

Test No. 6

Topics of The Test

Physics	Motion in 1 D and Motion in 2 D.

Chemistry	Some basic concepts of chemistry.

Biology	Zoology : Respiration system in human. Botany : Plant respiration.	

Test No. 6

Space for Rough Work

7. The speed-time graph of a particle moving along a fixed direction as shown in the figure. The distance traversed by the particle between t = 0 s to t = 10 s is

- (A) 20 m (B) 40 m
- (C) 60 m (D) 80 m
- 8. The displacement-time graph of a moving particle is as shown in the figure. The instantaneous velocity of the particle is negative at the point

9. Figure shows the displacement (x)-time (t) graph of the particle moving on the x-axis.

- (A) The particle is at rest.
- (B) The particle is continuously going along x-direction.
- (C) The velocity of the particle increases upto time t_0 and then becomes constant.
- (D) The particle moves at a constant velocity up to a time t_0 and then stops.

Horizon Test Series for Medical-2016

10. The motion of a body is given by the equation $\frac{dv}{dt} = 6 - 3v \text{ where } v \text{ is the speed in m s}^{-1} \text{ and } t \text{ is time in s. The body is at rest at t} = 0.$ The speed varies with time as

(A)
$$v = (1 - e^{-3t})$$
 (B) $v = 2(1 - e^{-3t})$

(C)
$$v = (1 + e^{-2t})$$
 (D) $v = 2(1 + e^{-2t})$

11. A particle moves rectilinearly. Its displacement x at time *t* is given by $x^2 = at^2 + b$ where a and b are constants. Its acceleration at time *t* is proportional to

(A)
$$\frac{1}{x^3}$$
 (B) $\frac{1}{x} - \frac{1}{x^2}$
(C) $-\frac{t}{x^2}$ (D) $\frac{1}{x} - \frac{t^2}{x^3}$

12. The given acceleration-time graph represents which of the following physical situations ?

- (A) A cricket ball moving with a uniform speed is hit with a bat for a very short time interval.
- (B) A ball is falling freely from the top of a tower.
- (C) A car moving with constant velocity on a straight road.
- (D) A football is kicked into the air vertically upwards.

13. Which of the following statements is not correct?

- (A) The zero velocity of a body at any instant does not necessarily imply zero acceleration at that instant.
- (B) The kinematic equation of motions are true only for motion in which the magnitude and the direction of acceleration are constants during the course of motion.
- (C) The sign of acceleration tells us whether the particle's speed is increasing or decreasing.
- (D) All of these.

Space for Rough Work

Tes	t-6 (Objective)	Horizon Test Series for Medical-2016
14.	Two trains A and B each of length 400 m are moving on two parallel tracks with a uniform speed 72 km h ⁻¹ in the same direction with A ahead of B. The driver of B decides to overtake A and accelerates by 1 m s ⁻² . If after 50 s the guard of B just brushes past A, what was the original distance between them? (A) 750 m (B) 1000 m	18. An object falling through a fluid is observed to have acceleration given by $a = g - bv$, where $g = gravitational acceleration and b is constant. After a long time of release, it is observed to fall with constant speed. The value of constant speed is$
	(C) 1250 m (D) 2250 m	(A) $\frac{g}{b}$ (B) $\frac{g}{g}$
15.	A body initially at rest is moving with uniform acceleration a. Its velocity after n seconds is v. the displacement of the body in last 2 s is (A) $\frac{2v(n-1)}{n}$ (B) $\frac{v(n-1)}{n}$	 (C) bg (D) b 19. A body covers 20 m, 22 m, 24 m, in 8th, 9th and 10th seconds respectively. The body starts (A) from rest and moves with uniform velocity. (B) from rest and moves with uniform acceleration
16.	(C) $\frac{v(n+1)}{n}$ (D) $\frac{2v(n+1)}{n}$ The distances covered by a freely falling body in its first, second, third,, n^{th} seconds of its motion (A) forms an arithmetic progression	 (C) with an initial velocity and moves with uniform acceleration. (D) with an initial velocity and moves with uniform velocity. 20. A particle is released from rest from a tower of heigh 3h. The ratio of the intervals of time to cover three equations heights h is (A) t₁: t₂: t₃ = 3:2:1
	(C) do not form any well defined series	(B) $t_1: t_2: t_3 = 1: (\sqrt{2} - 1): (\sqrt{3} - 2)$
47	 (D) form a series corresponding to the difference of square root of the successive natural numbers. 	(C) $t_1: t_2: t_3 = \sqrt{3}: \sqrt{2}: 1$ (D) $t_1: t_2: t_3 = 1: (\sqrt{2} - 1): (\sqrt{3} - \sqrt{2})$
17.	A body staring from rest moves along a straight line with a constant acceleration. The variation of speed (v) with distance (s) is given by (A) (B) (B) (B) (B)	 21. A jet airplane travelling at the speed of 500 km h⁻¹ ejects its products of combustion at the speed of 1500 km h⁻¹ relative to the jet plane. The speed of the products of combustion with respect to an observer o the ground is (A) 500 km h⁻¹ (B) 1000 m s⁻¹ (C) 1500 km h⁻¹ (D) 2000 km h⁻¹
	(C) (D) (D) (D)	 22. Two cars A and B are running at velocities of 60 km h⁻¹ and 45 km h⁻¹. What is the relative velocit of car A with respect to car B, if both are moving eastward? (A) 15 km h⁻¹ (B) 45 km h⁻¹ (C) 60 km h⁻¹ (D) 105 km h⁻¹

Space for Rough Work

Horizon Test Series for Medical-2016

- 23. A ball A is dropped from a building of height 45 m. Simultaneously another identical ball B is thrown up with a speed 50 m s⁻¹. The relative speed to ball B w.r.t. ball A at any instant of time is (Take g = 10 m s^{-2})
 - (A) 0 m s^{-1} (B) 10 m s^{-1}
 - (C) 25 m s^{-1} (D) 50 m s^{-1}
- 24. Rain is falling vertically with a speed of 35 m s^{-1} . Winds starts blowing after sometime with a speed of 12 m s⁻¹ in east to west direction. At what angle with the vertical should a boy waiting at a bus stop hold his umbrella to protect himself from rain?

(A)
$$\sin^{-1}\left(\frac{12}{35}\right)$$
 (B) $\cos^{-1}\left(\frac{12}{35}\right)$
(C) $\tan^{-1}\left(\frac{12}{35}\right)$ (D) $\cot^{-1}\left(\frac{12}{35}\right)$

25. Two vectors \vec{A} and \vec{B} inclined at an angle have a resultant \vec{R} which makes an angle α with \vec{A} and angle β with \vec{B} . Let the magnitudes of the vectors \vec{A}, \vec{B} and \vec{R} be represented by A, B and R respectively.

Which of the following relations is not correct?

- (A) $\frac{R}{\sin(\alpha + \beta)} = \frac{A}{\sin\alpha} = \frac{B}{\sin\beta}$
- (B) $R\sin\alpha = B\sin(\alpha + \beta)$
- (C) $A\sin\alpha = B\sin\beta$
- (D) $R\sin\beta = A\sin(\alpha + \beta)$
- 26. Which of the following figures represents the force of 10 N in a direction of 30° east of north ?

