

Test No. 8

Topics of The Test

Physics	Laws of Motion, Friction and Circular Motion	
Chemistry	Solid state	
Chemistry	Solid state	

Biology	Zoology : Circulation Botany : Photosynthesis

Test-8 (Objective)

[PHYSICS]

1. Three blocks of masses $m_1 = 1$ kg, $m_2 = 2$ kg and $m_3 = 3$ kg are placed in contact on a horizontal frictionless plane as shown in figure. A force of 12 N is applied on m_1 . Acceleration of the system is

2. In figure, a system of two masses m_1 and m_2 are connected to each other. The ratio of tensions, T_1 and T_2 is

(A)
$$\frac{m_1}{m_1 + m_2}$$
 (B) $\frac{m_2}{m_1 + m_2}$
(C) $\frac{m_1}{m_2}$ (D) $\frac{m_2}{m_1}$

3. If the surface is smooth, then the acceleration of the block m_2 will be

(A)
$$\frac{m_2 g}{4m_1 + m_2}$$
 (B) $\frac{2m_2 g}{4m_1 + m_2}$
(C) $\frac{2m_1 g}{m_1 + 4m_2}$ (D) $\frac{2m_2 g}{m_1 + m_2}$

4. A piece of ice slides down a rough inclined plane at θ inclination in twice the time that it takes to slide down an identical but frictionless inclined plane. What is the coefficient of friction between ice and incline ?

(A)
$$\frac{3}{7\cot\theta}$$
 (B) $\frac{4}{7\cot\theta}$
(C) $\frac{3}{4\cot\theta}$ (D) $\frac{7}{9\cot\theta}$

A man wants to slide down a rope. The breaking load

for the rope is $\frac{2}{3}$ rd of the weight of the man. With what minimum acceleration should the man slide down?

(A)
$$\frac{g}{4}$$
 (B) $\frac{g}{3}$
(C) $\frac{2g}{3}$ (D) $\frac{g}{6}$

An ant crawls up a hemispherical surface slowly as shown in figure. So, coefficient of friction between ant and surface is 1/3. It makes an angle α with vertical, so maximum value of α is

3

Space for Rough Work

5.

6.

Tes	t-8 (Objective)	Horizon Test Series for Medical-2016			
13.	Two forces in the ratio 1 : 2 act simultaneously on a particle. The resultant of these forces is three times the first force. The angle between them in(A) 0° (B) 60° (C) 90° (D) 45°	19.	(C) $\frac{\pi}{21600}$ rad s ⁻¹ (D) $\frac{\pi}{1800}$ rad s ⁻¹ A particle describes a horizontal circle in a conical funnel whose inner surface is smooth with speed of 0.5 ms ⁻¹ . What is the height of the plane of circle from us the set of the plane of circle from the set of the plane of		
14.	A can filled with water is revolved in a vertical circle of radius 4 m and the water does not fall down. The time period for a revolution is about (A) 2 s (B) 4 s	20.	 vertex of the funnel ? (A) 0.25 m (B) 2 cm (C) 4 cm (D) 2.5 cm A coin placed on a rotating turn table just slips, if its is 		
15.	(C) 8 s (D) 10 s A stone is attached to one end of a string and rotated in a vertical circle. If string breaks at the position of maximum tension, it will break at	04	placed at a distance of 8 cm from the centre. If angular speed of the turn table is doubled, then it will just slip at a distance of (A) 1 cm (B) 2 cm (C) 4 cm (D) 8 cm		
	(A) A (B) B (C) C (D) D	21.	A balloon with mass <i>m</i> is descending down with an acceleration <i>a</i> (where, <i>a</i> < <i>g</i>). How much mass should be removed from it so that it starts moving up with an acceleration <i>a</i> ? (A) $\frac{2ma}{a+a}$ (B) $\frac{2ma}{a-a}$		
16.	A body of mass 1 kg is rotating in a vertical circle of radius 1 m. What will be the difference in its kinetic energy at the top and bottom of the circle ? (take, $g = 10 \text{ ms}^{-2}$)	22.	(C) $\frac{ma}{g+a}$ (D) $\frac{ma}{g-a}$ An object of mass 10 kg moves at a constant speed of		
17.	 (A) 10 J (B) 20 J (C) 30 J (D) 50 J A motorcycle is going on an overbridge of radius <i>R</i>. The driver maintains a constant speed. As the motorcycle is ascending on the overbridge, the normal 		10 m/s. A constant force that acts for 4 s on the object, gives it a speed 2 m/s in opposite direction. The force acting on the object is (A) -3N (B) -30N (C) 3 N (D) 30 N		
	 force on it (A) increases (B) decreases (C) remains the same (D) fluctuates errationly 	23.	A light spring balance changes from the block of the other light spring balance and a block of mass <i>M</i> kg hangs from the former one. Then, the correct statement about the scale reading is		
18.	(D) Indicates enalically Angular velocity of hour hand of a watch is (A) π^{π} and π^{-1} (D) π^{π} and π^{-1}		 (A) both the scales read <i>M</i> kg each (B) the scale of the lower one reads <i>M</i> kg and of the upper one zero (C) the reading of the two scales can be anything 		
	(A) $\frac{1}{43200}$ rad s (B) $\frac{1}{30}$ rad s		(D) both the scales read <i>M</i>/2 kg		
	Space for F	Rough	Work		

