g} + \frac{2hg}{\sqrt{2}}$$
 (B) $\frac{v}{g} \left(1 - \sqrt{1 + \frac{2h}{g}} \right)$
(C) $\frac{v}{g} \left(1 + \sqrt{1 + \frac{2gh}{v^2}} \right)$ (D) $\frac{v}{g} \left(1 + \sqrt{v^2 + \frac{2g}{h}} \right)$

- The displacement x of a particle varies with time *t* as $x = ae^{-\alpha t} + be^{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will
 - (A) go on decreasing with time
 - (B) be independent of α and β
 - (C) drop to zero whe $\alpha = \beta$
 - (D) go on increasing with time

Space for Rough Work

8. A particle moves along X-axis as

 $x = 4(t-2) + a(t-2)^2$

Which of the following is true ?

- (A) The initial velocity of particle is 4
- (B) The acceleration of particle is 2a
- (C) The particle is at origin at t = 0
- (D) None of the above
- 9. A car starts from rest, moves with an acceleration *a* and then decelerates at a constant rate *b* for sometime to come to rest. If the total time taken is *t*. The maximum velocity of car is given by

(A)
$$\frac{abt}{(a+b)}$$
 (B) $\frac{a^2t}{(a+b)}$
(C) $\frac{at}{(a+b)}$ (D) $\frac{b^2t}{(a+b)}$

10. Fig (I) and (II) show the displacement-time graphs of two particles moving along the X-axis. We can say that

- (A) both the particles are having an uniformly accelerated motion
- (B) both the particles are having an uniformly retarded motion
- (C) particle (I) is having an uniformly accelerated motion while particle (II) is having an uniformly retarded motion
- (D) particle (I) is having an uniformly retarded motion while particle (II) is having an uniformly accelerated motion
- 11. The area of the acceleration-displacement curve of a body gives
 - (A) impulse
 - (B) change in momentum per unit mass
 - (C) change in kinetic energy per unit mass
 - (D) total change in energy

Horizon Test Series for Medical-2016

12. A car is travelling with linear velocity v on a circular road of radius R. If its speed is increasing at the rate of $a \text{ m/s}^2$, then the net acceleration will be

(A)
$$\frac{v^2}{R} + a$$
 (B) $\frac{v^2}{R} - a$
(C) $\sqrt{\left(\frac{v^2}{R}\right)^2 + a^2}$ (D) $\sqrt{\left(\frac{v^2}{R}\right)^2 - a^2}$

13. A particle moves in a circular orbit of radius *r* under a

central attractive force $F = -\frac{k}{r}$, k is constant. The time

period of its motion will be proportional to

(A) $r^{1/2}$ (B) r

- (C) $r^{3/2}$ (D) $r^{2/3}$ A particle of mass *m* is released from
- 14. A particle of mass *m* is released from rest and follows a parabolic path as shown. Assuming that the displacement of the mass from the origin is small, which graph correctly depitcts the position of the particle as a function of time ?

Space for Rough Work

A wheel is rotating at 900 rpm about its axis. When 15. the power is cut off, it comes to rest in 1 m angular retardation (in rad/s²) is

(A)	$\frac{\pi}{2}$			(B)	$\frac{\pi}{4}$
-----	-----------------	--	--	-----	-----------------

- (C) (D)
- 16. The centre of a wheel rolling on a plane surface with a speed v_0 . A particle on the rim of the v the same level as the centre will be moving a

8

- (A) zero (B) V_0
- $\sqrt{2}v_{a}$ $2v_0$ (C) (D)
- 17. A stone of mass m is tied to a string and is more vertical circle of radius r making n rev/min. T tension in the string when the stone is at the point is

(A)
$$mg$$
 (B) $m(g + \pi nr^2)$
(C) $m(g + nr)$ (D) $m\left(g + \frac{\pi^2 n^2 r}{900}\right)$

18. Assertion (A) A body of mass 1 kg is making a circle of radius 1 m. Centrifugal force acting $4\pi^2 N$.

900

Reason (R) Centrifugal force is given by F =

- (A) Both A and R are correct and R is the explanation of A
- (B) Both A and R are correct but R is not the explanation of A
- (C) A is correct but R is incorrect
- (D) Both A and R are incorrect
- 19. A cyclist is travelling with velocity v on a banked road of radius R. The angle θ through which the leans inwards is given by

(A)
$$\tan\theta = \frac{Rg}{v^2}$$
 (B) $\tan\theta = v^2 Rg$

Horizon Test Series for Medical-2016

(c)
$$\tan \theta = \frac{v^2 R}{g}$$
 (b) $\tan \theta = \frac{v^2}{Rg}$
20. Assertion (A) A ball connected to a string is in circular motion on a frictionless horizontal table and is in equilibrium.
Reason (R) Magnitude of the centripetal force is equal to the magnitude of the tension in the string.
(A) Both A and R are correct and R is the correct explanation of A
(B) Both A and R are correct but R is not the correct explanation of A
(C) A is correct but R is incorrect
(D) A is incorrect but R is correct
21. A 500 kg car takes a round turn of radius 50 m with a velocity of 36 kmh⁻¹. The centripetal force is
(A) 250 N (B) 750 N
(C) 1000 N (D) 1200 N
22. A particle is moving in a vertical circle. The tensions in the string when passing through two positions at angle
30° and 60° from vertical (lowest position) are T_1 and T_2 respectively, then
1 rps in g on it is
 $(A) T_1 = T_2$
(D) tension in the string always remains the same
23. The angular velocity of second hand of a clock is
(A) $\left(\frac{\pi}{6}\right) \operatorname{rad s^{-1}}$ (B) $\left(\frac{\pi}{60}\right) \operatorname{rad s^{-1}}$
(C) $\left(\frac{\pi}{30}\right) \operatorname{rad s^{-1}}$ (D) $\left(\frac{\pi}{15}\right) \operatorname{rad s^{-1}}$
24. Angle of banking for a vehicle speed of 10 ms⁻¹ for a radius of curvature 10 m is (assume, $g = 10 \text{ ms}^{-2}$)
(A) 30° (B) $\tan^{-1}\left(\frac{1}{2}\right)$
(C) 60° (D) 45°

5

Space for Rough Work

Tes	Test-7 (Objective)						Hori	zon Test	Serie	es for Me	dical-2016
25.	The wo body co R is (A) 2π	rk done by the mpletes on rot	e centri ation ar (B) 2	petal force <i>R</i> when the round the circle of radius	30.	A pro of pr two is pr	ojectile ojectio cases, t oportio	can have the family can have the family can be address of the prime the pri	the sa t_2 be roduct	me range F e the times t of the two	R for two angles of flights in the times of flights
	(C) RI	=	(D) z	ero		(A)	5 2		(P)	1	
26.	A cricke	t ball thrown a	cross a	field is at height h_1 and		(A)	R⁺		(В)	R^2	
	h_2 from t_2 respectively fielder at The tim (A) $\left(\frac{h}{t}\right)$	the point of ctively after th at the same hei e of flight of the $p_1t_2^2 - h_2t_1^2$	f proje e throw ght as f e ball ir (B)	ection at times t_1 and u. The ball is caught by a that of projection. In this journey is $\left(\frac{h_1t_2^2 - h_2t_1^2}{1}\right)$	31.	(C) The incre cons rang	$\frac{1}{R}$ maximeased to stant, while ?	num heig by 5%. Ke nat is the p	(D) ht att eeping ercen	R ained by g the angle tage increa	a projectile is e of projection ase in horizontal
	(C) $\left(\frac{h}{h}\right)$	$\frac{h_{1}t_{2} - h_{2}t_{1}}{h_{1}t_{2}^{2} + h_{2}t_{1}^{2}}$	(D) N	$(h_1t_1 - h_2t_2)$ None of these	32.	(A) (C) The vect	15% angle ϵ) between X-axis is	(D) (D)	20%ector p = î	$+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and unit
27.	The equivalence $y = 10x$	eation of traject $(-\left(\frac{5}{9}\right)x^2)$.	tory of a	a projectile is		(A)	cos ⁻¹	$\left(\frac{1}{\sqrt{3}}\right)$	(B)	$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$	-
	If we as (in metr (A) 36	sume g = 10 m e) is	is ^{−2} the (B) 2	n the range of projectile :4	33.	(C) Thi	cos ⁻¹	$\left(\frac{\sqrt{3}}{2}\right)$	(D) sfv tl	$\cos^{-1}\left(\frac{1}{2}\right)$	$\mathbf{A} \cdot \mathbf{B} = 0$ and
~~	(C) 18		(D) 9)		A · (C = 0, th	nen A is pa	arallel	to	
28.	if a pers metre v	ertically, then t	he max	to maximum height of <i>h</i> kimum distance through		(A)	с		(B)	в	
	which it is	can be thrown l	horizon	tally be the same person		(C)	B×C		(D)	В.С	
	(A) $\frac{h}{2}$		(B) <i>j</i>	n	34.	Whi arbit vecte	ch of th trary ve or.	e followin ctor A and	g is co d vec	orrect relati tor O ? Wh	ion between an here O is a null
	(C) 2h	1	(D) 3	3h		(A)	A + O	+ A × O =	Α		
29.	A ball is s from tl the ball	projected hor he top of a buil take to hit the	izontall ding 19 ground	y with a velocity of 5 m/ 0.6 m high. How long will I ?		(B) (C)	A + 0 A + 0	$+ \mathbf{A} \times \mathbf{O} \neq$ + $\mathbf{A} \times \mathbf{O} =$	A 0		
	(A) √2	2s	(B) 2	2s		(D)	None	of these			
	(C) √3	Īs	(D) 3	35							