- 27. If $|\vec{A} + \vec{B}| = |\vec{A} \vec{B}|$, then the angle between \vec{A} and \vec{B} will be
 - (A) 30°
 (B) 45°
 (C) 60°
 (D) 90°
- 28. Vectors \vec{A} and \vec{B} include an angle θ between them. If $(\vec{A} + \vec{B})$ and $(\vec{A} - \vec{B})$ respectively subtend angle α and β with \vec{A} , then $(\tan \alpha + \tan \beta)$ is

(A)
$$\frac{(AB\sin\theta)}{(A^2+B^2\cos^2\theta)}$$
 (B) $\frac{(2AB\sin\theta)}{(A^2-B^2\cos^2\theta)}$

(C)
$$\frac{(A^2 \sin^2 \theta)}{(A^2 + B^2 \cos^2 \theta)}$$
 (D) $\frac{(B^2 \sin^2 \theta)}{(A^2 - B^2 \cos^2 \theta)}$

- 29. Which of the following quantities is dependent of the choice of orientation of the coordinate axes ?
 - (A) $\vec{A} + \vec{B}$
 - $(\mathsf{B}) \quad A_x + B_y$
 - (C) $|\vec{A} + \vec{B}|$
 - (D) Angle between \vec{A} and \vec{B}
- 30. In a two dimensional motion, instantaneous speed v_0 is a positive constant. Then which of the following are necessarily true ?
 - (A) The average velocity is not zero at any time.
 - (B) Average acceleration must always vanish.
 - (C) Displacements in equal time intervals are equal.
 - (D) Equal path lengths are traversed in equal intervals.

Space for Rough Work

Tes	t-6 (Objective)	Horizon Test Series for Medical-20	16
31.	A particle is projected in air at at an angle β to a surface which itself is inclined at an angle α to the horizontal. Then distance L is equal to	35. Two balls are projected at an angle θ and (90° – to the horizontal with the same speed. The ratio their maximum vertical heights is	- <i>θ</i>) ο of
	u de la constante de la consta	(A) 1:1 (B) tan θ:1	
	В	(C) 1: $\tan \theta$ (D) $\tan^2 \theta$: 1	
	han μα	36. The relation between the time of flight of projectile	e T,
	$\sum_{i=1}^{n}$	and the time to reach the maximum height t_m is	
	(A) $\frac{2u^2 \sin \alpha \cos(\alpha + \beta)}{g \cos^2 \alpha}$	(A) $T_f = 2t_m$ (B) $T_f = t_m$	
	(B) $\frac{2u^2 \sin\beta \cos(\alpha + \beta)}{g \cos^2 \beta}$	(C) $T_f = \frac{t_m}{2}$ (D) $T_f = \sqrt{2}(t_m)$	
	(C) $\frac{2u^2 \sin \beta \cos(\alpha + \beta)}{g \cos^2 \alpha}$	37. When air resistance is taken into account while dea with the motion of the projectile which of the follow properties of the projectile, shows an increase ?	ling ving
	(D) $\frac{2u^2 \sin \alpha \cos(\alpha + \beta)}{g \cos^2 \beta}$	(A) range (B) maximum height	
32.	A football is kicked into the air vertically upwards with	 (C) speed at which it strikes the ground (D) the angle at which the projectile strikes the ground 	hund
	velocity u. The velocity of the ball at the highest point is	 38. Four bodies A, B, C and D are projected with economic velocities having angles of projection 15°, 30°, 45° 	jual and
	(A) u (B) 2u (C) zero (D) 4u	60° with the horizontal respectively. The body hav	/ing
33.	Which of the following is true regarding projectile	(A) A (B) B	
	motion ?	(C) C (D) D	
	 (A) Horizontal velocity of projectile is constant. (B) Vertical velocity of projectile is contant. 	39. A body executing uniform circular motion has at a instant its velocity vector and acceleration vector	any
	(C) Acceleration is not constant.	(A) along the same direction	
	(D) Momentum is constant.	(B) in opposite direction	
34.	The equations of motion of a projectile are given by	(C) normal to each other	
	$x = 36t \text{ m and } 2y = 96t - 9.8t^2$. The angle of projection is	40 A particle is moving on a circular path of radius ry	with
	(A) $\sin^{-1}\left(\frac{4}{4}\right)$ (B) $\sin^{-1}\left(\frac{3}{4}\right)$	uniform speed v . What is the displacement of particle after it has described an angle of 60°?	the
		(A) $r\sqrt{2}$ (B) $r\sqrt{3}$	
	(C) $\sin^{-1}\left(\frac{4}{3}\right)$ (D) $\sin^{-1}\left(\frac{3}{4}\right)$	(C) r (D) 2r	

Tes	t-6 (Objective)	Horizon Test Series for Medical-20			
41.	An insect trapped in a circular groove of radius 12 cm moves along the groove steadily and completes 7 revolutions in 100 s. The linear speed of the insect is (A) 4.3 cm s^{-1} (B) 5.3 cm s^{-1} (C) 6.3 cm s^{-1} (D) 7.3 cm s^{-1} The projection of the vector	47.	(A) (ii) and (iv) (B) (i) and (iii) (C) (iii) and (v) (D) (iv) and (v) What should be the volume of the milk (in m ³) which measures 5 L? (A) 5×10^{-3} m ³ (B) 5×10^{3} m ³ (C) 5×10000 m ³ (D) 5×10^{6} m ³		
	$\vec{A} = \hat{i} - 2\hat{j} + \hat{k}$ on the vector $\vec{B} = 4\hat{i} - 4\hat{j} + 7\hat{k}$ is	48.	Which of the following options is not correct?		
	(A) $\frac{19}{9}$ (B) $\frac{38}{9}$ (C) $\frac{8}{9}$ (D) $\frac{4}{9}$		(A) 2.300+0.02017+0.02015 = 2.3403 (B) 126,000 has 3 significant figures. (C) 15.15 μs =1.515×10 ⁻⁵ s (D) 0.0048 = 48 ×10 ⁻³		
	· · g	49.	How many seconds are there in 3 days?		
43.	If \vec{A} and \vec{B} are two vectors, the value of $(\vec{A} + \vec{B}) \times (\vec{A} - \vec{B})$ is		 (A) 259200 s (B) 172800 s (C) 24800 s (D) 72000 s 		
	(A) $2(\vec{B} \times \vec{A})$ (B) $-2(\vec{B} \times \vec{A})$	50.	Which of the following rules regarding the significant figures and calculations involving them is not correct?		
44.	(C) $\vec{B} \times \vec{A}$ (D) $\vec{A} \times \vec{B}$ The area of the triangle formed by the adjacent sides with $\vec{A} = -3\hat{i} + 2\hat{j} - 4\hat{k}$ and $\vec{B} = -\hat{i} + 2\hat{j} + \hat{k}$ is		 (A) The result of an addition or subtraction is reported to the same number of decimal places as present in number with least decimal places. (B) Result of multiplication or division should have 		
	(A) $\frac{\sqrt{165}}{2}$ units (B) $\frac{\sqrt{137}}{2}$ units		same number of significant figures as present in most precise figure.		
	(C) $\sqrt{165}$ units (D) $\sqrt{137}$ units		(C) The result of multiplication or division should be rounded off to same number of significant figures as present in least precise figure.		
45.	$ A \times B ^{2} + A \cdot B ^{2} =$ (A) zero (B) $A^{2}B^{2}$		(D) The non-significant figures in the measurements are rounded off		
	(C) AB (D) \sqrt{AB}	51.	4.88 g of KClO ₃ when heated produced 1.92 g of O ₂ and 2.96 g of KCl. Which of the following statements		
	[CHEMISTRY]		regarding the experiment is correct?		
46.	Few quantities with their units are listed below. Mark		mass.		
	the units which are not correctly matched. (i) Density : kg m ⁻³		(B) The result illustrates the law of multiple proportions.		
	(ii) Velocity of light : m s ⁻¹		(C) The result illustrates the law of constant		
	(III) Planck's constant : $J^{-1}S^{-1}$		(D) None of the above laws is followed.		
	(v) Force: kg m		· /		

