

Test No. 27

Topics of The Test

Physics	Electrostatics				
Thyolog					

Chemistry	Aldehydes & Ketones	

Biology	Zoology : Porifera, Coelenterata, Ctenophora, Platyhelminthes, Nemathelminthes Botany : Biological Classification & Plant growth.

Test-27 (Objective)

Test No. 27

6.

7.

8.

[PHYSICS]

- In a region of constant potential 1.
 - (A) the electric field is uniform
 - (B) the electric field is zero
 - (C) there can be no charge inside the region
 - (D) both (B) and (C) are correct
- 2. A cube of side *x* has a charge *q* at each of its vertices. The potential due to this charge array at the centre of the cube is

(A)
$$\frac{4q}{3\pi\varepsilon_0 x}$$
 (B) $\frac{4q}{\sqrt{3}\pi\varepsilon_0 x}$
(C) $\frac{3q}{4\pi\varepsilon_0 x}$ (D) $\frac{3q}{\sqrt{3}\pi\varepsilon_0 x}$

- 3. The potential at a point due to a charge of 5×10^{-7} C located 10 cm away is 4.5×10⁴ V, work done in bringing a charge of 4×10⁻⁹ C from infinity to that point is
 - (B) 1.8×10⁻⁴ J
 (D) 4.1×10⁻⁵ J (A) 2.4×10^{-4} J
 - (C) 3.2×10^{-5} J
- The electric potential at a point in free space due to a 4. charge Q coulomb is $Q \times 10^{11}$ V. The electric field at that point is
 - (A) $12\pi\varepsilon_0 Q \times 10^{22} \text{ V m}^{-1}$
 - $4\pi\varepsilon_{0}Q \times 10^{22} \,\mathrm{V \,m^{-1}}$ (B)
 - $12\pi\varepsilon_{0}Q \times 10^{20} \,\mathrm{V \,m^{-1}}$ (C)
 - $4\pi\varepsilon_0 Q \times 10^{20} \mathrm{V m}^{-1}$ (D)
- A molecule of a substance has a permanent electric 5. dipole moment of magnitude 10⁻³⁰ cm. A mole of this substance is polarised by applying a strong electrostatic field of magnitude 10⁷ V m⁻¹. The direction of field is changed by an angle 60°. The heat released by the substance in aligning its dipole along the new direction of the field is Assume 100 % polarization

- (A) -6 J (B) -3 J (C) 3 J (D) 6]
- The distance between H⁺ and Cl⁻ ions in HCl molecules is 1.38 Å. The potential due to this dipole at a distance of 10 Å on the axis of dipole is
 - (A) 2.1 V (B) 1.8 V
 - (C) 0.2 V (D) 1.2 V
- Figure shows the field lines of a positive point charge. The work done by the field in moving a small positive charge from Q to P is

(A)	zero	(B)	positive
(\cap)	magnitizza		data incuffici

(C) negative (D) data insufficient Two thin wire rings each having a radius R are placed at a distance *d* apart with their axes coinciding. The charges on the two rings are +q and -q. The potential difference between the centres of the the two rings is

(A)
$$\frac{q}{4\pi\varepsilon_0} \left[\frac{1}{R} - \frac{1}{\sqrt{R^2 + d^2}} \right]$$

(B) zero
(C) $\frac{q}{\sqrt{R^2 + d^2}} \left[\frac{1}{R} - \frac{1}{\sqrt{R^2 + d^2}} \right]$

C)
$$\frac{1}{2\pi\varepsilon_0}\left[\frac{R}{R} - \frac{1}{\sqrt{R^2 + d^2}}\right]$$

(D)
$$\frac{q\kappa}{4\pi\varepsilon_0 d^2}$$

Space for Rough Work

Tes	t-27 (Objective)	Horizon Test Series for Medical-2016
9.	Two tiny spheres carrying charges 1.8μ C and	15. An electric dipole of moment \vec{p} is placed in a uniform
	2.8μ C are located at 40 cm apart. The potential at the	electric field \vec{E} . Then
	mid-point of the line joining the two charges is (A) 2.8×10^{4} (P) 2.1×10^{5} (I)	(i) the torque on the dipole is $\vec{p} \times \vec{E}$
	(A) $3.8 \times 10^{\circ}$ (B) $2.1 \times 10^{\circ}$ (C) 4.3×10^{4} (D) 3.6×10^{5} V	(ii) the potential energy of the system is $\vec{p} \cdot \vec{E}$
10.	Two tiny spheres carrying charges 1.8 μC and 2.8	(ii) the resultant force on the dipole is zero
	μC are located at 40 cm apart, the potential at a point	Choose the correct option.
	20 cm from the mid-point of the line joining the two	(A) (i), (ii) and (iii) are correct
	charges in a plane normal to the line and passing	(B) (i) and (iii) are correct and (ii) is wrong
	through the mid-point is	(C) only (i) is correct
	(A) $1.4 \times 10^5 V$ (B) $4.2 \times 10^3 V$	(D) (1) and (ii) are correct and (iii) is wrong
	(C) $2.9 \times 10^5 V$ (D) $3.7 \times 10^5 V$	16. If a conductor has a potential $V \neq 0$ and there are no
11.	Consider a uniform electric field in the z-direction.	charges anywhere else outside, then
	The potential is a constant	(A) there must be charges on the surface or inside itself
	(A) for any x for a given z	(B) there cannot be any charge in the body of the
	(D) for any y for a given z (C) on the r_{-1} plane for a given z	conductor.
	(D) all of these	(C) there must be charges only on the surface.
12.	Equipotential surfaces	(D) both (A) and (B) are correct.
	(A) are closer in regions of large electric fields	17. Which of the following statements is false for a perfect conductor ?
	(B) will be more crowded near sharp edges of a	(A) The surface of the conductor is an equipotential
	conductor	surface.
	(C) will always be equally spaced $(D) = 1 (D)$	(b) The electric field just outside the surface of a conductor is perpendicular to the surface.
12	(D) both (A) and (B) are correct	(C) The charge carried by a conductor is always
13.	at points (2 cm, 0, 0) and (x cm, 0, 0) in a region of	uniformly distributed over the surface of the
	space, where there is no other external field. If the	conductor.
	electrostatic potential energy of the system is -0.5μ].	(D) None of these
	The value of <i>x</i> is	18. Two metal spheres, one of radius R and the other of radius 2R both have same surface charge density σ
	(A) 20 cm (B) 80 cm	If they are brought in contact and separated, then the
	(C) 4 cm (D) 16 cm	new surface charge densities on each of the sphere are
14.	A test charge is moved from lowr potential point to a	respectively.
	higher potential point. The potential energy of test	5 5 5 5
	(A) remains the same (P) increase	(A) $\frac{-\sigma}{2}, \frac{-\sigma}{4}$ (B) $\frac{-\sigma}{3}, \frac{-\sigma}{6}$
	(C) decrease (D) becomes zero	3 6 9 1
	(c) accidate (D) becomes zero	(C) $\frac{3}{5}\sigma, \frac{6}{5}\sigma$ (D) $\frac{2}{3}\sigma, \frac{1}{2}\sigma$