Test-8 (Objective)

24. The apparent weight of a person inside a lift is w_1 when lift moves up with a certain acceleration and is w_2 , when

lift moves down with same acceleration.

The weight of the person when lift moves up with constant speed is

(A)
$$\frac{W_1 + W_2}{2}$$
 (B) $\frac{W_1 - W_2}{2}$
(C) $2W_1$ (D) $2W_2$

(D)

- 25. A man slides down on a telegraphic pole with an acceleration equal to one-fourth of acceleration due to gravity. The frictional force between man and pole is equal to in terms of man's weight w
 - (A) 2 (C) (D) Δ
- 26. A stone is dropped from a height h. It hits the ground with a certain momentum p. If the same stone is dropped from a height 100% more than previous height, the momentum when it hits the ground will change by
 - (A) 68% (B) 41%
 - (C) 200% (D) 100%
- The object at rest suddenly explodes into three parts 27. with the mass ratio 2:1:1. The parts of equal masses move a right angles to each other with equal speeds. The speed of the third part after the explosion will be
 - (A) (B) $V\sqrt{2}$ 2v
 - (D) $\sqrt{2}v$ (C) $_V/2$
- 28. Three forces acting on a body are shown in the figure. To have the resultant force only along the x-direction, the magnitude of the minimum additional force needed is

- (A) 0.5 N (B) 1.5 N
- (C) $\frac{\sqrt{3}}{4}N$ (D) $\sqrt{3}$ N
- 29. A body of mass 60 kg suspended by means of three strings, P,Q and R as shown in the figure is in equilibrium. The tension in the string P is

If a street light of mass M is suspended from the end 30. of a uniform rod of length L in different possible patterns as shown in figure. then

- (B) pattern B is more sturdy
- (C) pattern C is more sturdy
- (D) all will have same sturdiness