Space for Rough Work

Tes	t-6 (Objective)	Horizon Test Series for Medical-2016
52.	What mass of hydrochloric acid is needed to decompose 50 g of limestone?	(A) One mole of CH_4 reacts with 2 moles of oxygen to give one mole of CO_2 and 2 moles of water.
	(A) 36.5 g (B) 73 g (C) 50 g (D) 100 g	(B) One molecule of CH ₄ reacts with 2 molecules of oxygen to give one molecule of CO ₂ and 2 molecules of water
53.	The statements for laws of chemical combinations are given below. Mark the statement which is not correct.	 (C) 22.4 L of methane reacts with 44.8 L of oxygen to give 44.8 L of CO₂ and 22.4 L of water.
	of conservation of mass	(D) 16 g of methane reacts with 64 g of O_2 to give 44g of CO_2 and 36 g of water.
	(B) A compound always contains exactly the same proportion of elements by weight : Law of definite proportions	58. Oxygen occurs in nature as a mixture of isotopes
	(C) When gases combine they do so in a simple ratio by weight : Gay Lussac's Law	16.999 u and 17.999 u and relative abundance of 99.763%, 0.037% and 0.200% respectively. What is
	(D) Equal volumes of gases at same temperature and pressure contain same number of molecules:	the average atomic mass of oxygen ? (A) 15.999 u (B) 16.999 u
	Avogadro's Law	(C) 17.999 u (D) 18.999 u
54.	What mass of sodium chloride would be decomposed by 9.8 g of sulphuric acid if 12 g of sodium bisulphate and 2.75 g of hydrogen chloride were produced in a reaction?	59. For every one ³⁷ <i>CI</i> isotope there are three ³⁵ <i>CI</i> isotopes in a sample of chlorine. What will be the average atomic mass of chlorine ?
	(A) 14.75 g (B) 3.8 g	(A) 35 (B) 37
	(C) 4.95 g (D) 2.2 g	(C) 35.5 (D) 35.6
55.	Which of the following pairs illustrates the law of multiple proportions ?	60. Which of the following statements about the molecular mass is correct ?
	(A) PH_3 , HCI (B) PbO , PbO_2 (C) H_2S , SO_2 (D) $CuCl_2$, $CuSO_4$	(A) Molecular formula shows the exact number of different types of atoms present in a molecule.
56.	Calcium carbonate decomposes on heating to give calcium oxide and carbon dioxide. How much volume	(B) Molecular formula can be obtained from empirical formula if molar mass is known.
	of CO ₂ will be obtained by thermal decomposition of 50 g of CaCO ₃ ?	(C) Percentage composition of a compound can be calculated from its molecular formula.
	(A) 1 L (B) 11.2 L	(D) All the statements are correct.
	(C) 44 L (D) 22.4 L	61. The number of oxygen atoms present in 1 mole of oxalic
57.	A balanced equation for combustion of methane is given	(A) 6×10^{23} (B) $6 \cdot 022 \times 10^{34}$
	Delow .	(C) 7.22×10^{23} (D) 36.13×10^{23}
	$CH_{_4}(g) + 20_{_{2(g)}} \rightarrow CO_{_{2(g)}} + 2H_{_2}O_{_{(g)}}$	62. Which of the following gases will have least volume if
	Which of the following statements is not correct on the basis of the above chemical equation ?	10 g of each gas is taken at same temperature and pressure ?
		(A) CO_2 (B) N_2
		(C) CH ₄ (D) HCI
	Space for R	⊥ Rough Work

Tes	t-6 (Objective)	Horizon Test Series for Medical-2016				
63.	 How many atoms in total are present in 1 kg of sugar? (A) 7.92×10²⁵atoms (B) 6×10²³atoms (C) 6.022×10²⁵atoms (D) 1000 atoms 	67. Fill in the blanks by choosing the correct options. $X \xrightarrow{\text{Particles}} 1 \text{ Mole} \xrightarrow{\text{In terms}} Y$				
64.	(c) COLL to dome(b) root dome Which of the following formulae is not correctly depicted? (A) Molar mass = $\frac{Mass \text{ of substance}}{Moles \text{ of substance}}$ or $M = \frac{w}{n} \text{gmol}^{-1}$ (B) Number of moles of a substance $= \frac{Mass \text{ of substance}}{Molar mass}$ or $x = \frac{w}{M} \text{mol}$ (C) Number of molecules $= \frac{Mass \text{ of the substance}}{Mass \text{ of the substance}} \times \text{Avogadro's no}$	(A) 6.023×10^{23} (B) 6.023×10^{23} 10^{23} $22.4 L at Gram molecular mass (B) 6.023 \times 10^{23}10^{23}22.4 L at Gram atomic mass (C) 6.023 \times 10^{23}22.4 L at Gram atomic mass (C) 6.023 \times 10^{23}22.4 L at Gram atomic mass (C) 6.023 \times 10^{23}22.4 L at Gram atomic mass (C) 6.023 \times 10^{23}22.4 L at I gram mole at any temperature (D) 6.023 \times 10^{23}11.2 L at Molar volume NTP$				
65.	Molar mass or no. of molecules = $\frac{W}{M} \times 6.023 \times 10^{23}$ molecules (D) Mole×Molar mass = Number of molecules or n×M= Number of molecules What is the mass of carbon dioxide which contains the same number of molecules as are contained in 40	 How many number of aluminium ions are present in 0.051 g of aluminium oxide ? (A) 6.023×10²⁰ions (B) 3 ions (C) 6.023×10²³ions (D) 9 ions 69. Which of the following correctly represents 180 g of water ? (i) 5 moles of water (ii) 10 moles of water 				
66.	(A) 40 g (B) 55 g (C) 32 g (D) 44 g What will be the weight of CO having the same number of oxygen atoms as present in 22 g of CO_2 ? (A) 28 g (B) 22 g (C) 44 g (D) 72 g	(ii) 10 moles of water (iii) 6.023×10^{23} molecules of water (iv) 6.023×10^{24} molecules of water (A) (i) and (ii) (B) (i) and (iv) (C) (ii) and (iv) (D) (ii) and (iii) 70. 1 mole of water contains (A) 6.023×10^{23} atoms (B) 6.023×10^{23} molecules (C) $3 \times 6.023 \times 10^{23}$ molecules (D) None of these				
		1				