Tes	t-27 (Objective)		Horizon Test Series for Medical-2016
19.	Two charged conducting spheres of radii <i>a</i> and <i>b</i> are connected to each other by a wire. The ratio of electric fields at the surfaces of two spheres is (A) $\frac{a}{b}$ (B) $\frac{b}{a}$	26.	(A) $6 \times 10^7 \text{ V}$ (B) $3 \times 10^7 \text{ V}$ (C) $4 \times 10^7 \text{ V}$ (D) $2 \times 10^7 \text{ V}$ A parallel plate air capacitor is charged to a potential difference of <i>V</i> volts. After disconnecting the charging battery the distance between the plates of the capacitor is increased using an insulating handle. As a result
20.	(C) $\frac{a^2}{b^2}$ (D) $\frac{b^2}{a^2}$ Which among the following is an example of polar molecule ?		the potential difference between the plates.(A) increases(B) decreases(C) does not change(D) becomes zero
21.	 (A) O₂ (B) H₂ (C) N₂ (D) HCl Choose the correct statement. (A) Polar molecules have permanent electric dipole moment. (B) CO₂ molecule is a polar molecule. (C) H₂O is a non-polar molecule. 	27. 28.	A parallel plates air capacitor has a capacitance <i>C</i> . When it is half filled with a dielectric of dielectric constant 5, the percentage increase in the capacitance will be (A) 400% (B) 66.6% (C) 33.3% (D) 200% In a parallel plate capacitor, the capacity increases if
22.	(D) The dipole field at large distances falls of as $\frac{1}{r^2}$. Dielectric constant for a metal is (A) zero (B) infinite (C) 1 (D) 10		 (A) area of the plate is decreased (B) distance between the plates increases (C) area of the plate is increased (D) dielectric constant decreases
23.	A parallel plate capacitor with air between the plates has a capacitance of 10 pF. The capacitance, if the distance between the plates is reduced by half and the space between them is filled with a substance of dielectric constant 4 is (A) 80 pF (B) 96 pF (C) 100 pF (D) 120 pF	29.	The capacitance of a parallel plate capacitor with air as medium is 3μ F. With the introduction of a dielectric medium between the plates, the capacitance becomes 15μ F. The permittivity of the medium is (A) $5 \text{ C}^2\text{N}^{-1}\text{m}^{-2}$ (B) $15 \text{ C}^2\text{N}^{-1}\text{m}^{-2}$
24. 25.	Metallic sphere of radius <i>R</i> is charged to potential V. The charge <i>q</i> is proportional to (A) V (B) R (C) both V and R (D) none of these Two parallel conducting plates of area $A = 2.5 \text{ m}^2$ each	30.	(C) $0.44 \times 10^{-10} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$ (D) $8.854 \times 10^{-11} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$ A parallel plate capacitor having area <i>A</i> and separated by distance <i>d</i> is filled by copper plate of thickness <i>b</i> .
	are placed 6 mm apart and are both earthed. A third plate, identical with the first two, is placed at a distance of 2 mm from one of the earthed plates and is given a charge of 1 C. The potential of the central plate is		The new capacity is (A) $\frac{\varepsilon_0 A}{d - \frac{b}{2}}$ (B) $\frac{\varepsilon_0 A}{2d}$
	$2 \operatorname{mm} \underbrace{4 \operatorname{mm}}_{\overline{4}} $		(C) $\frac{\varepsilon_0 A}{d-b}$ (D) $\frac{\varepsilon_0 A}{d-\frac{b}{2}}$