Tes	t-7 (Objective)	Horizon Test Series for Medical-2016			
35.	For any two vectors A and B , if $\mathbf{A} \cdot \mathbf{B} = \mathbf{A} \times \mathbf{B} $, the magnitude of $\mathbf{C} = \mathbf{A} + \mathbf{B}$ is equal to (A) $\sqrt{A^2 + B^2}$ (B) $A + B$	 40. A proton in a cyclotron changes its velocity from 30 kmh⁻¹ the north of 45 kmh⁻¹ the east in 20s. What is the magnitude of average acceleration during this time? (A) 2.5 kms⁻² (B) 12.5 kms⁻² (C) 20.5 kms⁻² (D) 32.5 kms⁻² 			
	(C) $\sqrt{A^2 + B^2 + \frac{AB}{\sqrt{2}}}$ (D) $\sqrt{A^2 + B^2 + \sqrt{2}AB}$	41. Given, two vectors $\mathbf{A} = -4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\mathbf{B} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}$			
36.37.38.	(c) $\sqrt{\sqrt{2}}$ (d) $\sqrt{A^{2} + B^{2} + \sqrt{2}AB}$ A variable force given by the two-dimensional vector $\mathbf{F} = (3x^{2}\hat{\mathbf{i}} + 4\hat{\mathbf{j}})$ acts on a particle. The force is in newton and x is in metre. What is the change in the kinetic energy of the particle as it moves from the point with coordinates (2,3) to (3,0) ? (the co-ordinates are in metres) (A) $-7 J$ (B) Zero (C) $+7 J$ (D) 19 J There are N coplanar vectors each of magnitude V. Each vector is inclined to the preceding vector at angle $\frac{2\pi}{N}$. What is the magnitude of their resultant ? (A) $\frac{V}{N}$ (B) V (C) Zero (D) $\frac{N}{V}$ If \mathbf{a}_{1} and \mathbf{a}_{2} are two non-collinear unit vectors and if $ \mathbf{a}_{1} + \mathbf{a}_{2} = \sqrt{3}$, then the value of $(\mathbf{a}_{1} - \mathbf{a}_{2}) \cdot (2\mathbf{a}_{1} + \mathbf{a}_{2})$ is (A) 2 (B) $\frac{3}{2}$ (C) $\frac{1}{2}$ (D) 1	The angle made by $(\mathbf{A} + \mathbf{B})$ with $\mathbf{\hat{i}} + 2\mathbf{\hat{j}} - 4\mathbf{\hat{k}}$ is (A) 30° (B) 45° (C) 60° (D) 90° 42. A man is walking due east at the rate of 2 kmh ⁻¹ . The rain appears to him to come down vertically at the rate of 2 kmh ⁻¹ . The actual velocity and direction of rainfall with the vertical, respectively are (A) $2\sqrt{2}$ kmh ⁻¹ , 45° (B) $\frac{1}{\sqrt{2}}$ kmh ⁻¹ , 30° (C) 2 kmh ⁻¹ , 0° (D) 1 kmh ⁻¹ , 90° 43. Police is chasing the thief 50 m ahead. In 10 s, distance between them reduces by 6 m. What is distance between them in 25 s? (A) 10 m (B) 25 m (C) 35 m (D) 20 m 44. Which of the following statement is true? (A) When the co-ordinates axes are translated the components of a vector in a plane change. (B) When the co-ordinate axes are roated through some angle, components of the vector change but the vector's magnitude remains constant. (C) Sum of a and b is R , if the magnitude of a alone is increased, angle between b and R decreases. (D) The cross product of $3\mathbf{\hat{j}}$ and $4\mathbf{\hat{j}}$ is 12. 45. If, a vector $2\mathbf{\hat{i}} + 3\mathbf{\hat{j}} + 8\mathbf{\hat{k}}$ is perpendicular to the vector			
39.	A train of 150 m length is going towards North direction at a speed of 10 ms ⁻¹ . A parrot flies at a speed of 5 ms ⁻¹ towards South direction parallel to the railway track. The time taken by parrot to cross the train is equal to (A) 12 s (B) 8 s (C) 15 s (D) 10 s	$4\hat{\mathbf{j}} - 4\hat{\mathbf{i}} + \alpha \hat{\mathbf{k}}$, then the value of α is (A) -1 (B) $\frac{1}{2}$ (C) $-\frac{1}{2}$ (D) 1			

Tes	t-7 (Objective)	Horizon Test Series for Medical-2016		
46.	[CHEMISTRY] 10^{21} molecules are removed from 200 mg of CO ₂ . The moles of CO ₂ left are (A) 2.88×10 ⁻³ (B) 28.8×10 ⁻³ (C) 288×10 ⁻³ (D) 28.8×10 ³	(C) A is correct but R is incorrect (D) Both A and R are incorrect 53. The largest number of molecules is in (A) 34 g of H_2O (B) 28 g of CO_2 (C) 46 g of CH_2OH (D) 54 g of N_2O_5		
47.	The oxygen obtained from 72 kg of water is (A) 72 kg (B) 46 kg (C) 50 kg (D) 64 kg	54. The equivalent weight of phosphoric acid (H_3PO_4) in the reaction, NaOH + H PO \longrightarrow NaH PO + H O is		
48.	The equivalent weight of $K_2Cr_2O_7$ in acidic medium is expressed in terms of its molecular weight (M) as (A) M/3 (B) M/4 (C) M/6 (D) M/7	 (A) 59 (B) 49 (C) 25 (D) 98 55. Law of multiple proportions is illustrated by one of the following pairs. 		
49.	The number of atoms in 0.1 mole of a triatomic gas is $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$ (A) 6.026×10^{22} (B) 1.806×10^{23} (C) 1.800×10^{22} (D) 3.600×10^{23}	(A) H_2S and SO_2 (B) NH_3 and NO_2 (C) Na_2S and Na_2O (D) N_2O and NO 56. 1.0 g of magnesium is burnt with 0.56 g O_2 in a closed vessel. Which reactant is left in excess and how much?		
50.	In the reaction of sodium thiosulphate with I ₂ in aqueous medium, the equivalent weight of sodium thiosulphate is equal to (A) molar mass of sodium thiosulphate	(Atomic weight, Mg = 24, O = 16) (A) Mg, 0.16 g (B) O_2 , 0.16 g (C) Mg, 0.44 g (D) O_2 , 0.28 g 57. 10 g of a mixture of BaO and CaO requires 100 cm ³ of		
51.	(B) the average of molar masses of $Na_2S_2O_3$ and I_2 (C) half the molar mass of sodium thiosulphate (D) molar mass of sodium thiosulphate × 2 The number of molecules in 18 mg of water in terms of Average number N_1 is	 2.5 M HCl to react completely. The percentage of calcium oxide in the mixture is approximately (given, molar mass of BaO = 153) (A) 52.6 (B) 55.1 (C) 44.9 (D) 47.4 		
52.	(A) $10^{-3}N_A$ (B) $10^{-2}N_A$ (C) $10^{-1}N_A$ (D) $10N_A$ Assertion (A) Equivalent weight of a base	58. A metal oxide has the formula A_2O_3 . It can be reduced by hydrogen to give free metal and water. 0.1596 g of this metal oxide requires 6 mg of hydrogen for complete reduction. What is the atomic weight of metal ? (A) 52.3 (B) 57.3		
	 = molecular weight acidity Reason (R) Acidity is the number of replaceable hydrogen atom in one molecule of the base. (A) Both A and R are correct and R is the correct explanation of A (B) Both A and R are correct but R is not the correct explanation of A. 	(C) 55.8 (D) 59.3 59. If 1 mL of water contains 20 drops then number of molecules in one drop of water is (A) 6.023×10^{23} molecules (B) 1.376×10^{26} molecules (C) 1.344×10^{18} molecules (D) 4.346×10^{20} molecules		