Tes	t-6 ((Objective)					Horizon Test	Seri	es for Medical-2016
71.	Wha NH ₃ (A)	at will be the numb ? 6.023×10 ²³ 9 034×10 ²³	er of hyc (B) 5.	Frogen atoms in 8.5 g of 31×10^{-23}	77.	0.48 and oxyg the c	g of a sample of oxygen contains (gen. What will be compound ?	a co).192 the p	mpound containing boron 2 g of boron and 0.288 g of percentage composition of
72.	(O) Whi hypo (A) (B)	ch of the followin othesis is correct Under similar of pressure, gases ratio. Under similar of pressure, equal v	g statem ? ondition react wi ondition olumes c	ents about Avogadro's s of temperature and th each other in simple s of temperature and f all gases contain same	78.	(A) (B) (C) (D) Two Atom 'P' in	60% and 40% B a 40% and 60% B a 30% and 70% B a 70% and 30% B a elements 'P' and 'C nic mass of 'P' is a the compound is	and (and (and (and (Q' cor 12 ar 27.3	D respectively D respectively D respectively D respectively mbine to form a compound. nd 'Q' is 16. Percentage of What will be the empirical
	(C) (D)	number of molect At NTP all gas molecules. Gases always re temperature and	cules. ses cont act with pressure	ain same number of gases only at the given	70	form (A) (C)	tula of the compound P_2Q_2 P_2Q	nd? (B) (D)	PQ PQ_2
73.	One mar elen (A)	e atom of an elen ny number of gram nent ? 2000 200	nent wei atoms a (B) 20	ghs 3.32×10 ^{–23} g. How are there in 20 kg of the))00	80.	10w 250 (A) (C) How	mL of 0.575 molar 11.79 g 10.81 g much copper is p	(B) (D) (D)	15.38 g 25.35 g ant in 50 g of CuSO ₄ ?
74.	(C) A c mag Wha (A) (C)	compound of m gnesium, 27.8% p at will be the simp $Mg_2P_2O_7$ $Mg_2P_2O_2$	agnesi hosphor lest form (B) M (D) M	um contains 21.9% us and 50.3% oxygen. ula of the compound ? gPO_3 gP_2O_4	81.	(A) (C) Mola subs (A)	19.90 g 63.5 g arity equation of a stance is given by $M_1 + V_1 \times M_2 + V_2$	(B) (D) a mix × <i>M</i> ₃	39.81 g 31.71 g sture of solutions of same $+V_3 + = M_1 + M_2 + M_3$
75.	A co ratio 40. ¹ (A) (C)	ompound contains o of 50% each. At What can be its si XY XY ₂	s two ele omic ma mplest f (B) X (D) X	ments 'X' and 'Y' in the ss of 'X' is 20 and 'Y' is prmula ? Y		(B) (C)	$M_1V_1 + M_2V_2 + M_3V_3$ $\frac{M_1}{V_1} + \frac{M_2}{V_2} + \frac{M_3}{V_3} + .$	ν ₃ + . = Λ	$ = M(V_1 + V_2 + V_3)$ $M\left(\frac{1}{V_1} + \frac{1}{V_2} + \frac{1}{V_3}\right)$
76.	Cho whic and (A) (C)	ose the molecula ch the mass per c 30.1 respectively FeO Fe ₂ O ₃	r formul ent of irc and its r (B) Fe (D) Fe	a of an oxide of iron in n and oxygen are 69.9 nolecular mass is 160. $e_{3}O_{4}$ eO_{2}	82.	(D) A so mL c (A) (C)	$\frac{M_1}{V_1} \times \frac{M_2}{V_2} \times \frac{M_3}{V_3} + \dots$ Iution is made by of of water. The mola 2 M 4 M	. = N disso rity o (B) (D)	$H_{1}\left(\frac{1}{V_{1}} \times \frac{1}{V_{2}} \times \frac{1}{V_{3}}\right)$ blving 49 g of H ₂ SO ₄ in 250 of the solution prepared is 1 M 5 M

Tes	t-6 (Objective)				Horizon Tes	t Seri	es for Med	dical-2016
83.	The weight of AgCl preci containing 5.85 g of NaC containing 3.4 g of AgNO ₃ is	pitated when a solution I is added to a solution s	90.	If 40 the (A)) g of CaCO ₃ is tr reactants will act CaCO ₃	reated t as lim (B)	with 40 g of I hiting reagen HCl	HCI. Which of
	(A) 28 g (B) (C) 2.870 g (D)	9.25 g		(C)	Both are equal	(D) 0 IC	Cannot be o	calculated
84.	Which mode of concentrat temperature ?	ion does not change with	91.	Res (A)	piration in Anneli	ida occ (B)	curs through General bo	dy surface
	(A) Molarity (B) (C) Molality (D)	Normality All of these	92.	(C) Whi	Buccal cavity ich of the following	(D) ng equa	All of these ations is corr	ect?
85.	What is the concentrati (in mol L ⁻¹) if 80 g of it is dis make a final volume of 3 L $\frac{1}{2}$	on of copper sulphate solved in enough water to		(A) (B)	$CO_2 \longrightarrow H_2C$ $CO_2 + H_2O \xleftarrow{Ca}$	O ₃ —— rbonic anl	$\rightarrow HCO_3^- + H$ $\xrightarrow{\text{hydrase}} H_2CC$) ₃
86.	 (A) 0.0167 (B) (C) 1.067 (D) A solution is prepared by ad 	0.167 10.67 dding 5 g of a solute 'X' to		(C)	$CO_2 + H_2O$	\leftarrow	20 ₂	\Rightarrow H ⁺ + HCO ₃ ⁻
	45 g of solvent 'Y'. What is solute 'X' ? (A) 10% (B)	the mass per cent of the 11.1%	93.	(D) Res (A)	$CO_2 + H_2O \longleftarrow$ piratory coefficie Amount of cart		⊢ H₂O₂ ne oxide produc	ed to oxygen
87.	(C) 90% (D) An impure sample of silver form 0.124 g of Ag_2S . Wha Ag_2S ?	75% (1.5 g) is heated with S to t was the per cent yield of	94.	(B) (C) (D) The	Amount of ATP Carbon dioxide Amount of oxyg graph given sho	used to releas gen abs	o burn comp ed sorbed oxygen disso	lex substance
	(A) 21.6% (B) (C) 1.7% (D)	7.2%		for h	aemoglobin			
88.	4.28 g of NaOH is dissolved is made to 250 cc. What v solution ?	d in water and the solution vill be the molarity of the			age saturation ecmoglobin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	2 3	
89.	(A) $0.615 \text{ mol } \text{L}^{-1}$ (B) (C) $0.99 \text{ mol } \text{L}^{-1}$ (D) In a reaction container, 100 c	0.428 mol L^{-1} 0.301 mol L^{-1} g of hydrogen and 100 g of			Derived to the second s	pressure of	of oxygen (p _{O₂})	
	Cl ₂ are mixed for the formati limiting reagent and how m reaction?	ion of HCI gas. What is the nuch HCI is formed in the		Who the	ere in the body v percentages sho	vill hae own at	emoglobin be t points 1,2	e saturated at and 3 on the
	(A) H ₂ is limiting reagent an	d 36.5 g of HCl are formed.		grap	лт:			
	(B) Cl ₂ is limiting reagent formed.	t and 102.8 g of HCI are		(A)	Left ventricle	Pulm	onary vein 2	Vena cava 3
	(C) H ₂ is limiting reagent ar	nd 142 g of HCl are formed.		(B)	2		1	3
	(D) Cl ₂ is limiting reagent a	nd 73 g of HCl are formed.		(C)	2		3	1
				(D)	3		2	1