6

Space for Rough Work

Horizon Test Series for Medical-2016

Tes	t-8 (Objective)		Horizon Test Series for Medical-2016
31.	Two particles of equal mass are connected to a rope AB of negligible mass, such that one is at end A and the other dividing the length of the rope in the ratio 1:2 from B . The rope is rotated about end B in a horizontal plane. Ratio of the tensions in the smaller part to the other is (ignore effect of gravity) (A) 4:3 (B) 1:4	34.	A block of mass 2 kg is placed on the surface of a trolley of mass 20 kg which is on a smooth surface. The coefficient of friction between the block and the surface of the trolley is 0.25. If the horizontal force of 2 N acts on the block, the acceleration of the system in ms^{-2} is (take, g = 10 ms ⁻²) (A) 1.8 (B) 1.0
32.	(C) 1:2 (D) 1:3 A system consists of three masses m_1, m_2 and m_3 connected by a string passing over a pulley <i>P</i> . The mass m_1 hangs freely and m_2 and m_3 are on a rough horizontal table (the coefficient of friction = μ). The pulley is frictionless and of negligible mass. The downward acceleration of mass m_1 is (assume, $m_1 = m_2 = m_3 = m$)	35.	(C) 0.9 (D) 0.09 Masses <i>m</i> and <i>M</i> on pulley move 0.6 m in 4 s. What is ratio of $\frac{m}{M}$? (A) $\frac{55}{11}$ (B) $\frac{113}{117}$ (C) $\frac{57}{55}$ (D) $\frac{397}{403}$
	(A) $\frac{g(1-g\mu)}{9}$ (B) $\frac{2g\mu}{3}$	36.	A rought vertical board has an acceleration <i>a</i> so that a 2 kg block pressing against it does not fall. The coefficient of friction between the block and the board should be
33.	(C) $\frac{g(1-2\mu)}{3}$ (D) $\frac{g(1-2\mu)}{2}$ A person is driving a vehicle at uniform speed of 5 ms ⁻¹ on a level curved track of radius 5 m. The coefficient of static friction between tyres and road is 0.1. Will the person slip while taking the turn with the same speed ? (take, g = 10 ms ⁻²) (A) A person will slip, if $v^2 = 5 \text{ m}^2 \text{s}^{-2}$ (B) A person will slip, if $v^2 > 5 \text{ m}^2 \text{s}^{-2}$ (C) A person will slip, if $v^2 < 5 \text{ m}^2 \text{s}^{-2}$ (D) A person will not slip, if $v^2 > 5 \text{ m}^2 \text{s}^{-2}$	37.	$\begin{array}{c c} (A) &> g/a & (B) &< g/a \\ (C) &= g/a & (D) &> a/g \\ \end{array}$ A heavy uniform chain lies on a horizontal top of table. If the coefficient of friction between the chain and the table is 0.25, then the maximum percentage of the length of the chain that can hang over one edge of the table is \\ (A) &= 20\% \qquad (B) &= 25\% \\ (C) &= 35\% \qquad (D) &= 15\% \\ \end{array}

Space for Rough Work

Test-8 (Objective)

Horizon Test Series for Medical-2016

38. What is the maximum value of force *F*, such that the block, shown in the arrangement does not move ?

- (A) 20 N (B) 10 I
- (C) 12 N (D) 15 N
- 39. A cubical block of mass *m* rest on a rough horizontal surface, μ is the coefficient of static friction between the block and the surface. A force mg acting on the cube at an angle θ with vertical side of the cube pulls the block. If the block is to be pulled along the surface, then the value $\cot(\theta/2)$ is

then the value $\cot(\theta/2)$ is

- (A) less than μ (B) greater than μ
- (C) equal to μ (D) not dependent on μ
- 40. A wooden block of mass 8 kg slides down an inclined plane of inclination 30° to the horizontal with constant acceleration 0.4 m/s². The force of friction between the block and inclined plane is (take, g = 10 m/s²)

(A) 12.2 N (B) 24.4 N

- (C) 36.8 N (D) 48.8 N
- 41. A body of mass m is placed on a rough surface with coefficient of friction μ inclined at θ . If the mass is in equilibrium, then

(A)
$$\theta = \tan^{-1} \mu$$
 (B) $\theta = \tan^{-1} \left(\frac{1}{\mu}\right)$

(C)
$$\theta = \tan^{-1} \frac{m}{\mu}$$
 (D) $\theta = \tan^{-1} \frac{\mu}{m}$

42. A smooth inclined plane is inclined at an angle θ with the horizontal. A body starts from rest and slides down the inclined surface, then the time taken by the body to reach the bottom is

43. Three blocks of masses $m_1 = 2.0, m_2 = 4.0$ and $m_3 = 6.0$ kg are connected by strings on a frictionless inclined plane of 60°, as shown in the figure. A force F = 120 N is applied upward along the incline to the uppermost block, causing an upward movement of the blocks. The connecting cords are light. The values of tensions T_1 and T_2 in the cords are