Tes	t-7 (Objective)	Horizon Test Series for Medical-20			
60.	A mixture of CaCl ₂ and NaCl weighing 4.44 g is treated with sodium carbonate solution to precipitate all the Ca ²⁺ ions as calcium carbonate. The calcium carbonate, so obtained is heated strongly to get 0.56g of CaO. The percentage of NaCl in the mixture (atomic mass of Ca = 40) is (A) 75 (B) 30.6 (C) 25 (D) 60.4	67.	Observe the following reaction, $2NO_2(g) + 2OH^-(aq) \longrightarrow NO_3^-(aq) + H_2O(I) + NO_2^-(aq)$ in this reaction, (A) OH ⁻ is oxidised to H ₂ O (B) HO ⁻ is reduced to H ₂ O (C) NO ₂ (g) is reduced to $NO_2^-(aq)$ and oxidised to		
61.	 (b) 03.4 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be (A) 3 mol (B) 4 mol (C) 1 mol (D) 2 mol 	68	$NO_3^-(aq)$ (D) $NO_2(g)$ is reduced to $NO_3^-(aq)$ and oxidised to $NO_2^-(aq)$ Both oxidation and reduction takes place in		
62.	What volume of oxygen gas (O_2) measured at 0°C and 1 atm, is needed to burn completely 1 L of propane gas (C_3H_8) measured under the same conditions ? (A) 7 L (B) 6 L (C) 5 L (D) 10 L	00.	(A) $NaBr + HCI \longrightarrow NaCI + HBr$ (B) $HBr + AgNO_3 \longrightarrow AgBr + HNO_3$ (C) $H_2 + Br_2 \longrightarrow 2HBr$		
63.	For the reaction, $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$, the volume of carbon monoxide required to reduce one mole of ferric oxide is (A) 22.4 dm ³ (B) 44.8 dm ³ (C) 67.2 dm ³ (D) 11.2 dm ³	69.	(D) $CaO + H_2SO_4 \longrightarrow CaSO_4 + H_2O$ The equivalent mass of KMnO ₄ in the following reaction is $MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{2+} + 4H_2O$ (M= Molecular mass)		
64.	What is the stoichiometric coefficient of Ca in the reaction? $Ca + Al^{3+} \longrightarrow Ca^{2+} + Al$ (A) 2 (B) 1		(A) $\frac{M}{2}$ (B) $\frac{M}{3}$ (C) $\frac{M}{4}$ (D) $\frac{M}{5}$		
65.	(C) 3 (D) 4 If equal volumes of 1M KMnO ₄ and 1M K ₂ Cr ₂ O ₇ solutions are allowed to oxidise Fe(II) to Fe (III) in acidic medium then Fe (II) oxidised will be (A) more by KMnO ₄ (B) more by K ₂ Cr ₂ O ₇ (C) equal in both the cases (D) cannot be determined	70. 71.	Which of the following substances acts as an oxidising as well as reducing agent ? (A) Na ₂ O (B) SnCl ₂ (C) NaNO ₃ (D) NaNO ₂ In acidic medium, H ₂ O ₂ changes $Cr_2O_7^2$ to CrO ₅ which has two (O		
66.	Given the reaction for the discharge of a cobalt- cadmium battery $2Co(OH)_3 + Cd + 2H_2O \longrightarrow 2Co(OH)_2 + Cd(OH)_2$ What species is oxidised during the discharge of the battery ? (A) Co ³⁺ (B) Co ²⁺ (C) Cd (D) Cd ²⁺	72.	 (A) + 5 (B) +3 (C) + 6 (D) -10 Oxidation number of nitrogen in which among the oxides of nitrogen is the lowest ? (A) Nitric oxide (B) Nitrous oxide (C) Nitrogen dioxide (D) Nitrogen trioxide 		

Space for Rough Work

Tes	t-7 (Objective)		Horizon Test Series for Medical-2016
73.	The oxidation number of Cr in $K_2 Cr_2 O_7$ is (A) +2 (B) +4 (C) +6 (D) +7	81.	The oxidation states of S-atoms in $S_4O_6^{2-}$ from left to right respectively, are
74.	(b) + 7 The oxidation number of sulphur in $Na_2S_2O_3$ is (A) + 1 (B) + 2		\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{I}
	(C) $+3$ (D) -3		
75.	A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the reaction which element undergoes maximum change in oxidation number?		(A) +6,0,0,+6 (B) +3,1,+1,+3 (C) +5,0,0,+5 (D) +4,+1,+1,+4
	(A) S (B) H (C) Cl (D) C	82.	In which of the following compounds, iron has an oxidation number of +3?
76.	In chromite ore, the oxidation number of iron and chromium respectively, are		(A) $Fe(NO_3)_2$ (B) FeC_2O_2
	(A) $+3, +2$ (B) $+3, +6$ (C) $+2, +6$ (D) $+2, +3$		(C) $[Fe(H, O)]C(H, O)$
77.	Oxidation states of P in $H_4P_2O_5$, $H_4P_2O_6$, $H_4P_2O_7$, respectively are		(D) $(NH_4)_2 SO_4 \cdot FeSO_4 \cdot H_2O$
	(A) +3,+4,+5 (B) +3,+5,+4 (C) +5,+3,+4 (D) +5,+4,+3	83.	The oxidation states of iodine in $\rm HIO_4, H_3IO_5$ and $\rm H_5IO_6$ respectively, are
78.	Highest oxidation state of Mn is present in		(A) +1,+3,+7 (B) +7,+7,+3
	(A) KMnO ₄ (B) K ₂ MnO ₄		(C) +7,+7,+7 (D) +7,+5,+3
79.	(C) Mn_2O_3 (D) MnO_2 When a manganous salt is fused with a mixture of	84.	Which of the following oxidation states are the most characteristics for lead and tin respectively ?
	KNO_3 and solid NaOH, the oxidation number of Mn changes from + 2 to		(A) +4,+2 (B) +2,+4
	(A) + 4 (B) + 3		(C) +4,+4 (D) +2,+2
~~	(C) + 6 (D) + 7	85.	Oxidation state of nitrogen is correctly given for
80.	Which of the following have been arranged in the decreasing order of oxidation number of sulphur?		Compound Oxidation state
	(A) $Na_2S_4O_6>H_2S_2O_7>Na_2S_2O_3>S_8$		$(R) NH OH \qquad +1$
	(B) $H_2SO_4>SO_2>H_2S>H_2S_2O_8$		(C) (N_0H_2) , SO, +2
	(C) $SO_2^{2+} > SO_4^{2+} > SO_3^{2-} > HSO_4^{-}$		(D) $[Co(NH_3)_5CI]CI_2$ 0
	(D) $H_2SO_5 > H_2SO_3 > SCI_2 > H_2S$		

86. For the redox reaction,

$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$$

the correct coefficient for the balanced reaction are

	MnO_4^-	$C_{2}O_{4}^{2-}$	H⁺
(A)	2	5	16
(B)	16	5	2
(C)	5	16	2
(D)	2	16	5

87. In the following redox reaction,

$xUO^2 + Cr_2O$; + yH ·	$\rightarrow aUO_2^2$	$+zCr^{\circ}$	$+ bH_2O$
the values of o	coefficients >	x,y and	d z respe	ctively, are

(A)	3,8,2	(B)	3,8,7
(C)	3,2,4	(D)	3,1,8
— • • • •			

88. For the redox reaction,

- 0

$$Zn + NO_3^- \longrightarrow Zn^{2+} + NH_4^+$$

In basic medium, coefficients of Zn, NO_3^- and OH^- in the balanced reaction respectively, are

(A)	4,1,7	(B)	7,4,1
(C)	4,1,10	(D)	1,4,10

89. The equivalent mass of potassium permanganate in strong alkaline medium is its

(A)	$\frac{\text{Molar mass}}{5}$	(B) $\frac{\text{Molar mass}}{3}$
(C)	Molar mass	(D) Molar mass itself

In alkaline medium CIO_2 oxidises H_2O_2 to O_2 and reduced itself to CI^- , then how many moles of H_2O_2 90. will oxidise by one mole of CIO₂?