Tes	t-6 ((Objective)		Horizon Test Series for Medical			
95.	lf a peal	man from sea coast, goes to Everest mount <, his	ain 101.	Mat opti	ch Column-I with Co on from the codes giv	lum ven	nn-II and select the correct below.
	(A)	Breathing and heart beat will increase			Column-l		Column-II
	(B)	Breathing and heart beat will decrease		Α.	Tidal volume (i	i) 1	2500-3000 mL of air
	(C)	Respiratory rate will decrease		В.	Inspiratory (i	ii)	1000 mL of air
	(D)	Heart beat will decrease		~	reserve volume		
96.	Whi Boh	ch of the following statements correctly defin r's effect ?	nes	C.	reserve volume		
	(A)	Rise in P_{co} with a decrease in CO ₀ concentrat	ion	D.	Residual volume (i	v) :	3400-4800 mL of air
	(B)	Rise in P_{2} with decrease in pH		Ε. (Δ)	Vital capacity ($\Delta_{-}(iii)$ B ₋ (iv) C ₋ (iii)	/) ⊡_(i	1200 mL of air
	(C)	Rise in P_{r_0} with a increase in pH		(A) (B)	A-(iii), B-(i), C-(ii), C	D-(ı)-(v`), E-(iv)
	(D)	Fall in P with a decrease in pH		(C)	A-(iii), B-(i), C-(iv), I	D-(v	/), E-(ii)
97.	How	much amount of air can be inspired or expi	red	(D)	A-(v), B-(i), C-(ii), D)-(iii)), E-(iv)
	duriı	ng normal breathing?	102.	Wh	en the oxygen suppl	ly to	the tissue is inadequate,
	(A)	0.5 <i>1</i> (B) 1.5 <i>1</i>		the (A)	condition is Hypoxia (I	B)	Asphyxia
	(C)	3.51 (D) 4.51		(C)	Pleurisy (I	D)	Anoxia
98.	Whahaer	at is incorrect about oxygen binding w moglobin?	ith 103.	The (A)	serous membrane i Parietal pleura	n co	ontact with the lungs is the
	(A)	The bond between oxygen and Hb is a very loo bond	ose	(B) (C)	Pulmonary mesent Pulmonary peritone	ery eum	1
	(B)	Oxygen becomes ionic when it binds to Hb	104	(D)	Visceral pleura	1	
	(C)	Hb and oxygen is readily reversible combinat	ion 104.		Deep inspiration	trac	ct at the time of
	(D)	None of the above		(A) (B)	Normal inspiration	and	expiration
99.	Foe	tal haemoglobin has x affinity for oxygen than t	hat	(C)	Forceful expiration	ana	oxpiration
	of m	other's haemoglobin during gestation. X is		(D)	Normal expiration		
	(A)	same	105.	Nei	ther the trachea nor t	the	bronchi contain
	(B)	higher		(A)	Hyaline cartilage		
	(C)	lower		(B)	Ciliated columnare	epith	nelium
	(D)	lower affinity earlier but higher later		(C)	Goblet cells		halium
100.	Duri of ai	ng normal respiration, without any effort, the volu r inspired or expired is called	me 106.	(D) The	narrowest and most	epiti t nu	merous tubes of lungs are
	(A)	Tidal volume (B) Reserve volume		terr	ned as	D۱	Bronchus
	(C)	Residual volume (D) None of these		(A) (C)	Alveoli (I	ם) וח	Bronchioles
				(0))	

107. Division of mammalian lungs into a very large number of tiny alveoli around alveolar ducts opening into bronchioles, is

- (A) An inefficient system of ventilation of alveoli with very little residual air
- (B) An inefficient system of ventilation of alveoli resulting in a very high percentage of residual air in the lungs
- (C) A very efficient system of ventilation of alveoli with no residual air
- (D) An efficient system of ventilation of alveoli with little or no residual air
- 108. In man and mammals, air passes from outside into the lungs through
 - (A) Nasal cavity, larynx, pharynx, trachea, bronchi, alveoli
 - (B) Nasal cavity, larynx, pharynx, trachea, bronchioles, alveoli
 - (C) Nasal cavity, pharynx, larynx, trachea, bronchioles, bronchi, alveoli
 - (D) Nasal cavity, pharynx, larynx, trachea, bronchi bronchioles, alveoli
- 109. Type of cartilage seen in tracheal wall is
 - (A) Hyaline cartilage (B) Fibro-cartilage
 - (C) Elastic cartilage (D) None of these
- 110. Cyanosis is
 - (A) Lack of oxygen in body fluid
 - (B) Difficult or heavy breathing
 - (C) Excess of carbon dioxide in the body fluids
 - (D) 'Skin turning blue' due to excessive amount of deoxygenated haemoglobin in the blood vessels
- 111. In which one of the following conditions does the oxygen dissociation curve of haemoglobin shift to the right side ?
 - (A) Decrease in pH
 - (B) Decrease in CO_2 concentration
 - (C) Decrease in acidity
 - (D) Decrease in temperature

112. The diagram shows organs associated with breathing in humans.

Horizon Test Series for Medical-2016

What are the numbered structures?

	а	b	С	d			
(A)	Bronchus	Bronchiole	Larynx	Trachea			
(B)	Bronchiole	Bronchus	Larynx	Trachea			
(C)	Larynx	Trachea	Bronchus	Bronchiole			
(D)	Trachea	Bronchus	Bronchiole	Larynx			
The given figures are of human larynx, front view (i) and vertical section (ii).							

Identify the labelled parts A to D.

	Α	В	С	D
(A)	Glottis	Larynx	Vocal cord	Cartilaginous rings of trachea
(B)	Epiglottis	Cartilaginous rings of trachea	Trachea	Larynx
(C)	Glottis	Cartilaginous rings of trachea	Larynx	Trachea
(D)	Epiglottis	Bony rings of trachea	Larynx	Trachea

Space for Rough Work

113.