Space for Rough Work

Tes	t-27 (Objective)	Horizon Test Series for Medical-20	16
31.	A parallel plate capacitor is made by placing <i>n</i> equally spaced plates connected alternatively. If the capacitance between any two adjacent plates is <i>C</i> then the resultant capacitance is	36. Minimum number of capacitors each of 8μ F and V used to make a composite capacitor of 16μ F 1000 V are	250 and
32.	(A) nC (B) $\frac{C}{n}$ (C) $(n+1)C$ (D) $(n-1)C$ A capacitor has some dielectric between its plates, and the capacitor is connected to a dc source. The battery is now disconnected and then the dielectric is removed, then	(A) 0 (B) 32 (C) 16 (D) 24 37. Two capacitors of 2μ F and 4μ F are connected parallel. A third capacitor of 6μ F is connected series. The combination is connected across a 1 battery. The voltage across 2μ F capacitor is (A) 2 (B) 8 V (C) 6 V (D) 1 V	d in d in l2 V
33.	 (A) capacitance will increase. (B) energy stored will decrease (C) electric field will increase (D) voltage will decrease The number of ways one can arrange three identical capacitors to obtain distinct effective capacitances is (A) 8 (B) 6 (C) 4 (D) 3 	 38. A capacitor of capacitance 700 pF is charged by 10 battery. The electrostatic energy stored by the capacita (A) 2.5×10⁻⁸ J (B) 3.5×10⁻⁶ J (C) 2.5×10⁻⁴ J (D) 3.5×10⁻⁴ J 39. A capacitor is charged through a potential difference of 200 V, when 0.1 C charge is stored in it. The among of energy released by it, when it is discharged is (A) 5 J (B) 10 J (C) 20 J (D) 2 5 J 	00 V citor ence ount
34.	 Three capacitors each of capacity 4µF are to be connected in such a way that the effective capacitance is 6µF. This can be done by (A) connecting them in series (B) connecting them is parallel (C) connecting two in series and one in parallel (D) connecting two in parallel and one in series 	40. A parallel plate capacitor has a uniform electric f <i>E</i> in the space between the plates. If the distance between the plates is <i>d</i> and area of each plate is <i>A</i> , energy stored in the capacitor is (A) $\frac{1}{2}\varepsilon_0 E^2$ (B) $\frac{E^2 A d}{\varepsilon_0}$ (C) $\frac{1}{2}\varepsilon_0 E^2 A d$ (D) $\varepsilon_0 E^2 A d$	ield ince , the
35.	A capacitor of capacitance C_1 is charged to a potential V and then connected in parallel to an uncharged capacitor of capacitance C_2 . The final potential difference across each capacitor will (A) $\frac{C_1 V}{C_1 + C_2}$ (B) $\frac{C_2 V}{C_1 + C_2}$ (C) $1 + \frac{C_2}{C_1}$ (D) $1 - \frac{C_2}{C_1}$	41. A parallel plate capacitor is filled by a dielectric where relative permittivity varies with the applied volte (V) as $\varepsilon = \alpha V$ where $\alpha = 2V^{-1}$. A similar capace with no dielectric is charged to V ₀ =78 V. It is the connected to the uncharged capacitor with dielectric. Final voltage on the capacitor is (A) 2V (B) 3V (C) 5V (D) 6V	nose tage citor then the

Tes	t-27 (Objective)	Horizon Test Series for Medical-20)16
51.	 In nucleophilic addition reactions, the reactivity of carbonyl compounds follows the order (A) HCHO>RCHO>ArCHO>R₂CO>Ar₂CO (B) HCHO>R₂CO>Ar₂CO>RCHO>ArCHO (C) Ar₂CO>R₂CO>ArCHO>RCHO>HCHO (D) ArCHO>Ar₂CO>RCHO>R₂CO>HCHO Which of the following names of the organic compounds is not correctly written? 	 55. Aldehydes other than formaldehyde react of Grignard's reagent to give addition products woon hydrolysis give (A) tertiary alcohols (B) secondary alcohols (C) primary alochols (D) carboxylic acids 56. Which of the following will not give a 	with hich
	CHO (A) \bigcirc OCH ₃ - 4-Hydroxy-3-methoxybenzaldehyde (B) $\stackrel{H_3C}{\longrightarrow} \stackrel{CHO}{\longrightarrow}$ - 5-Methylcyclohexanecarbaldehyde (C) \bigcirc CH ₂ CHO (C) \bigcirc - 2-(2-Chlorophenyl)ethanal (D) CH ₂ =CH-C-CH=CH ₂ - Penta-1, 4-dien-3-one	condensation? (A) Phenyl acetaldehyde (B) 2-Methylpentanal (C) benzaldehyde (D) 1-Phenylpropanone 57. A compound (X) with a molecular formula C_5H gives a positive 2,4-DNP test but negative Tollen's On oxidation it gives a carboxylic acid (Y) with molecular formula $C_3H_6O_2$. Potassium salt of undergoes Kolbe's reaction and gives a hydrocar (Z). (X), (Y) and (Z) respectively are (A) pentan-3-one, propanoic acid, butane (B) pentanal, pentanoic acid, octane (C) 2-methylbutanone, butanoic acid, hexane	H ₁₀ O test. ith a f (Y) rbon
53.	A diene, buta-1,3-diene was subjected to ozonolysis to prepare aldehydes. Which of the following aldehydes will be obtained during the reaction ? (A) $\begin{vmatrix} CHO \\ H \\ + 2HCHO \\ CHO \end{vmatrix}$ (B) $CH_3CHO + 2HCHO$ (C) $CH_3CHO + 2HCHO$ (C) $CH_3CH_2CHO + CH_3CHO$ (D) $2CH_3CH_2CHO$	(D) 2,2-dimethylpropanone, propanoic acid, here 58. An organic compound (X) with molecular form $C_9H_{10}O$ gives positive 2,4-DNP and Tollen's tess undergoes Cannizzaro reaction and on vigor oxidation it gives, 1,4-benzenedicarboxylic a Compound (X) is (A) benzaldehyde (B) <i>o</i> -methylbenzaldehyde (C) <i>p</i> -ethylbenzaldehyde	xane nula its. It rous acid.
54.	Benzaldehyde can be prepared from benzene by passing vapours of and in its solution in presence of catalyst mixture of aluminium chloride and cuprous chloride. The reaction is known as (A) HCl, $SnCl_4$, Rosenmund reduction (B) CO, HCl, Gattermann-Koch reaction (C) CO_2 , H_2SO_4 , Clemmensen reduction (D) O_2 , alcohol, Wolff-Kishner reduction	 (D) 2,2-dimethylhexanal 59. Which of the following compounds does not react NaHSO₃? (A) HCHO (B) C₆H₅COCH₃ (C) CH₃COCH₃ (D) CH₃CHO 	with