(A)	1.0	(B)	1.5
(C)	2.5	(D)	3.5

[ZOOLOGY]

Match Column-I with Column-II and select the correct 91.

Column-IColumn-IIA.Factor II(i)ThromboplastinB.Factor III(ii)ProthrombinC.Factor VIII(iii)Hageman factorD.Factor XII(iv)Antihaemophilic globulin(A)A-(iii), B-(iv), C-(ii), D-(i)(B)A-(iv), B-(iii), C-(ii), D-(i)(C)A-(ii), B-(i), C-(ii), D-(i)(D)A-(i), B-(i), C-(ii), D-(i)(D)A-(i), B-(i), C-(ii), D-(i)(D)A-(i), B-(i), C-(ii), D-(i)(2)Human blood maintains homeostasis in the internal environment of the body by(1)replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid(2)replenishment of oxygen and elimination of CO2 (3)(3)increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCS(4)maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes.Which of the above statements are correct. (A)1 only(A)1 only(B)1 and 2 (C)(C)1, 2 and 4(D)2 and 493.Match the types of WBC listed under Column-I and select the correct option from codes given below : Column-IColumn-IA.Neutrophils(i)S-shapedC.Basophils(ii)B.Eosinophils(ii)B.Eosinophils(ii)B.A-(ii), B-(i), C-(i), D-(ii)(B)A-(v), B-(ii), C-(i), D-(option from the codes given below :					
 A. Factor II (i) Thromboplastin B. Factor III (ii) Prothrombin C. Factor VIII (iii) Hageman factor D. Factor XII (v) Antihaemophilic globulin (A) A-(iii), B-(iv), C-(ii), D-(i) (B) A-(iv), B-(iii), C-(ii), D-(i) (C) A-(ii), B-(i), C-(ii), D-(ii) (D) A-(i), B-(ii), C-(iii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-I and select the correct option from codes given below : Column-I A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(iv), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(ii) 			Column-l		Column-II		
 B. Factor III (ii) Prothrombin C. Factor VIII (iii) Hageman factor D. Factor XII (v) Antihaemophilic globulin (A) A-(iii), B-(iv), C-(ii), D-(i) (B) A-(iv), B-(iii), C-(ii), D-(i) (C) A-(ii), B-(i), C-(iv), D-(iii) (D) A-(i), B-(ii), C-(ii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(iv), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(ii) 		Α.	Factor II	(i)	Thromboplastin		
 C. Factor VIII (iii) Hageman factor D. Factor XII (iv) Antihaemophilic globulin (A) A-(iii), B-(iv), C-(ii), D-(i) (B) A-(iv), B-(iii), C-(ii), D-(i) (C) A-(ii), B-(i), C-(iv), D-(iii) (D) A-(i), B-(i), C-(iii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(iv), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(ii) 		В.	Factor III	(ii)	Prothrombin		
 D. Factor XII (iv) Antihaemophilic globulin (A) A-(iii), B-(iv), C-(ii), D-(i) (B) A-(iv), B-(iii), C-(iv), D-(i) (C) A-(i), B-(i), C-(iv), D-(iii) (D) A-(i), B-(i), C-(iii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO2 (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(ii) (D) A-(iii), B-(iv), C-(ii), D-(ii) 		C.	Factor VIII	(iii)	Hageman factor		
 globulin (A) A-(iii), B-(iv), C-(ii), D-(i) (B) A-(iv), B-(iii), C-(ii), D-(i) (C) A-(ii), B-(i), C-(ii), D-(iii) (D) A-(i), B-(ii), C-(iii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv, C-(i), D-(ii) 		D.	Factor XII	(iv)	Antihaemophilic		
 (A) A-(iii), B-(iv), C-(ii), D-(i) (B) A-(iv), B-(iii), C-(iv), D-(ii) (C) A-(ii), B-(ii), C-(iv), D-(iii) (D) A-(i), B-(ii), C-(iii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 				globul	in		
 (B) A-(iv), B-(ii), C-(ii), D-(i) (C) A-(ii), B-(i), C-(iv), D-(iii) (D) A-(i), B-(ii), C-(ii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv, C-(ii), D-(i) 		(A)	A-(iii), B-(iv), C-	(ii), D–	-(i)		
 (C) A-(ii), B-(i), C-(iv), D-(iii) (D) A-(i), B-(ii), C-(iii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (v) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		(B)	A-(iv), B-(iii), C-	(ii), D–	-(i)		
 (D) A-(i), B-(ii), C-(iii), D-(iv) 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (v) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		(C)	A-(ii), B-(i), C-(iv	/), D–(iii)		
 92. Human blood maintains homeostasis in the internal environment of the body by (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(ii) 		(D)	A-(i), B-(ii), C-(ii	i), D–(i	iv)		
 (1) replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(ii) 	92.	Hum envir	an blood maintair conment of the bod	ns hon ly by	neostasis in the internal		
 (2) replenishment of oxygen and elimination of CO₂ (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(ii) 		(1)	replenishment of elimination of a extracellular fluid	of nutr metab	ients and oxygen and polic wastes from the		
 (3) increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		(2)	replenishment of	oxyge	n and elimination of CO_2		
 (4) maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes. Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		(3)	increasing the blo of urea into am wornout RBCs	od su ino ac	gar level and conversion cids and destruction of		
Which of the above statements are correct. (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (V) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i)		(4)	maintenance of i and body fluids wastes.	on co by e	ncentration in the blood liminating nitrogenous		
 (A) 1 only (B) 1 and 2 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		Whic	h of the above sta	temer	nts are correct.		
 (C) 1, 2 and 4 (D) 2 and 4 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		(A)	1 only	(B)	1 and 2		
 93. Match the types of WBC listed under Column-I with the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (C) A-(ii), B-(iv), C-(ii), D-(ii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		(C)	1, 2 and 4	(D)	2 and 4		
 the shape of nucleus given under Column-II and select the correct option from codes given below : Column-I Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(v), D-(iii) (C) A-(ii), B-(iv), C-(ii), D-(ii) (D) A-(iii), B-(iv), C-(ii), D-(i) 	93.	Matc	h the types of WE	3C list	ed under Column-I with		
the correct option from codes given below : Column-I Column-II A. Neutrophils (i) Kidney-shaped B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iv) (C) A-(ii), B-(iv), C-(ii), D-(ii) (D) A-(iii), B-(iv), C-(ii), D-(i)		the sl	hape of nucleus giv	ven un	der Column-II and select		
Column-IColumn-IIA.Neutrophils (i)Kidney-shapedB.Eosinophils (ii)S-shapedC.Basophils (iii)3 to 5 lobesD.Monocytes (iv)2 lobes(i)Disc-shaped(A)A-(iii), B-(v), C-(i), D-(ii)(B)A-(v), B-(iii), C-(i), D-(iv)(C)A-(ii), B-(i), C-(v), D-(iii)(D)A-(iii), B-(iv), C-(ii), D-(i)		the c	orrect option from	codes	given below :		
A.Neutrophils(i)Kidney-shapedB.Eosinophils(ii)S-shapedC.Basophils(iii)3 to 5 lobesD.Monocytes(iv)2 lobes (V) Disc-shaped(A)A-(iii), B-(v), C-(i), D-(ii)(B)A-(v), B-(iii), C-(i), D-(iv)(C)A-(ii), B-(i), C-(v), D-(iii)(D)A-(iii), B-(iv), C-(ii), D-(i)			Column-I		Column-II		
 B. Eosinophils (ii) S-shaped C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iv) (C) A-(ii), B-(i), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		Α.	Neutrophils	(i)	Kidney-shaped		
 C. Basophils (iii) 3 to 5 lobes D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iv) (C) A-(ii), B-(i), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		В.	Eosinophils	(ii)	S-shaped		
 D. Monocytes (iv) 2 lobes (v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iv) (C) A-(ii), B-(i), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		C.	Basophils	(iii)	3 to 5 lobes		
(v) Disc-shaped (A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iv) (C) A-(ii), B-(i), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i)		D.	Monocytes	(iv)	2 lobes		
(A) A-(iii), B-(v), C-(i), D-(ii) (B) A-(v), B-(iii), C-(i), D-(iv) (C) A-(ii), B-(i), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i)				(V)	Disc-shaped		
(B) $A_{-}(v), B_{-}(iii), C_{-}(i), D_{-}(iv)$ (C) $A_{-}(ii), B_{-}(i), C_{-}(v), D_{-}(iii)$ (D) $A_{-}(iii), B_{-}(iv), C_{-}(ii), D_{-}(i)$		(A)	A–(iii), B–(v), C–(i), D–(ii)		
 (C) A-(ii), B-(i), C-(v), D-(iii) (D) A-(iii), B-(iv), C-(ii), D-(i) 		(B)	A-(v), B-(iii), C-(i	i), D–(i	v)		
(D) A–(iii), B–(iv), C–(ii), D–(i)		(C)	A–(ii), B–(i), C–(v), D–(i	ii)		
		(D)	A–(iii), B–(iv), C–	(ii), D–	-(i)		