Tes	t-6 (Objective)	Horizon Test Series for Medical-2016
114.	The given figure illustrates the changes in lung volume during the process of breathing.	The correct answers are (A) I, II, III and IV (B) I and II (C) II and IV (D) III and IV 118. Emphysema is a condition resulting from (A) cigarette smoking (B) liquor consumption (C) drug addiction (D) reduced oxygen carrying capacity of blood. 119. Arrange the following in the order of increasing volume.
115.	The change from II to III indicates the (A) movement of diaphragm away from the lungs (B) expansion of the thoracic cavity (C) movement of air out of the lungs (D) expansion of ribs Chemosensitive area of respiratory centre in medulla is affected by (A) less CO_2 and H ⁺ ions (B) less O_2 and H ⁺ ions (C) excess CO_2 and H ⁺ ions (D) excess CO_2 and H ⁺ ions	 I. Tidal volume II. Residual volume III. Expiratory reserve volume IV. Vital capacity (A) I<ii<iii< li=""> (B) I<iii<iv< li=""> (C) I<iv<iii< li=""> (D) I<iv<ii<iii< li=""> 120. Refer the given diagrammatic representation of the transportation of oxygen and carbon dioxide in the blood. P,Q,R,S and T represent percentage of both gases in different forms. Select the correct option for P to T </iv<ii<iii<></iv<iii<></iii<iv<></ii<iii<>
116.	ExampleRespirationExampleRespirationA.Earthworm1.PulmonaryB.Human2.BronchialC.Prawn3.TrachealD.Insects4.Cutaneous(A)1234(B)4213(A)123(D)3241	To right atrium To right atrium To tissue cells RBC RBC RBC RBC HbCo, H ₂ Co ₃ HbO ₂ HbO ₂
117.	 The air that enters our lungs is characterised such that I. It is warm II. It is filtered III. Some oxygen is extracted from it IV. Some carbon dioxide is added to it 	P Q R S T (A) 23% 70% 7% 93% 7% (B) 7% 23% 70% 3% 97% (C) 7% 23% 70% 97% 3% (D) 70% 7% 23% 97% 3%

Tes	t-6 (Objective)		Horizon Test Series for Medical-2016			
Direct one c answ	ction : In the following questions (121-124), more than of the answers given may be correct. Select the correct ers and mark them according to the codes given below.		(C) Testosterone has a favourable effect on RBC production(D) The statement is incorrect; both males and			
	Codes:		females have equal number of RBC per cc			
	(A) 1, 2 and 3 are correct	127.	The percentage of blood that is cells is called as			
	(B) 1 and 2 are correct		(A) Homotocrit: 40, 45			
	(C) 2 and 4 are correct		(A) $ESP(0 = 15)$			
	(D) 1 and 3 are correct		(C) Mean corpuscular volume: $80 - 90$			
121.	The diffusion of bicarbonate ions from RBC into plasma		(D) MCHC: $10 - 15$			
	is known as	128.	The earliest site for the production of RBCs in the			
	(1) Henry's law		human foetus is :			
	(2) Chloride shift		(A) Bone marrow (B) Liver			
	(3) Charle's law		(C) Spleen (D) Yolk sac			
	(4) Hamburger's phenomenon	129.	Consider the following leucocytes:			
122.	The mucus produced by the goblet cells		I. Basophils			
	(1) Moistens the incoming air					
	(2) Traps the finest dust particles		IV Eosinophils			
	(3) Filters out largest dust particles		Phagocytic property is present in :			
100	(4) Warms the incoming air		(A) , , , V (B) , ,			
123.	anbydrase activity) the rate of and will show		(C) II and III (D) II, III, IV			
		130.	Blood monocytes migrate into the tissues of the body			
	(1) Absorption		and there differentiate (evolve) into :			
	(2) Adsorption		(A) Plasma cells (B) Macrophages			
	(3) Dissociation of CO_2	101	(C) Granulocytes (D) Mast cells			
	(4) Association of CO ₂	131.	I he blood cells that release histamine and heparin are:			
124.	Certain bacteria that cause bronchitis are		(A) Basophils (B) Neutrophils			
	(1) Streptococus pneumoniae	132	Which of the following is a polymorphonuclear			
	 (2) Haemophilus Influenzae (3) Versinia postia 	102.	granulocyte that has 2 to 7 lobed nucleus ?			
	(3) Tersinia pesus (4) Clostridium tetani		(A) Basophils (B) Neutrophils			
125	The shape of a mature human RBC resembles:		(C) Eosinophils (D) Lymphocyte			
120.	(A) A sphere (B) A dumble	133.	Regarding eosinophils :			
	(C) A biconcave disc (D) A pavement tile		I. They are granulocytes			
126	Adult males normally have more RBC per co than adult		II. I hey have bilobed nucleus			
120.	females loose because :		III. I ney are increased in parasitic intestations			
	(A) Females lose blood during menstrual flow		(R) Only Lis correct			
	(B) Males work much harder than females		(C) I. II. III are correct			
			(D) All are incorrect			
			· /			

Tesi	t-6 (Objective)	Horizon Test Series for Medical-2016
134.	An increase of which of the following is the hallmark of acute inflammation?	f (A) A-(ii), B-(iv), C-(iii), D-(i) (B) A-(ii), B-(i), C-(iv), D-(iii)
	(A) Basophils (B) Neutrophils	(C) A-(iv), B-(iii), C-(ii), D-(i)
	(C) Eosinophils (D) Lymphocytes	(D) A-(iv), B-(ii), C-(iii), D-(i)
135.	The antibodies associated with the ABO system are usually of the class	142. R.Q. of proteins, carbohydrates, fats and organic acids are in order
	(A) I _g E (B) I _g M	(A) <1, 1, <1, >1 (B) >1, <1, 1, 1
	(C) I _g G (D) I _g A	(C) 1, 1, 0, -1 (D) 0, <1, 1, >1
	[BOTANY]	143is a facultative anaerobe
136.	Respiratory substrates are the organic substances which are during respiration to liberate energy.	 (A) Clostridium tetani (B) Saccharomyces cerevisiae
	(A) oxidized (B) reduced	(C) Azotobacter
	(C) synthesized (D) both (A) and (B)	(D) Beijerinckia
137.	If volume of CO_2 liberated during respiration is more than the volume of O_2 used, the respiratory substrate will be :	 144. Identify the enzymes 1 and 2 in the given reaction and select the correct option.
	(A) Carbohydrate (B) Fats	CO ₂ NADH ₂ NAD
	(C) Proteins (D) Organic acid	Pyruvic \longrightarrow Acetaldehyde \longrightarrow Ethanol
138.	Value of RQ in succulents is	
	(A) unity (B) infinite	1 2
	(C) less than unity (D) zero	(A) Ethanol dehydrogenase Pyruvate decarboxylase
139.	Instantaneous source of energy is	(B) Ethanol decarboxylase Pyruvate dehydrogenase
	(A) proteins (B) fats	(C) Pyruvate decarboxylase Ethanol dehydrogenase
	(C) nucleic acids (D) glucose	(D) Pyruvate dehydrogenase Ethanol dehydrogenase
140.	Refer the given equation	145 Select the incorrectly matched pair
	$2(C_{51}H_{98}O_6) + 145O_2 \rightarrow 102CO_2 + 98H_2O + Energy$	
	The RQ in this case is	(A) End product of $-$ Ethanol + CO ₂
	(A) 1 (B) 0.7	aiconolic
	(C) 1.45 (D) 1.62	(D) End producto
141.	Match Column-I with Column-II and select the correct	t (B) End products – Lactic acid + CO_2
	option from the codes given below.	fermentation
	Column-I Column-II	(C) Obligate – Clostridium tetani
	A. Wine (i) Apples	anaerobe
	B. Cider (ii) Grapes	(D) BO of - One
	C. Beer (iii) Molasses	carbohydrates
	D. Rum (IV) Cereals	