- (A) $T_1 = 20N, T_2 = 60N$
- (B) $T_1 = 60N, T_2 = 60N$
- (C) $T_1 = 30N, T_2 = 50N$
- (D) $T_1 = 20N, T_2 = 100N$
- 44. A block of wood of 1 kg resting on an inclined plane of angle 30°, just starts moving down. If the coefficient of friction is 0.2, its velocity (in ms⁻¹) after 5 s is

8

take	e, g = 10 ms⁻²)		
(A)	12.75	(B)	16.35
(C)	18.25	(D)	20

Space for Rough Work

Tes	t-8 (Objective)	Horizon Test Series for Medical-2016			
45.	The force required to just move a body up an inclined plane is double the force required to just prevent it from sliding down. If θ is the angle of friction and ϕ is	52.	The metal has a fcc lattice. The edge length of the unit cell is 404 pm. The density of the metal is 2.72 g/cm^3 . The molar mass of the metal is		
	the angle which the plane makes with horizontal, then		$(N_{A} = \text{Avogadro's constant} = 6.02 \times 10^{23} \text{mol}^{-1})$		
	(A) $\tan \phi = 2 \tan \theta$ (B) $\tan \phi = 3 \tan \theta$		(A) 40 g/mol (B) 30 g/mol		
	(C) $\tan \phi = \tan \theta$ (D) $\tan \theta = 3 \tan \phi$	52	(C) 27 g/mol (D) 20 g/mol		
	[CHEMISTRY]	55.	The edge of the unit cell is 408 pm. The diameter of		
46.	If <i>a</i> is the length of the side of a cube, the distance between the body-centred atom and one corner atom in the cube will be		the metal atom is (A) 288 pm (B) 408 pm (C) 144 pm (D) 204 pm		
	(A) $\frac{2}{\sqrt{3}}a$ (B) $\frac{4}{\sqrt{3}}a$	54.	The number of octahedral void (s) per atom present in a cubic close packed structure is (A) 1 (B) 3		
47	(C) $\frac{\sqrt{3}}{4}a$ (D) $\frac{\sqrt{3}}{2}a$	55.	(C) 2 (D) 4 Structure of a mixed oxide is cubic close packed (ccp). The cubic unit cell of mixed oxide is composed of oxide		
47.	a unit cell length of 361 pm. What is the radius of copper atom in pm?	181 120 120 120 120 120 120 120 12	ons. One fourth of the tetrahedral voids are occupied y divalent metal A and the octahedral voids are ccupied by a monovalent metal B. The formula of oxide		
	(A) 157 (B) 181		is		
48.	A solid AB has NaCl structure. If the radius of cation		(A) ABO_2 (B) A_2BO_2		
	A^+ is 170 pm. Calculate the maximum possible radius		(C) $A_{a}B_{a}O_{a}$ (D) $AB_{a}O_{a}$		
	of the anion B-	56.	If in a crystal lattice of a compound, each corner of a		
	(A) 210.3 pm (B) 397.4 pm		cube is enjoyed by sodium, each edge of a cube has		
49.	(C) 410.6 pm (D) 347.9 pm The appearance of colour in solid alkali metal halides		oxygen and centre of cube is enjoyed by tungsten (W), then give its formula		
	A) Frenkel defect (B) interstitial positions		(A) Na_2WO_4 (B) $NaWO_3$		
	(C) F-centres (D) Schottky defect	57.	AB crystallises in a body-centred cubic lattice with		
50.	The percentages of void space for simple cubic, body centred cubic and hexagonal close packed arranged		edge 'a' equal to 387 pm. The distance between two oppositely charged ions in the lattice is		
	respectively are		(A) 300 pm (B) 335 pm		
	(A) 48, 32, 20 (B) 48, 20, 32 (C) 26, 48, 32 (D) 32, 48, 26		(C) 250 pm (D) 200 pm		
51.	Volume occupied by single CsCl ion pair in a crystal	58.	Number of unit cells in 4 g of X (atomic mass = 40) which existences in here pattern is $(N = A)$		
	is 7.014×10 ⁻²³ cm ³ . The smallest Cs —Cs internuclear distance is equal to length of the side of the cube		number)		
	corresponding to volume of one CsCl ion pair. The		(A) $0.1N_A$ (B) $2 \times 0.1N_A$		
	(A) 4.4Å (B) 4.3Å (C) 4 Å (D) 4.5Å		(C) $\frac{0.1N_A}{2}$ (D) $2 \times N_A$		