11

Space for Rough Work

Tes	t-7 (Objective)	I		H	orizon Tes	t Series f	or Medic	al-2016
94.	 Which one of the following statements is correct with regard to the principle of safe blood transfusion ? (A) The donor's red blood corpuscles should not contain antibodies against the recipient's serum. (B) The recipients serum should not contain antigens against the donor's antibodies. (C) The recipient's serum should not contain the antibodies against the red blood corpuscle of the antibodies against the red blood corpuscle of the antibodies against the red blood corpuscle of the antibodies. 	99.	Cons correc ones (i) (ii) (ii)	ider ct op are Pro Pla Ser	the followin ption stating false (F) ? oteins contril sma contair sma withou um	ng four stat which ones oute 6–8% ns very high it the clot	ements and are true (T of the bloo h amount o ting factor	d select the) and which d plasma f minerals s is called
	(D) The recipient's red blood corpuscles should not		(IV)	pre trai	sent in the bo	no acids, plasma a ody	s they are	, are also always in
95.	contain antibodies against the donor's antigen. In the clotting mechanism pathway, thrombin activates the factors (A) XI, VIII, V (B) XI, IX, X (C) VIII X V (D) IX VIII X		(A) (B) (C)	(i) F T T	(ii) F F T	(iii) T T F	(iv) T T F	
96.	 A drop of each of the following is placed separately on four slides. Which of them will not coagulate? (A) Blood serum (B) Blood from pulmonary artery (C) Whole blood from pulmonary vein (D) Blood plasma 	100.	(D) In the up the below	F e fol e bla v :	F lowing table anks (i), (ii), (F of human iii) and (iv)	T ABO blood from the op	groups, fill tions given
97.	In which of the following situations, there is a risk factor		Bloo	d	Antigens on	Antibody	Donor	
	for children acquiring erythroblastosis foetalis?		grou	р	RBCs	in Plasma	groups	
	(A) Mother is Rh – ve and father is Rh + ve		Α		A	Anti – B	A, O	
	(C) Mother is $Rh + ve$ and father is $Rh + ve$		В		В	Anti – A	В, О	
	(D) Mother is Rh + ve and father is Rh – ve		AB	3	AB	(ii)	A, B, AB, O	
98.	Study the given figure and identify the cells labelled as A, B, C and D.		0		(i)	(iii)	(iv)	
			(A) (B) (C)	(i) Nil Nil Nil	(ii) Nil Nil Anti-A	(i N A ,B N	ii) Iil Inti-A, B Iil	(iv) D AB D

- (A) A–Eosinophil, B–Erythrocyte, C–Neutrophil, D–Basophil
- (B) A–Eosinophil, B–Lymphocyte, C–Neutrophil, D–Monocyte

- (C) A-Erythrocyte, B-Basophil, C-Neutrophil, D-Lymphocyte
- (D) A-Eosinophil, B-Monocyte, C-Neutrophil, D-Lymphocyte

11

- 101. Find the correct descending order of percentage proportion of leucocytes in human blood.
 (A) Neutrophils → Basophils → Lymphocytes →
 - Acidophils (Eosinophils) \rightarrow Monocytes
 - $\begin{array}{ll} (B) & \text{Monocytes} \rightarrow \text{Neutrophils} \rightarrow \text{Lymphocytes} \rightarrow \\ & \text{Acidophils} \rightarrow \text{Basophils} \end{array}$
 - $\begin{array}{ll} \text{(C)} & \text{Neutrophils} \rightarrow \text{Lymphocytes} \rightarrow \text{Monocytes} \rightarrow \\ & \text{Acidophils} \rightarrow \text{Basophils} \end{array}$
 - (D) Lymphocytes \rightarrow Acidophils \rightarrow Basophils \rightarrow Neutrophils \rightarrow Monocytes

12

Space for Rough Work

Tes	t-7 ((Objective)			Horizon Test Series for Medical-2016
	(A)	 A–Aorta, B–Pulmonary vein, C–Pulmonary arteries, D–left ventricle, E–Semilunar valves, F–Left auricle, G–Right auricle, H–Superior vena cava, I–Right ventricle, J–Tricuspid valves, K–Inferior vena cava 		In th (A) (B) (C)	rombocytes, Sydersomes are 2-3 mitochondria in groups. Granules containing serotonin. Iron containing vesicles.
	(B)	A–Aorta, B–Pulmonary artery, C–Pulmonary veins, D–Left auricle, E–Tricuspid valves, F–Left ventricle, G–Right ventricle, H–Inferior vena cava, I–Right auricle, J–Semilunar valves, K–Superior vena cava.	112.	(D) Rea ones (i)	Glycogen granules. d the following statements and select the correct s. Nodal tissue is specialized cardiac musculature
	(C)	A–Aorta, B–Superior vena cava, C–Inferior vena cava, D–Right ventricle, E–Tricuspid valves, F– Right auricle, G–Left auricle, H–Pulmonary vein, I–Right ventricle, J–Semilunar valves,K– Pulmonary artery.		(ii) (iii)	 in human heart which has the ability to generate action. Position of SAN - right corner of right atrium Position of AVN - right corner of Ventricle
	(D)	A-Aorta, B-Superior vena cava, C-Inferior vena cava, D-Left ventricle,E-Semilunar valves, F-Left auricle,G-Right auricle, H- Pulmonary artery, I-Rightventricle,J-Tricuspidvalves,		(iv) (v)	AV bundle continues from AVN Purkinje fibres are modified cardiac muscle fibres that originate from the atrioventricular node and apread into the two ventricles
400	\A/I-:	K–Pulmonary vein.		(A)	(i) and (ii) (B) (i) and (iii)
109.		The volume of both atria > the volume of both		(C)	(ii), (iv) and (v) (D) All of these
	(~)	ventricles	113.	Cho	rdae tendineae are found in
	(B)	The volume of both ventricles > the volume of both atria.		(A) (B)	ventricles of brain joints of legs
	(C)	The volume of both atria = the volume of both ventricles		(C)	ventricles of heart
	(D)	Ventricles are upper chambers and atria are lower		(D)	atria of heart
		chambers in our heart.	114.	Duri	ng ventricular systole
110.	Read optic	d the following statements and select the correct m.		(A)	Oxygenated blood is pumped into the pulmonary artery and deoxygenated blood is pumped into the artery
	State	ement 1 : The SA node acts as pacemaker.		(B)	Oxygenated blood is pumped into the aorta and
	Statement 2 : The SA node is located in the wall of the right atrium near the interatrial septum.			(2)	deoxygenated blood is pumped into the pulmonary vein
	(A)	Both statement 1 and 2 are correct and statement 2 is the correct explanation of statement 1		(C)	Oxygenated blood is pumped into the pulmonary vein and deoxygenated blood is pumped into the
	(B)	Both statement 1 and 2 are correct and statement 2 is not the correct explanation of statement 1.		(D)	pulmonary artery Oxygenated blood is pumped into the aorta and
	(C)	Statement 1 is correct and statement 2 is incorrect.		. ,	deoxygenated blood is pumped into the pulmonary artery.
	(D)	Both statement 1 and 2 are incorrect.			