Space for Rough Work

Test-6 (Objective)						Horizon Test Series for Medical-2016				
149.	Substrate, level phosphorylation occurs during which step of Krebs' cycle ? (A) Succinyl - CoA \rightarrow Succinic acid					Match Column-I with Column-II and select the correct option from the codes given below.				
	(B) Iso	citric acid -	 Oxalosuccini 	c acid			Column-l			Column-II
	(C) Oxa (D) Ma		acid $\rightarrow \alpha$ -keto	o glutaric acid		Α.	Fats made of thr	ee	(i)	Glycogen
150.	The first	5-C dicarbo	xylic acid in Kre	bs' cycle which is			fatty-acid chains			
	used in r	nitrogen me	tabolism is				attached to glyce	erol		
	(B) citri	ic acid				_		//01	(::)	<u>Ohio anal dahi ida</u>
	$(C) \alpha -$	ketoglutario	acid			В.	Glycolysis		(II)	Glyceraldenyde
151.	(D) ace Seeds re	etyl coenzyr espire in	ne A				metabolite made			
	(A) pre	sence of O ₂	(B) present	$e of CO_2$			from glycerol			
152	(C) abs	sence of O_2^{-1}	(D) both (A)) and (C)		C.	Storage form of		(iii)	Triglycerides
102.	(A) 3P0	GA and 2PC	BA			glucose				
	(B) PG	AL and DH	AP ructoso			П	Result of running		ſιν)	Glucose
	(D) All	of these	TUCIOSE			D.		ali valia	(10)	Clucose
153.	Alternate name of Krebs' cycle is						reactions of glyc	olysis		
	(A) TC/ (C) bot	h (A) and (E	(B) cluric ac 3) (D) none of	these			in reverse			
154.	Select th	e correct o	ption for A, B, C	and D		(A)	A-(iv), B-(ii), C-(i)	, D-(iii)		
						(B)	A-(iii), B-(ii), C-(i)	, D-(iv)		
				B		(C)	A-(iv), B-(iii), C-(i), D-(ii)		
	Fa	tty acids and glycerol	Simple sugars e.g., Glucose	acids		(D)	$A_{-}(i) B_{-}(ii) C_{-}(iii)$	$D_{-(iv)}$		
		↓	Glucose 6-phosphate		150			$, D(\mathbf{N})$	+	ul Ca A ta farma
			↓ ↓		100.	in r	reds cycle, OAA	accepts	acel	yi CoA to form
			ructose 1, 6-bisphosphate			(A)	citric acid	(B) ox	alos	uccinate
		DHAP	c c			(C)	fumarate	(D) su	ccin	yl CoA
			$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ H_2O \checkmark & \\ & & \\ $		157.	All mito inne cyto	enzymes of TC ochondrial matrix er mitochondrial m osol in prokaryotes	A cycle except c embrane s. This er	e are one v es in nzym	e located in the which is located in eukaryotes and in he is
						(A)	isocitrate dehydr	ogenase		
	Α	В	С	D		(B)	ketoglutarate deh	nydrogen	ase	
(A)	Fats	Proteins	3-PGAL	Acetyl CoA		(C)	succinate dehvdr	rogenase	ć	
(B)	Fats	Proteins	3-PGAL			(-) (D)	lactate debydrog	enase		
(C)	Proteins	Fats	Acetyl CoA	PEP		(U)	actate deligatog	CIIDOC		
(D)	Proteins	⊦ats	PEP	Acetyl CoA						

Test	-6 (Objectiv	re)		Horizon Test Series for Medical-2016						
158.	At the end of g one molecule of stored in the fo	lycolysis, X is the r of glucose <i>via</i> Y, bu orm of Z. Identify X	net energy gain from t there is also energy , Y and Z.	161.	Rise exp	m X to Y in the given rates				
	X	Y	Z							
	(A) 1 ATP	Oxidative phosphorylation	NADH+H⁺		кон					
	(B) 2 ATPs	Oxidative phosphorylation	NADH+H⁺			x				
	(C) 1 ATP	Substrate level phosphorylation	FADH ₂	Respiring seeds						
	(D) 2 ATPs	Substrate level	NADH+H⁺		(B)	anaerobio	c respiration			
		phosphorylation			(C)	photosyn	thesis			
159.	Select the con		(D)	transpirat	tion pull					
	(A) Succinate (B) Fumarate	162.	Identify the correct terms for the given statements and select the correct answer.							
100	(C) Succinate \rightarrow Fumarate \rightarrow Malate \rightarrow OAA (D) Malate \rightarrow Fumarate \rightarrow Succinate \rightarrow OAA				(i)	Sudden increase in the rate of respiration duri ripening of fruits.				
160.	enzymes (i), (i these steps.	ii) and (iii) respons	ible for carrying out		 (ii) Reduction in the consumption of respirat substrate when mode of respiration is change from anaerobic to aerobic 					
		Glucose-6-phosphate			(iii)	ii) Respiratory oxidation of carbohydrate and fats				
		(I) Mg2+					,	5		
		Fructose-6-phosphate (ii) ATP Mg^{2+}				Pasteur effect	Floating respiration	Climacteric respiration		
	F	ADP	te		(A)	(i)	(ii)	(iii)		
		actose 1,0 orphosphi			(B)	(ii)	(iii)	(i)		
	Cl				(C)	(iii)	(ii)	(i)		
	Gr	yceraidenyde-3-phosphai	te		(D)	(ii)	(i)	(iii)		
	(i)	(ii)	(iii)	163.	Sele	ect the wro	ng statement.			
(A)	Phosphohexo isomerase	ose Phospho- fructokinase	Aldolase		(A)	Oxidative the preser	decarboxylation	n of pyruvic acid requires byruvate dehydrogenase.		
(B)	Hexokinase	Phospho- fructokinase	Aldolase		(B)	All living perform g	cells whether glycolysis.	aerobic or anaerobic,		
(C)	Phosphohexc	ose _{Hexokinase}	Phosphofructo-		(C)	Cyanide	does not stop o	chemiosmosis.		
(0)	isomerase		kinase		(D)	Respirate	ory chain uses	s O ₂ as final hydrogen		
(D)	Aldolase	Phospho- fructokinase	Phosphohexose isomerase			acceptor.				