Tes	t-8 (Objective)		Horizon Test Series for Medical-2016
59. 60.	Sodium metal crystallises in body centred cubic lattice with cell edge, 4.29Å. What is the radius of sodium atom? (A) 2.86Å (B) 6.81Å (C) 1.68Å (D) 1.86Å Percentage of cation in ammonium dichromate	67.	(A) NaCl (B) CaF_2 (C) ZnS (D) Na_2O Three elements <i>A</i> , <i>B</i> and <i>C</i> crystallise into a cubic solid lattice. Atom A occupy the corners, B atom, the cube centres and C atom, the edge. The formula of the
	$(NH_4)_2Cr_2O_7$ is (A) 41.29% (B) 14.29% (C) 20.29% (D) None of these		(A) ABC (B) ABC ₂
61.	Total number of voids in 0.5 mole of a compound forming hexagonal closed packed structure are (A) 6.022×10^{23} (B) 3.011×10^{23} (C) 9.033×10^{23} (D) 4.516×10^{23}	68.	(C) ABC_3 (D) ABC_4 A compound contains two types of atoms X and Y. It crystallises in a cubic lattice with atoms X at the corners of the unit cell and atoms Y at the body centre.
62.	A solid is formed by two elements P and Q. The element Q forms cubic close packing and atoms of P occupy one third of tetrahedral voids. The formula of the compound is		(A) $X_{8}Y$ (B) $X_{2}Y$ (C) XY (D) XY_{2}
	(A) PQ_3 (B) P_3Q (C) P_2Q_3 (D) P_3Q_2	69.	 (b) XY (c) XY (c) XY (d) Which of the following statements is not correct? (A) The fraction of the total volume occupied by the otoma in a primitive coll is 0.48
63.	Which kind of defect is shown by the given crystal ? $K^+ Cl^- K^+ Cl^- K^+ Cl^-$ $Cl^- \Box Cl^- K^+ \Box K^+$ $K^+ Cl^- \Box Cl^- K^+ Cl^-$ $Cl^- K^+ Cl^- K^+ \Box K^+$		 (B) Molecular solids are generally volatile (C) The number of carbon atoms in a unit cell of diamond is 4 (D) The number of Bravais lattices in which a crystal can be categorised is 14
	 (A) Schottky defect (B) Frenkel defect (C) Schottky and Frenkel defects (D) Substitution disorder 	70.	If 'a' stands for the edge length of the cubic systems : simple cubic, body centred cubic and face centred cubic, then the ratio of radius of the spheres in these systems will be respectively,
64.	Copper crystallises in face centred cubic lattice with a unit cell length of 361 pm. What is the radius of copper atom in pm ? (A) 128 (B) 157		(A) $\frac{1}{2}a:\frac{\sqrt{3}}{4}a:\frac{1}{2\sqrt{2}}a$
65.	(C) 181 (D) 108 Sodium crystallises in bcc arrangement with the interfacial separation between the atoms at the edge 53 pm. The density of the solid is		(B) $\frac{1}{2}a:\sqrt{3}a:\frac{1}{\sqrt{2}}a$ (C) $\frac{1}{2}a:\frac{\sqrt{3}}{\sqrt{2}}a:\frac{\sqrt{2}}{\sqrt{2}}a$
66.	 (A) 1.23 g/cc (B) 485 g/cc (C) 4.85 g/cc (D) 123 g/cc In which crystal, alternate tetrahedral voids are occupied ? 		(b) $2^{2} \cdot 2^{2} \cdot 2^{2}$ (D) $1a: \sqrt{3}a: \sqrt{2}a$