Test-27 (Objective)

- 60. Compound (X) with molecular formula C_3H_8O is treated with acidified potassium dichromate to form a product (Y) with molecular formula C_3H_6O . (Y) does not form a shining silver mirror on warming with ammoniacal AgNO₃. (Y) when treated with an aqueous solution of NH₂CONHNH₂. HCl and sodium acetate to give a product (Z). The structure of (Z) is
 - (A) $CH_3CH_2CH = NNHCONH_2$
 - (B) $(CH_3)_2 C = NNHCONH_2$
 - (C) $(CH_3)_2 C = NCONHNH_2$
 - (D) $CH_3CH_2CH = NCONHNH_2$
- 61. The condensation product of benzaldehyde and acetone is
 - (A) $C_{6}H_{5}CH = C(CH_{3})_{2}$ (B) $C_{6}H_{5}CH_{2} - C - CH = CH_{2}$ (C) $C_{6}H_{5} - C - CH = CH - CH_{3}$ 0

(D)
$$C_6H_5-CH=CH-C-CH_3$$

- 62. Which of the following statements is incorrect?
 - (A) FeCl₃ is used in the detection of phenols
 - (B) Fehling solution is used in the detection of glucose
 - (C) Tollens' reagent is used in the detection of unsaturation
 - (D) NaHSO₃ is used in the detection of carbonyl compounds
- 63. Arrange the following compounds is increasing order of their reactivity in nucleophilic addition reactions. Ethanal, Propanal, Propanone, Butanone
 - (A) Butanone < Propanone < Propanal < Ethanal
 - (B) Propanone < Butanone < Ethanal > Propanal
 - (C) Propanal < Ethanal < Propanone < Butanone
 - (D) Ethanal < Propanal < Propanone < Butanone

64.
$$R-CH=CH-CHO + NH_2 - C - NHNH_2 \xrightarrow{H^*} X$$

(X) in the above reaction is
OH
(A) $R-CH=CH-CH-NH_2CONHNH_2$
(B) $R-CH=CH-CH=N-NH-C-NH_2$
(C) $R-CH=NH_2CONH_2$
(D) $R-CH=CH-CH-NH_2COCH=NHNH_2$
OH
65. Which of the following compounds will give a coloured
crystalline compound with $\int_{O_2N} \int_{-NO_2}^{NHNH_2} ?$
(A) CH_3COCI (B) $CH_3COOC_2H_5$
(C) CH_3COCH_3 (D) CH_3CONH_2
66. The product of hydrolysis of ozonide of 1-butene are
(A) ethanal only
(B) ethanal and methanal
(C) propanal and methanal
(D) methanal only
67. Identify reactant (X) in the given reaction sequence
 $CH_3COCH_3 + X \rightarrow (CH_3)_3C - OMg - CI \xrightarrow{H_2O} (CH_3)_3C - OH + Mg < CH_1OH + Mg < CH_2OH + Mg < CH_3COCH + Mg < CH_3COCH + Mg < CH_2OH + Mg < C$

Space for Rough Work

Tes	t-27 (Objective)	Horizon Test Series for Medical-2016
69.	Study the following sequence of reactions and identify the product (Y).	73. What is the product formed on reaction of benzaldehyde with conc. KOH solution?
	$CH_{3}CHO + HCHO \xrightarrow{dil.NaOH}_{heat} X \xrightarrow{HCN}_{H_{3}O^{+}} Y$	(A) $KO - C_6H_5CHO$
	(A) $CH_2 = CH - CH - COOH$	(B) $C_6H_5COOK + C_6H_5CH_2OH$
	- ОН	(C) $KO - C_6H_5COOK + KOC_6H_5OK$
	CN	(D) $C_6H_5COOK + C_6H_5OK$
	(B) CH ₃ -C-COOH	74. What is the test to differentiate between pentan-2-one and pentan-3-one ?
	OH (C) and and an	(A) Iodoform test (B) Benedict's test
	(C) $CH_3CH_2 - CH - COOH$	(C) Fehling's test (D) Aldol condensation test
	(D) $CH_2 = CH - CH - COOH$	75. $CH_3 - C \equiv CH \xrightarrow{40\% H_2SO_4} A \xrightarrow{\text{Isomerisation}} CH_3 - C = CH_3$
70.	$\frac{CN}{CN}$ Benzoyl chloride on reduction with H ₂ /Pd-BaSO ₄ produces (A) benzoic acid (B) benzyl alcohol (C) benzoyl sulphate (D) benzaldehyde Identify (X), (Y) and (Z) in the given reaction $\frac{OH}{X+Y} \xrightarrow{Z} CH_{3}-CH-CH_{2}-CHO.$ 3-Hydroxybutanal $X Y Z$	Structure of <i>A</i> and type of isomerism in the above reaction are (A) Prop-1-en-2-ol, metamerism (B) Prop-1-en-1-ol, tautomerism (C) Prop-2-en-2-ol, geometrical isomerism (D) Prop-1-en-2-ol, tautomerism 76. Various products formed on oxidation of 2,5-dimethylhexan-3-one are (i) $CH_3-CH-COOH$ H_3 (ii) $CH_3-CH-COOH$
	(A) HCHO CH_3CHO KOH (B) CH_3CHO CH_3CHO $NaOH$ (C) CH_3CH_2OH HCHO H_2SO_4 (D) CH_3CH_2CHO HCHO Dry ether	(ii) CH ₃ -CH-CH ₂ -COOH CH ₃ (iii) CH ₃ COOH
72.	 Propanal on treatment with dilute sodium hydroxide gives (A) CH₃CH₂CH₂CH₂CH₂CH₂CHO (B) CH₃CH₂CH(OH)CH₂CH₂CHO (C) CH₃CH₂CH(OH)CH(CH₃)CHO 	 (iv) HCOOH (A) (i) and (iii) (B) (i), (ii) and (iii) (C) (i), (ii), (iii) and (iv) (D) (iii) and (iv)
	(D) CH_3CH_2COOH	
	Cuasa far I	- Rough Work