Tes	t-6 (Objective)			Horizon Test Series for Medical-2016			
164.	lder synf	ntify A and B in the given diagram showing ATP thesis in oxysomes.		(iii)	For each ATP produced, $2H^+$ pass through F_0 from the intermembrane space to the matrix down the electrochemical proton gradient.			
		ATP		(A)	(i) and (ii) (B) (ii) and (iii)			
				(C)	(i) and (iii) (D) (i), (ii) and (iii)			
		2H ⁺ 2H ⁺	166.	Oxidation of one NADH ₂ and one FADH ₂ respectivel gives rise to and ATP molecules.				
		Fo		(A)	3 and 2 (B) 2 and 1			
		ADP Pi		(C)	2 and 3 (D) 1 and 2			
			167.	Read the given statements and select the correct option.				
	(•)	A - Mito choo dei choo dei c		Sta	atement 1 : During photophosphorylation (of			
	(A) (B) (C)	B = Outer mitochondrial membrane		production of proton gradient during ATP synthesis.				
				Statement 2 : In respiration, energy of oxidation				
		A = Mitochondrial matrix		reduction is utilized for the phosphorylation and thus				
		B = Inner mitochondrial membrane		the (Process is called oxidative phosphorylation.			
		A = Cell cytoplasm		statement 2 is the correct explanation				
		B = Inner mitochondrial membrane			statement 1.			
		A = Cell cytoplasm		(B)	Both statements 1 and 2 are correct but			
	(-)	B = Outer mitochondrial membrane		statement 1.				
165.	Stuc	dy the following statements regarding chemiosmotic		(C)	Statement 1 is correct and statement 2 is incorrect.			
	/i)	E headniece contains the site for the synthesis		(D)	Both statements 1 and 2 are incorrect.			
	(י)	of ATP from ADP + Pi.	168.	Elec	Electron transport chain (ETC) is a set of electro			
	(ii)	F ₀ part forms the channel through which protons		carr mitc	riers present in a specific sequence along			
				(A)	seven, inner (B) six, inner			
				(C)	seven, outer (D) six, outer			

Test-6 (Objective)								Horizon Tes	t Seri	es for Medical-2016
169.	D. Identify P, Q, R, S and T in the given diagram of mitochondrial electron transport chain. Inner membrane of mitochondria Q R Control of the provided HTML representation of the				170.	Last (A) (C)	: e⁻ acceptor du O ₂ cyt a ₂	ring E (B) (D)	TS is cyt a cyt a 2	
					171.	Amo ener (A) (C)	punt of energy rel rgy bond of ATP i 73 kcal mol ⁻¹ 3.4 kcal mol ⁻¹	easec s (B) (D)	0.73 kcal mol ⁻¹ 7.3 kcal mol ⁻¹	
						172.	Mate optio	ch Column-I with on from the code: Column-I	Colur s give	nn-II and select the correct n below. Column-II
	T◀	(UQH)		— Т			A.	R.Q	(i)	Chemiosmotic ATP synthesis
		Cyr S	Ze ⁻ FeS				В. С.	Mitchel Cytochoromes	(ii) (iii)	Muscle fatigue Inner mitochondrial membrane
	T◀	$\mathbf{T} \leftarrow \begin{array}{c} UQH_2 \leftarrow \begin{array}{c} 2e^-\\UQ \end{array} \\ \hline UQ \\ \hline UU $		D2 H+			D. E. (A) (B) (C) (D)	Lactic acid Yeast A-(v), B-(i), C-(ii A-(v), B-(i), C-(ii A-(i), B-(v), C-(ii A-(v), B-(ii), C-(i	(iv) (V) i), D-(i i), D-(i), D-(ii v), D-(Alcoholic fermentation Respirometer ii), E-(iv) iv), E-(ii) ii), E-(iv) (iii), E-(i)
	Р	Q	R	S	т	173.	How many ATP molecules will be generated in a pla system during complete oxidation of 40 molecules glucose ?			
(A)	Matrix	Outer chamber	FMNH ₂	$NADH_2$	2H⁺		(A) (C)	180 1440	(B) (D)	360 3040
(B)	Outer chamber	Matrix	NADH+H⁺	NAD⁺	2H⁺	174.	Sele (A)	ect the wrong sta When tripalmi	temer tin is	nt. used as a substrate in
(C)	Outer chamber	Cristae	NAD⁺	NADH+H⁺	H_2		(B)	respiration, the The intermed	R.Q. iate	is 0.7. compound which links
(D)	Cristae	Outer chamber	NADH+H⁺	NAD⁺	2H⁺		(C)	glycolysis with One glucose m ATP molecule d	Krebs Iolecu uring	' cycle is malic acid. Ile yields a net gain of 36 aerobic respiration
							(D)	One glucose mo molecules durir	olecul ng glyo	e yields a net gain of 2 ATP colysis.

Space for Rough Work

- 175. In the electron transport system present in the inner mitochondrial membrane, complexes I and IV are respectively
 - (A) NADH dehydrogenase and $FADH_2$
 - (B) FADH₂ and NADH dehydrogenase
 - (C) NADH dehydrogenase and cytochrome oxidase complex
 - (D) NADH dehydrogenase and ATP synthase
- 176. Which out of the following statements is incorrect?
 - (A) The breakdown product of glucose which enters into mitochondrion during aerobic respiration is pyruvic acid generated in the cytosol.
 - (B) When the electrons pass from one carrier to another via complex I to IV in the electron transport chain, they are coupled to ATP synthase (complex V) for the production of ATP from ADP and Pi.
 - (C) The ratio of volume of O_2 consumed in respiration to the volume of CO_2 evolved is called as the respiratory quotient (RQ).
 - (D) Compensation point is the point reached in a plant when the rate of photosynthesis is equal to the rate of respiration.
- 177. Which of the following statements is correct with respect to the effect of temperature on rate of respiration?
 - (A) Rate of respiration increases with an increase in temperature from 0°C to 30°C.
 - (B) Rate of respiration doubles for every 10° C rise in temperature, thus temperature co-efficient (Q₁₀) for respiration is 2.
 - (C) At very high temperatures such as 50°C or more, rate of respiration decreases due to enzymatic degradation.
 - (D) All of these.

178. During electron transport system (ETS), electron transport proceeds from carriers that have _____ redox potential to those having _____ redox potential. This electron transport down to the energy gradient leads to the formation of ATP from ADP and Pi, which is referred to as

Horizon Test Series for Medical-2016

- (A) Low, high, oxidative phosphorylation
- (B) Low, high, oxidative decarboxylation
- (C) High, low, oxidative phosphorylation
- (D) High, low, oxidative decarboxylation
- 179. Animal cells are suspended in a culture medium that contains excess glucose. The graph below shows glucose utilization under different growth conditions.(A), (B), and (C) in the graph indicate

- (A) A-Anaerobic respiration
 - B Introduction of O₂ to culture medium
 - C Aerobic respiration
- (B) A Aerobic respiration
 - B Introduction of CO₂ to culture medium
 - C Anaerobic respiration
- (C) A Aerobic respiration
 - B Supply of organic triphosphate
 - C Aerobic respiration
- (D) A Aerobic respiration
 - B Introduction of CO to culture medium

23

C - Anaerobic respiration

Space for Rough Work

180. Mechanism of phosphorylation is depicted in the diagram below. Study it carefully and mark the correct option.

(A) The diagram depicts photosynthetic phosphorylation taking place in the chloroplast. The incident light should be shown in the diagram.

Horizon Test Series for Medical-2016

- (B) The diagram depicts oxidative phosphorylation taking place in mitochondria. However, the flow of electrons should be shown in reverse direction.
- (C) Diagram depicts the basic process of both oxidative as well as photosynthetic phosphorylation. However, the proton concentration should be high, inside and low outside.
- (D) The diagram correctly depicts the oxidative phosphorylation occurring in all heterotrophic organisms.

24

Space for Rough Work