Tes	t-8 (Objective)		Horizon Test Series for Medical-2016
71.	With which one of the following elements silicon should be doped so as to give p-type of semiconductor ?	77.	A fcc unit cell of aluminium contains the equivalent of how many atoms ?
72.	 (A) Germanium (B) Arsenic (C) Selenium (D) Boron Assertion (A) No compound has both Schottky and	78	(A) 1 (B) 2 (C) 3 (D) 4 Ag crystallises as foc If radius of Ag is 144 pm then
	Frenkel defects.	/0.	its density will be $(A) = 10 \text{ g cm}^{-3}$ (B) 5 g cm^{-3}
	solid.		(C) 15 g cm^{-3} (D) 6.5 g cm^{-3}
	(A) Both A and R are correct and R is the correct explanation of A	79.	Coordination number of a body centred cubic is (A) 6 (B) 8
	(B) Both A and R are correct but R is not the correct explanation of A	80	(C) 10 (D) 12 CsBr crystallises in a body-centred cubic lattice. The
73.	(C) A is correct but R is incorrect(D) Both A and R are incorrectIn a closed packed structure		unit cell length is 436.6 pm. Given that the atomic mass of Cs = 133 u and that of Br = 80 u and Avogadro's number being 6.02×10^{23} mol ⁻¹ , the density of CsBr is
	 (A) tetrahedral voids are bigger than octahedral (B) tetrahedral voids are smaller than octahedral (C) tetrahedral voids are equal in size as octahedral (D) None of the above 	81.	(A) 42.5 g/cm^3 (B) 0.425 g/cm^3 (C) 8.25 g/cm^3 (D) 4.25 g/cm^3 The Ca ²⁺ and F ⁻ are located in CaF ₂ crystal, respectively at body centred cubic lattice points and in
74.	The fraction of total volume occupied by the atoms present in a simple cube is		 (A) tetrahedral voids (B) half of tetrahedral voids (C) octahedral voids (D) half of octahedral voids
	(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3\sqrt{2}}$	82.	Assertion (A) Graphite is an example of tetragonal crystal system.
	(C) $\frac{\pi}{4\sqrt{2}}$ (D) $\frac{\pi}{4}$		Reason (R) For a tetragonal system, $a = b \neq c$, $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$.
75.	If NaCl is doped with 10^{-4} mole % of SrCl ₂ , the concentration of cation vacancies will be		(A) Both A and R are correct but R is the correct explanation of A
	$(N_{A} = 6.02 \times 10^{23} \text{ mol}^{-1})$		(B) Both A and R are correct but R is not the correct explanation of A
	(C) $6.02 \times 10^{17} \text{mol}^{-1}$ (D) $6.02 \times 10^{14} \text{mol}^{-1}$	_	(C) A is correct but R is incorrect(D) Both A and R are incorrect
76.	If Agl crystallises in zinc blende structure with I^- ions at lattice points. What fraction of tetrahedral voids is occupied by Ag ⁺ ions ?	83.	Na and Mg crystallise in bcc and fcc type crystals respectively, then the number of atoms of Na and Mg present in the unit cell of their respective crystal is
	(A) 25% (B) 50% (C) 100% (D) 75%		(A) 4 and 2 (B) 9 and 14
			(C) 14 and 9 (D) 2 and 4