Space for Rough Work

Tes	t-27 (Objective)	Horizon Test Series for Medical-2016		
(A) (B)	Alkene $(X)(C_5H_{10})$ on ozonolysis gives a mixture of two compounds (Y) and (Z). Compound (Y) gives positive Fehling's test and iodoform test. Compound (Z) does not give Fehling's test but give iodoform test. Compounds (X), (Y) and (Z) are $X \qquad Y \qquad Z$ A) C ₆ H ₅ COCH ₃ CH ₃ CHO CH ₃ COCH ₃ B) CH ₃ -CH=C-CH ₃ CH ₃ CHO CH ₃ COCH ₃		 Hydrocarbons are formed when aldehydes and ketones are reacted with amalgamated zinc and conc. HCl. The reaction is called (A) Cannizzaro reaction (B) Clemmensen reduction (C) Rosenmund reduction (D) Wolff-Kishner reduction In the following sequence of reaction, the final product (Z) is 	
(C) (D) 78. 79.	CH ₃ CH ₃ CH ₂ CH=CH ₂ CH ₃ CH ₂ CHO HCHO CH ₃ -CH=CH-CH ₃ CH ₃ CHO CH ₃ CHO The best oxidising agent for oxidation of $CH_3 - CH = CH - CHO$ to $CH_3 - CH = CH - COOH$ is (A) Baeyer's reagent (B) Tollen's reagent (C) Schiff's reagent (D) Acidified dichromate Which of the following statements is not correct ? (A) Aldehydes and ketones are functional isomers. (B) Formaldehyde reacts with ammonia to form hexamethylenetetramine. (C) LiAlH ₄ converts ketones into <i>sec</i> -alcohols. (D) Ethanal and propanal can be distinguished by iodoform test. The end product (Z) in the given sequence of reaction is $CH_3CH = CHCHO \xrightarrow{NaBH_4} X \xrightarrow{HCl}{ZnCP_2} Y \frac{(i)KCN}{(ii)H^+}(Z)$	84. 85. 86.	$CH = CH \xrightarrow{H_2^{2+}}_{H_2SO_4} X \xrightarrow{CH_3M_8X}_{H_2O} Y \xrightarrow{[O]} Z$ (A) ethanal (B) propan-2-ol (C) propanone (D) propan-1-ol The order of reactivity of CH ₃ CHO, CH ₃ COC ₂ H ₅ and CH ₃ COCH ₃ is (A) CH ₃ CHO>CH ₃ COCH ₃ >CH ₃ COC ₂ H ₅ (B) C ₂ H ₅ COCH ₃ >CH ₃ COCH ₃ >CH ₃ CHO (C) CH ₃ COCH ₃ >CH ₃ CHO>C ₂ H ₅ COCH ₃ (D) CH ₃ COCH ₃ >C ₂ H ₅ COCH ₃ >CH ₃ CHO The final product (Y) in the following sequence of chemical reaction is $CH_3OH \xrightarrow{Cu}_{300^{\circ}C} X \xrightarrow{NuOH} Y + CH_3OH$ (A) an alkene (B) a carboxylic acid (C) an aldehyde (D) sodium salt of carboxylic acid Which among the following is most reactive to give nucleophilic addition ?	
81.	(A) $CH_{3}CH = CHCH_{2}COOH$ (B) $CH_{3}CH_{2}CH_{2}COOH$ (C) $CH_{3}CH = CHCOOH$ (D) $CH_{3}CH(CI)CH_{2}COOH$ What are the correct steps to convert acetaldehyde to acetone ? (A) $CH_{3}MgBr, H_{2}O, Oxidation$ (B) $Oxidation$	87.	(A) FCH ₂ CHO (B) CICH ₂ CHO (C) BrCH ₂ CHO (D) ICH ₂ CHO Which of the following carbonyl compounds is most polar? (A) $C_{2}H_{5} - C - C_{2}H_{5}$ (B) $CH_{3} - C - CH_{3}$ (C) $CH_{2} - C - H$ (D) $H - C - H$	

- (A) $CH_3MgBr, H_2O, Oxidation$
- (B) Oxidation, $Ca(OH)_2$, Heat
- (C) Reduction, KCN, Hydrolysis
- (D) Oxidation, C₂H₅ONa, Heat
- Space for Rough Work