Tes	t-7 (Objective)						Horizon Te	st Serie	es for Medical-2016
115.	Whi	ch of the followin	ng stat	ements(s) regardin	g the 1	119.	Haei	moglobin contai	ins	
		Lumon boart in	on oot	dormal dorivativa			(A)	70% globin +	30%ha	ematin
	(1)			opennal derivative.	- right		(B)	80% globin +	20%ha	ematin
	(11)	atrium and left v	entricl	e e	engni		(C) (D)	96% globin +	04%ha	ematin
	(iii)	SAN is located right atrium	on the	e left upper corner o	of the	120.	Mato	ch Column-I wit	h Colum	n-II and select the correct
	(iv)	Stroke volume	× Hear	t rate = Cardiac outp	out		optic	on from the code	es given	below :
	(A)	(i) only	(B)	(i) and (iv)				Column I		Column II
	(C)	(ii) and (iii)	(D)	(iv) only			(A)	Superior vena	cava	(i) Carries
116.	The norn atria	problem of elect nal heart by the c from the ventricl	rical di onnec es is so	scontinuity caused tive tissue separatir blved by	in the ng the		(B)	Inferior vena ca	ava	blood to lungs (ii) Carries oxygenated blood from lungs
	(A)	coordinating ele electrical activit them via the bu	ectrica y in the ndle of	l activity in the atria ventricles by conne His	a with ecting		(C)	Pulmonary art	tery	(iii) Brings deoxygenated blood from lower part
	(B)	having the A–V pacemaker	' node	function as a seco	ndary		(D)	Pulmonary vei	in	of body to right atrium (iv) Bring deoxygenated
	(C)	having an ectop	ic pace	emaker						blood from upper part of
	(D)	coordinating ele	ectrica	l activity in the atria	a with		(A)	A (ii) B (iv) (body to right atrium
		them via the vac	y in the	e ventricles by conne	ecting		(~) (B)	$A_{(iv)} = (iv), 0$	ט (ווו), ט ר (וו) ר	-(I) (III)
117	\//bi	ah ana of the follo		a a matahing pair 2			(D) (C)	$A_{(iv)}, B_{(iii)}$	C_(ii), D_	-(ii)
117.			wing i		nning		(C) (D)	$A_{(iv)}$, $B_{(ii)}$,	C_(iii) D_	(ii) _(ii)
	(A)	of ventricular sy	stole	AV valves at the begi		121	(D)	figure given belo		three stages in the cardiac
	(B)	Dup - sudden op beginning of ver	ening htricula	of semilunar valves r diastole	at the	121.	cycle	e.	W 5110W5	
	(C)	Pulsation of the vessels	radial a	artery - valves in the	blood	1 = 2 = 3 = 3				
	(D)	Initiation of the l	heart b	eat - Purkinje fibres			\rangle	JHA	2H	
118.	In hi dias	umans, blood pa tolic right atrium o	sses fr of hear	om the post caval t t due to	to the		1		V	
	(A) stimulation of the sino auricular node						Whi	ch of the followi	ng seque	ences is correct regarding
	(B)	pressure differe atrium	ence be	etween the post cava	al and		this ' (A)	? 2, 3, 1	(B)	1, 2, 3

- (C) pushing open of the venous valves
- (D) suction pull

(H

Space for Rough Work

(C) 2, 1, 3

(D) 3, 1, 2

Tes	t-7 ((Objective)				Horizon Test Series for Medical-2016
122.	A re pass	d blood cell, ento ses by or through	ering th the fol	he right side of the he lowing structures.	art 125	25. Choose the schematic diagram which properly represents pulmonary circulation in humans.
	1. 2. 3. 4.	Atrioventricular v Semilunar valve Right atrium Right ventricle	/alves s		(A)	N Left auricle → Lungs → Lungs → Lungs → Lungs → Dlood
	5. Which sequ	SAN ch of the followin ience ?	g optio	ns represents the corr	ect ^(B)	3) Left auricle → Lungs → Lungs → blood blood blood → Lungs → blood → bl
123.	(A) (B) (C) (D) Mato	$2 \rightarrow 3 \rightarrow 1 \rightarrow 4$ $3 \rightarrow 1 \rightarrow 5 \rightarrow 2$ $3 \rightarrow 5 \rightarrow 1 \rightarrow 2$ $5 \rightarrow 3 \rightarrow 1 \rightarrow 4$ ch Column-I with	$ \rightarrow 5 \rightarrow 4 \rightarrow 4 \rightarrow 2 Colum $	n-II and select the con	(C) ect	c) Right ventricle → Deoxygenated blood Lungs → Left auricle
	optic	on from the codes Column-I RBC Antibody	; given (i)	below : Column-II Coagulation	(D)) Right ventricle <u>Oxygenated</u> blood → Lungs <u>Deoxygenated</u> blood → Left auricle
	Б. С. D.	Platelets Systole	(ii) (iii) (iv)	Contraction Gas transport	126	26. Which of the following sequences is truly a systemic circulation pathway ?
	(A) (B) (C) (D)	A-(v), B-(i), C-(A-(ii), B-(iv), C-(iv), B-(iv), C-(iv), B-(ii), C-(iii), C-(iii), B-(v), C-(v), C-(iii), B-(v), C-(v), C	(v) (iv), D– -(iii), D -(i), D–(-(ii), D–	(iii) -(i) (iii) -(iv)		 (A) Right ventricle → Pulmonary aorta → Tissues → Pulmonary veins → Left auricle (B) Right auricle → Left ventricle → Aorta → Tissues → Veins → Right auricle (C) Left auricle → Left ventricle → Pulmonary aorta
124.	In th part	e given figure of (1, 2, 3, 4, 5) car	the he ries ox	eart which of the labe ygenated blood ?	led	 → Tissues → Right auricle (D) Left auricle → Left ventricle → Aorta → Arteries → Tissues → Veins → Right atrium. 27. The given figure is of circulatory system. Identify the
						 labelled parts (A–D) from the list (i–vii). (i) Pulmonary circulation (ii) Systemic circulation (iii) Superior vena cava
	(A) (C)	1, 2, 3 and 4 1 and 4	(B) (D)	1 and 5 3 and 5		(iv) Inferior vena cava