Tes	t-8 (Objective)			Hori	zon Tes	t Serie	es for Medical-2016
84.	A metallic element has a cubic lattice. Each edge of the unit cell is 2Å. The density of the metal is 2.5 g cm ⁻³ . The unit cells in 200 g of metal are (A) 1×10^{24} (B) 1×10^{20} (C) 1×10^{22} (D) 1×10^{25}	91.	In w repre (A)	hich or esent or Plasm	[ZO) ne of the ne and th a	OLO e follow e same -	GY] /ing pairs of terms both e thing ? Serum
85.	The radius of Na ⁺ and Cl ⁻ ions are 95 pm and 181 pm respectively. The edge length of NaCl unit cell is (A) 276 pm (B) 138 pm (C) 552 pm (D) 415 pm		(B) (C) (D)	Atriove node Leuco Mitral	entricular cytes /alve	- - -	Pacemaker Lymphocytes Bicuspid valve
86.	 (C) SS2 pm (D) 415 pm Some of the polar crystals when heated produces small electrical current. This phenomenon is called (A) ferroelectricity (B) pyroelectricity (C) piezoelectricity (D) anti-ferroelectricity 	92.	Cons selec (i) (ii)	sider th ct the co SA no Huma	e followi orrect op de is nati n heart h	ng four tion. ural pac as inter	statements (i) - (iv) and emaker of heart. -auricular foramen.
87.	 (c) prezententing (c) and reneated with the second secon		(iii) (iv)	Right a Norm humai	atrioventi al systo ns is 120 (ii)	icular v lic and and 60 (iii)	alve is a semilunar valve. d diastolic pressure of mm Hg respectively. (iv)
88.	If Z is the number of atoms in the unit cell that represents the closest packing sequence ABC ABC, the number of tetrahedral voids in the unit cells is equal to (A) Z (B) 2Z	93.	(A) (B) (C) (D) The	F F T T blood c	F F T F ells whicl	T T F F n help ir	F T T F o the transportation of fats
80	(C) $\frac{Z}{2}$ (D) $\frac{Z}{4}$		are (A) (C)	Erythr	ocytes	(B) (D)	Lymphocytes Neutrophils
09.	 vacancy, the defect is known as (A) Schottky defect (B) Frenkel defect (C) stoichiometric defect (D) F-centres 	94. 95.	(C) (A) (C) One	genic he Man Frog of the f	eart is not following	(D) presen (B) (D) is the	t in which of the following? Limulus Mussel characteristics feature of
90.	 Which of the following unit cell having maximum number of atoms ? (A) bcc (B) hcp (C) fcc (D) Cubic 		(A) (B) (C) (D)	Anucle Diape Agran Colour	eated desis ular cyto red	olasm	

Tes	t-8 (Objective)	Horizon Test Series for Medical-2016
96.	 Blood pressure is defined as the force with which blood (A) Pushes against the wall of the blood vessels (B) Is pushed to the legs (C) Comes out of the atrium (D) Comes out of the ventricle 	 103. The conduction of impulse from SA node moves to (A) AV-node (B) Bundle of His (C) Purkinje fibres (D) Cardiac muscles 104. The heart sound 'dup' is produced when (A) Tricuspid valve is opened
97. 98.	 Heart beats are accelerated by (A) Cranial nerves and acetylcholine (B) Sympathetic nerves and acetylcholine (C) Cranial nerves and adrenaline (D) Sympathetic nerves and epinephrine Blood will lose most of the oxygen through 	 (B) Mitral valve is opened (C) Mitral valve is closed (D) Semilunar valves at the base of aorta get closed 105. 'P' wave of ECG occurs before the (A) Onset of ventricular ejection (B) End of arterial contraction
	(A) Arteries(B) Veins(C) Capillaries(D) Lungs	(C) Beginning of atrial contraction(D) None of the above
99.	 Myocardial infarction is caused by (A) Hardening of arteries (B) Lumpy thickness develops in the inner walls of heart (C) Clot may occur in the lumen of a coronary artery (D) Sudden interruption of blood flow towards a portion of heart 	 106. The difference between pulmonary arteries and veins is that (A) Former is associated with lungs and latter with heart (B) Arteries have thicker walls (C) Veins are more elastic (D) Veins have valves
100.	In a cardiac output of 5250 ml per minute, with 75heart beats per minute, the stroke volume is(A) 55 ml(B) 60 ml(C) 70 ml(D) 80 ml	 107. Which layer of the wall of blood vessel is made up of circular smooth muscles ? (A) Outer (B) Middle (C) Inner (D) Both (A) and (B)
101.	 Heart sound which is longer is (A) lubb (B) dupp (C) both equal (D) sometimes (A) and sometimes (B) 	 108. Plasma protein also does the work of (A) Nutritive functioning (B) Physiochemical functioning (C) Transportive functioning (D) All of the above
102.	Tricuspid valves are found in (A) All mammals (B) All vertebrates (C) Prototherians (D) Walrus	 109. One of the following blood vessels is without valves (A) Artery (B) Pulmonary artery (C) Vein (D) Aorta