Tes	t-27 (Objective)	Horizon Test Series for Medical-201		
88.	Which of the following aldehydes will show	92.	Which of the following includes glassy sponges?	
	Cannizzaro reaction ? (A) HCHO (B) C ₆ H ₅ CHO	00	(A) Calcarea(B) Hexactinellida(C) Demospongia(D) None of the above	
89	(C) $(CH_3)_3CCHO$ (D) All of these CHO NOT	93.	(A) Porifera (B) Cnidaria	
07.	$ \xrightarrow{\text{NaOH}} X$ CHO	94.	(C) Platyhelminthes (D) Annelida Hydra belongs to the class	
	The product (X) will be CH ₂ ONa COOH	05	(A) Anthozoa (B) Hydrozoa (C) Scyphozoa (D) Sporozoa	
	(A) (B) (B) COOH	95.	 which of the following is also known as organ pipe coral? (A) Classularia (B) Tubinora 	
	$\begin{array}{ccc} CH_2OH & CH_2OH \\ (C) & & (D) & \\ COON_2 & CH_2OH \end{array}$	06	(C) Campanularia (D) Sertularia Which of the following is not a close of	
90.	Find the product of the given reaction.	90.	platyhelminthes?	
		97	(C) Turbellaria (D) Trematoda Which of the following classes of platyhelminthes is	
	$\bigcirc \uparrow \uparrow \downarrow $	<i>JI</i> .	exclusively endoparasitic? (A) Trematoda (B) Cestoda	
	CH ₂ CH ₂ CH ₃	98.	(C) Turbellaria (D) All of the above In which of the following classes suckers are absent?	
	(A) (O)		(A) Cestoda (B) Eucestoda (C) Turbellaria (D) Trematoda	
	CH_3	99.	The number of classes in phylum Nematoda are (A) Two (B) Three	
		100.	(C) Four (D) Only one The term 'phasmids' means	
	(C) \bigcirc $CH_2CH_2CH_2CH_3$		(A) Pharnyx(B) Body segments(C) Caudal sensory organs	
	(D) $C = N - CH_2OH$	101.	(D) Worms Which of the following is common to all sponges?	
	[ZOOLOGY]		(A) Incurrent canal (B) Radial canal (C) Prosopyl (D) Paragastric cavity	
91.	 Which of the following phyla contains most primitive multicellular animals? (A) protozoa (B) porifera (C) coelentrata (D) minor phyla 	102.	 (C) Tragastric cavity Paragastric cavity is present in (A) Leucosolenia only (B) Marine sponges (C) Fresh water sponges (D) All sponges 	

Space for Rough Work

Tes	Test-27 (Objective)					Horizon Test Series for Medical-2016
103.	Lar	gest sponge is			110.	What is aquiferous system in sponges
	(A)	Olynthus	(B)	Hippospongia		(A) Digestive system
	(Ċ)	Spongia	D)	Spheclospongia		(B) Canal system
104.	Whi	ich is absent in sp	onges	?		(C) Respiratory system
	(A)	Sexual reproduc	tion			(D) Reproductive system
	(B)	Cellular differer	ntiatio	n	111.	In sponges transportation of food to nonfeeding cells
	(Ć)	Body plan				is done by
	Ď)	Appendages				(A) Collar cells (B) Osculum
105.	Špo	nges belong to cla	ass cal	carea occur in		(C) Spicules (D) Amoebocytes
	(A)	Eresh water			112.	How do sponges distribute nutrients from
	(B)	Shallow sea wat	or			choanocytes to rest of the cells
	(\mathbf{C})	Deep sea water	.CI			(A) Mesoglea act as distribution system
	(\mathbf{C})	Some marine, of	her fre	esh water		(B) Through a moebocytes
106.	Spo	nges are	ner nv			(C) Through cell to cell diffusion
1000	(A)	Dologia	(D)	Nalston		(D) Both (B) and (C)
	(A)	r elagic Sossilo	(D) (D)	Plankton	113.	Corallite is
107	Diff	Jessile	(D)	and other metazoa is		(A) Animal (B) Individual
107.		erence between s	ponge	s and other metazoa is		(C) A coelectorata (D) Skeleton of a solitary
	(A)	Sponges posses	s cellu	lar level of organization		(c) Accelenterata (D) Skeleton of a solitary
	(B)	Sponges do not	have d	cell division	114	Alternation of generation as seen in Obelia is termed
	(C)	Sponges do not	have	livision of labour	111.	as
100	(D) Cross	Sponges do not	contai	In blood		(A) Metamerism (B) Dimorphism
100.	5po	They have gest	ia cour	d than protozoa because		(C) Metagenesis (D) Metamorphosis
	(A) (B)	Division of labo	ic cav.	ong the colls	115.	Which one of the following is coelenterate
	(D)	They have locon	ui ain	organs		(A) Sea pen (B) Sea urchin
	(C)	They show rege	nerati	on		(C) Sea horse (D) Sea cucumber
109	Mat	tch the column I	with	column II and select the	116.	Coelenterates are
107.	corr	ect code given bel	ow	condition in tarta beleet the		(A) Ureotelic (B) Uricotelic
	Cal			Calumn II		(C) Ammonotelic (D) None
	(Λ)	umn I Muogutos	(T)	Column II Elegallated used in	117.	Obelia is
	(A)	wryocytes	(1)	fooding	_	(A) Sedentary (B) Attached but capable of
	(B)	Chappagytas	(III)	Blunt nsoudonodium		locomotion
	(D)	Choanocytes	(11)	totipotent		(C) Motile (D) Free floating
	(\mathbf{C})	Thesocytes	(III)	Contractile works as	118.	Excretion of nitrogenous waste in Hydra takes place
	(\mathbf{C})	mesocytes	(111)	sphincter		through
	(D)	Archaeocytes	(IV)	Rounded, reserve food		(A) Nephridia (B) Nematocytes
	(-)		(- ·)	material		(C) Flame cells (D) General body surface
	Cod	les:			119.	The incorrect statement for <i>Hydra</i> is
		(a)	(b)	(c) (d)		(A) Cnidocil receives mechanical stimulus
	(A)	Ш	Ì	IV II		(B) Largest nematocytes is penetrant
	(B)	Ι	Ш	IV II		(C) Action of nematocyst depends upon enzyme
	(C)	IV	Π	I		(D) Functional nematocysts are found in both cellular
	(D)	П	IV	ШІ		layers