Space for Rough Work

Tes	t-7 (Objec	tive)						Hor	izon Tes	t Serie	es for	Medi	cal-2016
	(v) (vi) (vii)	Aorta Veins Arterio	and venul bles and c	les capillaries	i.		129.	Con sele (i) (ii) (ii) (iii) (i∨)	sider the c Fish h Closu sounc Colur Purki	ne followin correct op neart cont re of A-V v d. nnae carr nje fibres	ng four tion. ains on /alves p neae oc are ne	stater stater produc cur in f erve fil	ments (genate es the s the auri pres pre	i) - (iv) and d blood. second heart cles. esent in the
			B		Leart D		130.	(A) (B) (C) (D) Syst (A) (B) (C)	(i) F F T T emic h the he nervo left au entire	(ii) F F T F eart referse eart that c ous system uricle and l heart in k	(iii) T F T s to contract n. eft vent	(i F T ts unde tricle ir ertebra	iv) 	ulation from
		Α	В	С	D		131.	(D) Whi	ch of t	he followi	ing par	ts of h	numar neart fii	rst receives
	(A)	(v)	(iii)	(i)	(∨ii)			deox (A)	kygena Right	ted blood	? (B)	Left	auricle	
	(B)	(vii)	(iv)	(i)	(vi)		100	(C)	Right	auricle	(D)	Left	ventricle	Э.
	(C)	(v)	(iii)	(ii)	(∨ii)		132.	arte	rto the	ssure and	ure in wi d Bref	nich A fers to	refers to right	ventricular
	(D)	(vii)	(v)	(i)	(vi)			pres	sure. Io	lentify P, C), R and	d S in tl	hefigur	e and match
128.	Rea	d the fo on.	llowing st	atements	and select	t the correct		(i)	Isovo	lumetric v	entricul	ar con	traction	
	Stat supe	ement erior to t	1 : The he 4-char	4-chamb nbered h	ered heart eart of croc	of birds is odiles.		(ii) (iii) (iv)	ventri Isovo Ventri	cular ejec lumetric v icular fillin	tion entricul: a	ar rela	xation	
	Stat arch aorta	ement : es that a while	2 : Crococ join, caus avian hea	dilian hea ing mixin art has los	rt retains bo g of blood i st left syster	oth systemic n the dorsal mic arch.				P	RS	P		
	(A)	Both s 2 is th	tatement e correct	1 and 2 ar explanati	e correct ar ion of state	nd statement ment 1.			Pressure (mmHg)	50-		A		
	(B)	Both s 2 is no	tatement of the corr	1 and 2 ar ect expla	e correct an ination of s	d statement tatement 1.				۲ — ۲	Time	В	I	
	(C)	State	ment 1 is ect.	s correct	t and state	ement 2 is		(A) (B)	P–(iv P–(ii)), Q–(iii), F , Q–(iii), R	R–(ii), S –(i), S–	i–(i) -(iv)		
	(D)	Both s	tatement	: 1 and 2 a	are incorred	ct.		(C) (D)	P–(iv P–(i),), Q–(i), R- Q–(ii), R-	–(ii), S– -(iii), S–	-(iii) -(i∨)		

Space for Rough Work

Tes	t-7 (Objective)	Horizon Test Series for Medical-2016
133.	 Rapidity of conduction is greatest in the (A) Atrial muscle (B) Purkinje fibres (C) AV nodal region (D) Ventricular muscle. 	139. Photosynthetic pigments such as chl a, chl b, xanthophyll and carotene can be separated by which of the following techniques ?(A) Paper chromatography(B) Gel Electrophoresis
134.	The myocardial depressant is	(C) X-ray diffusion
	(A) Ca ⁺⁺ (B) Mg ⁺⁺	(D) ELISA test
135.	 (C) Digitatis (D) Na⁺ Erythropoietin is stimulated by all except (A) Low blood volume (B) Polycythemia 	 140. Which range of wavelength (in nm) is called as photosynthetically active radiation (PAR)? (A) 100 - 390 (B) 390 - 430 (C) 400 - 700 (D) 760 - 100
	(C) Poor blood flow	141 Study the following statements regarding chi a
	(D) Pulmonary disease	molecule.
	[BOTANY]	(i) Molecular formula of chl <i>a</i> is $C_{55}H_{72}O_5N_4Mg$ (ii) It is the primary photosynthetic pigment.
136.	Which one of the following correctly depicts the biochemical reaction for photosynthesis?	(iii) In pure state, it is red in colour and thus it absorbs more blue wavelength of light than the red wavelength.
(A)	$C_6 \Pi_{12} O_6 + 6 O_2 \longrightarrow 6 CO_2 + 6 \Pi_2 O + energy$	(iv) It is soluble in water as well as petroleum ether.
(B)	$C_6H_{12}O_6 + 6O_2 + 6H_2O \longrightarrow$	Which of the above statements is/are not correct?
	$6CO_2 + 12H_2O + energy$	(A) (i) and (iii) (B) (iii) and (iv)
(C)	$6CO_2 + 6H_2O \xrightarrow{\text{Sunlight}} C_6H_{12}O_6 + 6O_2$	(C) (iii) only(D) (iv) only142. Given graph represents the absorption spectra of three
(D)	$6CO_2 + 12H_2O \xrightarrow{Sunlight}_{Chlorophyll} \rightarrow$	photosynthetic pigments, chl a, chl b and β -carotene. Select the correct statement regarding this.
	$C_{6}H_{12}O_{6} + 6O_{2} + 6H_{2}O_{2}$	
137.	Ingenhousz in an experiment showed that in bright sunlight, small bubbles were formed around the green parts of the plant, while in the dark, they did not. He identified these bubbles to be of	Chlorophyll-δ Chlorophyll- a
	(A) CO ₂ (B) H ₂ O	
	(C) O ₂ (D) H ₂	I ILL I
138.	Who used prism, green alga <i>Cladophora</i> , and aerobic bacteria and plotted the first action spectrum for photosynthesis ?	$\frac{7}{380 + 440} = 500 = 560 = 620 = 680 = 740$ Wavelength in nm
	(A) Sachs (B) Amon	
	(C) Arnold (D) Engelmann	

Space for Rough Work

Tes	t-7 ((Objective)		Horiz	on Test S	Serie	s for N	ledical-2016
	(A)	The curve showing the amount of absorption of different wavelengths of light by a photosynthetic pigment is called as absorption spectrum	Direction : Refer the given diagramatic representation of an electron micrograph of a section of chloroplast to answer the Q. Nos. 148 and 149					
	(B)	Chl a and chl b absorb maximum light in blue and red wavelength of light						
	(C)	Rate of photosynthesis is maximum in blue and red wavelength of light.						-x
	(D)	All of these						- <u>-</u> Y
143.	Whic for cl	ch of the following serves as the source of energy hemosynthetic bacteria?						✓ Z
	(A)	Sun	148.	Select the op	otion that c	correc	tly iden	tifies X, Y and Z.
	(B)	Infra-red rays		Х	Y	Z	z	
	(C)	Organic substances	(A)	Stroma	Grana	C	Chloropl	ast DNA
	(D)	Inorganic chemicals	(B)	Stroma	Grana	S	Starch g	ranule
144.	Whie	ch of the following is produced during the light	(C)	Grana	Stroma	S	Starch g	ranule
	phas	e of photosynthesis ?	(D)	Grana	Stroma	C	Chloropl	ast DNA
	(A)		149. Select the option which correctly depicts f					picts the functions
	(B)	NADPH ₂		of parts X, Y	and Z.			
	(C)	Both ATP and NADPH ₂		X	Y			Z
	(D)	Carbohydrates	(A)	Dark reaction	h Light rea	action	١	Cytoplasmic
145.	IN CY	clic photophosphorylation, the electron released	(B)	Light reaction	Carbohy	drato		
	(A)	ferrodoxin	(D)	Light reaction	synthes	is	•	storage
	(B)	NADP ⁺	(C)	Light reaction	n Carbohy	/drate		Carbohydrate
	(C)	reaction centre ($P_{-\infty}$)	(0)	Light reductor	storage	anato		synthesis
	(D)	Plastocyanin	(D)	Carbohydrate	e Carbohy	/drate	;	Cytoplasmic
146.	Whic	ch of the following statements about dark reactions		synthesis	storage			inheritance
	is co	rrect?	150.	Which one is	involved in	n Z-so	cheme o	f photosynthesis?
	(A)	They occur in darkness		(A) PSI		(B)	PSII	
	(B)	They are not light dependent		(C) e ⁻ Carr	iers	(D)	All of t	hese
	(C)	They are dependent upon the products synthesized during light reactions.	151.	Yellowish co presence of a	blour of a a type of x	utum antho	n foliao phyll pi	ge is due to the gment called as
	(D)	All of these.		(A) lutein		(B)	lycope	ene
147.	Read	ction centre of PS I is and reaction centre		(C) fucoxa	nthin	(D)	zeaxa	nthin
	of PS	5 II is	152.	Which of the	se is a typ	e of p	hycobil	in pigments ?
	(A)	P_{680}, P_{700} (B) P_{700}, P_{680}		(A) Phycod	cyanin	(B)	Alloph	ycocyanin
	(C)	P ₈₀₀ , P ₆₀₀ (D) P ₇₀₀ , P ₉₀₀		(C) Phycoe	erythrin	(D)	All of t	hese