Test-27 (Objective)		Horizon Test Series for Medical-2016		
120. 121.	 All old cells of <i>Hydra</i> are replaced in (A) 15 days (B) 30 days (C) 45 days (D) 60 days The function of lasso during discharge of nematocyst is (A) Trigger the stimulus (B) Prevent the detachment of nematocyst from nematoblast (C) Inject the toxin in the body of prey (D) Press and squeeze out the thread tube 	128. 129.	Liver fluke is (A) Digenetic (B) Monogenetic (C) Digenetic and pathogenic (D) Digenetic and non pathogenic Number of lips in <i>Ascaris</i> are (A) One (B) Three (C) Four (D) Two	
122.	 (D) Press and squeeze out the thread tube Which animal has been placed in wrong habitat (A) Hydra-Frsh water (B) Physalla-Marine (C) Adamsia-Sea water (D) Aurelia-Fresh water 	130.	 (c) Four (b) Fixe The muscle layers in the body wall of <i>Ascaris</i> comprises (A) Circular muscles only (B) Longitudinal muscles only (C) Outer longitudinal and inner circular muscles (D) Outer circular and inner longitudinal muscles The most common parasitic nematode of man is (A) <i>Enterobius</i> (B) <i>Rhabditis</i> (C) <i>Trichina</i> (D) All of the above 	
123.	 Mesogloea of <i>Hydra</i> is made up of (A) Carbohydrates (mucopolysaccharides) (B) Mucin proteins only (C) Fatty acids 	131.		
124.	 (D) Adipocytes A number of buds have developed on <i>Hydra</i> then the (A) Oldest bud is towards oral region (B) Oldest bud is towards aboral region (C) Oldest bud will produce male reproductive organ (D) Oldest bud will form ovary 	132. 133.	 The body organization in nematodes is (A) Cell-tissue grade (B) Organ-system grade (C) Cellular grade (D) Tissue grade Nutrition of <i>Ascaris</i> is 	
125.	The sense organs of platyhelminthes are(A) Chemoreceptors (B) Photoreceptors(C) Tangoreceptors (D) All of the above	134.	(A) Holozoic (B) Parasitic (C) Saprozoic (D) Both (B) and (C) Phylum nematode includes	
126.	 'arasitic animals have well developed A) Respiratory system B) Reproductive system C) Digestive system D) Nervous system 	135.	 (A) Round worms and tape worms (B) Hook worms, tape worms and round worms (C) Filarial worms, round worms and hook worms (D) All of the above Which of the following are the first animals to have 	
127.	 I aenta possess (A) A single bilobed ovary (B) Two ovaries (C) A single ovary (D) A pair of ovarioles 		 straight and complete alimentary canal (A) Platyhelminthes (B) Arthropods (C) Nematodes (D) Mammals 	

Test-27 (Objective)

Horizon Test Series for Medical-2016

	[BOTANY]	145.	Which of the following is a symbiotic nitrogen-fixer?
136.	As per Whittaker's classification, an organism possessing eukaryotic cell structure, multicellular organisation, with a cell wall and nuclear membrane showing heterotrophic nutrition can be placed under	146.	 (A) Glomus (B) Azotobacter (C) Frankia (D) Azolla Free-living, aerobic, non-photosynthetic, nitrogen- fixing bacterium is
	the kingdom (A) Monera (B) Protista (C) Plantae (D) Fungi	147.	 (A) Azotobacter (B) E.coli (C) Nostoc (D) Salmonella Nitrifying bacteria are able to
137.	In five kingdom system of classification of RH Whittaker, how many kingdoms contain eukaryotes? (A) Four kingdoms (B) One kingdom		(A) convert atmospheric nitrogen into soluble forms(B) convert ammonia to nitrate(C) ammonia to nitrogen
138.	 (C) Two kingdoms (D) Three kingdoms In Whittaker's system of classification, prokaryotes are placed in the kingdom 	148.	(D) nitrate to nitrogenBacterium which reduces nitrates in soil to nitrogen is(A) <i>Nitrosomonas</i> (B) <i>Pseudomonas</i>
139	 (A) Protista (B) Monera (C) Plantae (D) Animalia Two kingdoms constantly figured in all biological 	149.	(C) <i>Rhizobium</i> (D) <i>Clostridium</i> Which one of the following does not belong to kingdom-Monera?
107.	 (A) Planate and Animalia (B) Monera and Animalia 	150.	(A) Mycoplasma(B) Archaebacteria(C) Slime mould(D) EubacteriaCrown gall disease in plants is caused by
140.	 (C) Protista and Animalia (D) Protista and Plantae Fin rot of fish is caused by 	151.	 (A) T_i-plasmid (B) P_i-plasmid (C) mycoplasma (D) virus Which of the following does not belong to the kingdom-
141.	 (A) Aeromonas (B) Pseudomonas (C) Branchiomyces (D) Xenopsylla A peculiar odour that prevails in marshy areas and cowshads is on account of a gas produced by 	152.	 (A) Chrysophytes (B) Euglenoids (C) Ascomycetes (D) Dinoflagellates Which of the following is a flagellated protozoan?
142.	(A) mycoplasma(B) archaebacteria(C) slime moulds(D) cyanobacteriaWhich of the following is a Gram negative bacterium?	153.	 (A) Amoeba (B) Entamoeba (C) Plasmodium (D) Trypanosoma The slime moulds are characterised by the presence of
143.	 (A) Escherichia coli (B) Bacillus subtilis (C) Streptomyces coelicolor (D) Ampycolatopsis orientalis The main difference between Gram positive and Gram 	154.	 (A) elaters (B) pseudoelaters (C) capillitium (D) capitulum When a freshwater protozoan, possessing a contractile vacuole, is placed in a glass containing marine water, the vacuole will?
144.	negative bacteria is(A) cell membrane(B) cell wall(C) ribosome(D) mitochondriaWhich of the following bacteria fixes nitrogen without	155.	(A) Increase in number(B) Disappear(C) Increase in size(D) Decrease in sizeIn which animal, dimorphic nucleus is found?
	any plant association? (A) <i>Rhizobium</i> (B) <i>Nostoc</i> (C) <i>Anabaena</i> (D) <i>Azotobacter</i>		(A) Amoeba(B) Trypanosoma gambiense(C) Plasmodium vivax (D) Paramecium caudatum