Tes	t-7 (Objective)	Horizon Test Series for Medical-2016
153.	 Consider following statements with respect to the C₄ pathway and select the correct ones. (i) Mesophyll cells possesses both RuBisCO and PEPcase enzymes. (ii) Initial CO₂ fixation occurs in mesophyll cells. (iii) Final CO₂ fixation occurs in bundle sheath cells. (A) (i) and (ii) (B) (ii) and (iii) (C) (i) and (iii) (D) (i), (ii) and (iii) 	160. Categorise the given summary equations under respective phases and select the correct option. I. $C_6H_{12}O_6 + NAD^+ + 2ADP + 2Pi \rightarrow 2C_3H_4O_3 + 2ATP + 2NADH + 2H^+$ II. Pyruvic acid + 4NAD ⁺ + FAD ⁺ + 2H_2O + ADP + Pi \rightarrow 3CO ₂ + 4NADH + 4H ⁺ + ATP + FADH ₂ NADH + H ⁺ NAD ⁺ III. Pyruvate $\checkmark C_2H_5OH+CO_2$
154.	 which of the following conversions involve ATP synthesis during glycolysis ? (A) Glucose → Glucose–6–phosphate (B) Fructose-6-phosphate → Fructose-1,6 biphosphate (C) 1,3-bisphosphoglyceric acid (BPGA) → 3-phosphoglyceric acid (PGA) (D) All of these. 	III. III. (A) Glycolysis Fermentation Krebs' cycle (B) Krebs' cycle Fermentation Glycolysis (C) Krebs' cycle Glycolysis Fermentation (D) Glycolysis Krebs' cycle Fermentations
155.	 (A) Oxidative decarboxylation of pyruvic acid requires the presence of enzyme pyruvate dehydrogenase. (B) All living cells whether aerobic or anaerobic, perform glycolysis. (C) Cyanide does not stop chemiosmosis. (D) Respiratory chain uses O₂ as final hydrogen acceptor 	161. Which of the following steps of respiration is amphibolic ? (A) Glycolysis (B) Oxidative decarboxylation of pyruvate (C) TCA cycle (D) Oxidative phosphorylation 162. Refer the given equation $2(C_{51}H_{98}O_6) + 145O_2 \rightarrow 102CO_2 + 98H_2O + Energy$ The PO in this case is
156.	Pyruvic acid, the key product of glycolysis can have many metabolic fates. Under aerobic condition it forms (A) lactic acid (B) $CO_2 + H_2O$ (C) Acetyl CoA+CO ₂ (D) Ethanol + CO ₂	 (A) 1 (B) 0.7 (C) 1.45 (D) 1.62 163. Read the given statements and select the correct option.
157.	 Mitochondria are called powerhouses of the cell. Which of the following observations support this statement ? (A) Mitochondria synthesize ATP. (B) Mitochondria have a double membrane. (C) The enzymes of the Krebs' cycle and the cytochromes are found in mitochondria (D) Mitochondria are found in almost all plant and animal cells. 	 Statement 1: Mitochondria are known as powerhouse of the cell. Statement 2: ATP synthesis occurs in mitochondria (A) Both statement 1 and 2 are correct and statement 2 is the correct explanation or statement 1. (B) Both statement 1 and 2 are correct bu statement 2 is not the correct explanation or statement 1.
158. 159.	 Site of Krebs' cycle in mitochondria is (A) outer membrane (B) matrix (C) oxysomes (D) inner membrane Value of RQ in succulents is (A) unity (B) infinite (C) less than unity (D) zero 	 (C) Statement 1 is correct and statement 2 is incorrect. (D) Both statement 1 and 2 are incorrect.

Test-7 (Objective)						Horizon Test Series for Medical-2016					
164.	Last e^- acceptor during ETS is (A) O_{a} (B) cvt a					Select the correct combinations of the respiratory substrates and their respective RQs.					
	(C)	cvt a	(D) ctv a				Organic acids	Fats	Suco	ulents	
165.	Which of the following statements regarding metabolic					(A)	1.3	0.7	Zero		
	path	pathway is incorrect ?			(B)	Infinity	0.7	Zero			
	(A)	Many of	the steps of gly	colysis can run in		(C)	Zero	1.3	0.7		
		reverse.			(D)	Zero	0.7	1.3			
	(B) Starch, sucrose or glycogen must be hydrolysed before it can enter the glycolysis.				169.	Match Column-I with Column-II and select the correct option from the codes given below :					
	(C)	(C) After fats are digested, glycerol enters glycolysis by forming DHAP				Colu	umn I	Column II			
	(D)	After fat participat	digestion, fatty a e in cellular respira	cids can no longer ation.		(A)	R.Q.	(i)	Chemiosm synthesis	oticATP	
166.	At th	e end of gl	, vcolysis, X is the n	et energy gain from		(B)	Mitchel	(ii)	Muscle fatig	gue	
	one i store	one molecule of glucose <i>via</i> Y, but there is also energy stored in the form of Z. Identify X, Y and Z.				(C)	Cytochromes	(iii)	Inner mitoc membrane	hondrial	
		X	Y	Z		(D)	Lactic acid	(iv)	Alcoholic fe	rmentation.	
	(A)	1ATP	Oxidative	NADH + H ⁺		(E)	Yeast	(v)	Respiromet	er	
			phosphorylation			(A)	A - (v), B - (i), C	; – (iii)	, D – (ii), E –	(iv)	
	(B)	2 ATPs	Oxidative	NADH + H ⁺		(B)	A - (v), B - (i), C	; — (iii)), D – (iv), E – (ii)		
			phosphorylation			(C)	A - (i), B - (v), C	; — (ii),	D – (iii), E –	(iv)	
	(C)	1ATP	Substrate level phosphorylation	FADH + H ⁺	170	(D) Pofe	A - (v), B - (ii), 0	C – (iv), D – (iii), E cloosomo ar	– (i) od solost the	
	(D)	2ATPs	Substrate level	NADH + H ⁺	170.	optic	on that correctly ic	lentifie	es the parts A	A, B and C.	
167.	Consider the first reaction of TCA cycle.						В	C			
	Acetyl CoA + OAA + H_2O $\xrightarrow{\text{Citrate}}$ (A) +CoA										
	What is true about compound A?(A) First product of TCA cycle										
	(B)	Tricarbox	ylic acid and six ca	arbon compound					•		
	(C)	It underg	oes reorganisation	in the presence of			Α	В		С	
	(D)	enzyme a All of the	aconitase to form o se.	sis-aconitate		(A)	DNA	Histo	ne octamer	H₁ histone	
	. ,					(B)	Histone octamer	H₁ hi	stone	DNA	
						(C)	Histone octamer	DNA		H ₁ histone	
						(D)	DNA	H ₁ hi	stone	Histone octamer	

- (A) A (iii), B (iv), C (i), D (v), E (ii)
- (B) A (iii), B (i), C (iv), D (v), E (ii)
- (C) A (iii), B (iv), C (v), D (i), E (ii)
- $(D) \quad \ \ A-(ii), \, B-(iv), \, C-(i), \, D-(v), \, E-(iii)$
- **Direction :** Read the sequence of nucleotides in the given segment of mRNA and the respective amino acid sequence in the polypeptide chain to answer the Q.Nos. 178 & 179.

mRNA AUGUUU AUG CCU GUU UCU UAA

```
Polypeptide Met-Phe-Met-Pro-Val-Ser
```

- 178. Nucleotide sequence of the DNA strand from which this mRNA was transcribed is
 - (A) TACAAA TAC GGA CAAAGAATT
 - (B) AUG UUU AUG CCU GUU UCU UAA
 - (C) UAC AAA UAC GGA CAA AGA AUU
 - (D) ATG TTT ATG CCT GTT TCT TAA

- Horizon Test Series for Medical-2016
- 179. Which codons respectively code for proline and valine amino acids in the given polypeptide chain, respectively?
 - (A) CCU and GUU (B) GUU and UCU
 - (C) UCU and UAA (D) GUU and CCU
- 180. Select the incorrect statement regarding DNA replication.
 - (A) Leading strand is formed in 5' 3' direction.
 - (B) Okazaki fragments are formed in 5' –3' direction.
 - (C) DNA polymerase catalyses polymerisation in 5'–3' direction.
 - (D) DNA polymerase catalyses polymerisation in 3'–5' direction.

Space for Rough Work

Ф

Space for Rough Work