Space for Rough Work

Tes	t-27 (Objective)		Horizon Test Series for Medical-2016
Tes 156. 157. 158.	 Plasmodium is an (A) endoparasite (B) ectoparasite (C) intercellular parasite (D) Both (A) and (C) Amoeba is a/an (A) unicellular animal (B) octacellular animal (C) multicellular animal (D) All of these Which of the following does not apply to Ascomycetes? (A) Mycelium coenocytic and aseptate 	164.165.166.167.	Horizon Test Series for Medical-2016 Helical contractile sheath occurs in (A) bacteria (B) bacteriophage (C) retroviruses (D) fungi Which of the following processess need bacteriophage? (A) Transduction (A) Transduction (B) Translation (C) Transformation (D) Conjugation Auxin was first isolated from (A) fungus (B) apple (C) sperm DNA (D) human urine Apical dominance is caused by (A) auxin (A) auxin (B) cytokinin (C) ethylene (D) gibberellin
	 (B) Commonly known as sac fungi (C) Sexual spores called ascospores are produced endogenously (D) They are saprophytic, decomposers, parasitic or coprophilous 	168. 169	 (c) cutylette (b) gibberelint Leaf abscission is caused by (A) ABA (B) cytokinin (C) auxin (D) gibberellin Which of the following hormones does not naturally
159.	 Which of the following is an unicellular sac-fungus? (A) Claviceps (B) Saccharomyces (C) Penicillium (D) Neurospora 	107.	occur in plants? (A) 2,4-D (B) IAA (C) GA (D) ABA
160.161.162.	Cellulose is the major component of cell wall of(A)Pythium(B)Xanthomonas(C)Pseudomonas(D)SaccharomycesLichen is the pioneer vegetation on which succession?(A)Hydrosere(B)Lithosere(C)Psammosere(D)XerosereProtein coat of a virus enclosing nucleic acid is called	170. 171.	Name of a gaseous plant hormone is(A) IAA(B) gibberellin(C) ethylene(D) abscisic acidThe plant hormone produced by <i>Rhizobium</i> fornodulation is(A) IBA(B) NAA(C) 2,4-D(D) IAACell elongation in interpodal regions of the green plants
163.	 (A) plasmid (B) capsid (C) vector (D) genome (D) double-stranded RNA (B) single-stranded RNA (C) double-stranded DNA (D) single-stranded DNA 	172.	 (A) indole acetic acid (B) cytokinins (C) gibberellins (D) ethylene The maximum growth rate occurs in (A) stationary phase (B) senescent phase (C) lag phase (D) exponential phase
	Space for F	Rough	Work

les	t-27 (Objective)		Horizon Test Series for Medical-2016
174.	 Which plant hormone promotes seed dormancy, bud dormancy and causes stomatal closure? (A) IAA (B) Abscisic acid (C) GA₃ (D) Cytokinin 	178.	 Which one is short day plant? (A) <i>Brassica compestris</i> (B) <i>Raphanus sativus</i> (C) <i>Glycine max</i>
175.	Auxin in plant means for(A) cell elongation (B) fruit ripening(C) cell division (D) inhibition of root growth	179.	(D) Papaver somniferumCoiling of garden pea tendrils around any support is an example of
176.	 The problem of necrosis and gradual senescence, while performing tissue culture can be overcome by (A) spraying auxins (B) spraying cytokinins (C) supmercise culture 	180.	 (A) thigmotaxis (B) thigmonasty (C) thigmotropism (D) thermotaxis Response of plant due to reversible turgor change in pulvinus is (A) mustimastic (B) asigmonastic
177.	 (c) sub-culture Treatment of seed at low temperature under moist conditions to break its dormancy is called (A) scarification (B) vernalisation (C) chelation (D) stratification 		(C) heptonastic (D) photonastic

Space for Rough Work

Space for Rough Work

[18]