Tes	t-8 ((Objective)					Horizon Test Series for Medical-2016
110.	Which of the following are the first to have closed circulatory system ?		116.	In th	e cardiac cycle, diastole is The number of beart beats per minute		
	(A) (C)	Molluscs Cardiac	(B) (D)	Annelids Enhinoderms		(R)	The relaxation period after contraction of the heart
111.	Hear (A) (C)	t beats are affecto Carbon dioxide Vagus nerve	ed by (B) (D) re is 1	Oxygen All of these 20 mm Hg and diastolic.	117.	(C) (D) The	The forceful pumping action of the heart The contraction period after relaxation of the heart cardiac cycle time during normal heart beat is 0.8
	(A) (B) (C) (D)	sure is 80 mm Hg 120 × 80 = 9600 120 + 80 = 200 r 120 - 80 = 40 m 120 / 80 = 1.5 m	, the p mm H mm Hg m Hg m Hg	lg		seco the e lead This (A)	onds which includes both systole and diastole. In event of fast running, the heart starts beating faster ling to decrease in cardiac cycle timings. decrease is due to Proportional decrease in the duration of diastole as well as systole
113.	The (A) (B) (C) (D)	coronary sinus in Left margin Right margin Diaphragmatic si	the he	eart is situated along its		(B) (C) (D)	Less duration of diastole and more duration of systole Same duration of diastole and less duration of systole Much more decrease in the duration of diastole than that of systole
114.	(F) Syst beca (A) (B)	olic pressure is l use Arteries are cont Blood is pumped by the heart d diastole	nigher tractin d with uring	than diastolic pressure g during systole a pressure in the arteries systole but not during	118.	The old (A) (A) (B) (C) (D)	heart usually pumps blood with greater force in beople than the young because The oxygen content per unit volume of the blood decreases The elasticity of the arteries decreases The elasticity of the arteries increases The nutrient content per unit of blood decreases
115.	 (C) (D) Durir cava (A) (B) (C) (D) 	Arteries resist du Volume of blood of diastole in the ng circulation, bloo into the diastolic Pushing of venou A pressure diffe the vena cava The beating of th	uring s d is high heart od pas atrium is valv rential ne sinc	systole only gher in systole than that ses from the inferior vena n of the heart because of es between the atrium and patrial node	119.	A po (A) (B) (C) (D)	ortal system is that in which A vein begins from an organ and ends in heart An artery breaks up in an organ and restarts by the union of its capillaries The blood from gut is brought into the kidneys before it is poured into the heart A vein breaks up in an organ into capillaries and restarts by their union as a new vein in the same organ.
	(U)	Gravitational pull					

Test-8 (Objective)	Horizon Test Series for Medical-2016
 120. A vein has large lumen because (A) Tunica interna and tunica media appear like a single coat (B) Tunica media and tunica externa appear like a single coat (C) Tunica media is a single coat (D) Tunica interna, media and externa are thin 121. Innominate is (A) A nerve and artery (B) Skeleton part and artery (C) A nerve and a vein (D) A muscle and artery 122. Examine the diagrammatic representation of strandard ECG. Select an option with correct matching. P-Wave QRS complex P-Wave QRS complex P-Wave (C) Repolarisation of the ventricles of the atria (B) Depolarisation Depolarisation of the ventricles (C) Repolarisation Depolarisation of the ventricles of the atria (D) Depolarisation Depolarisation of the ventricles (C) Repolarisation Depolarisation of the ventricles of the atria (D) Depolarisation Depolarisation of the ventricles of the atria (C) Repolarisation Depolarisation of the ventricles of the atria (D) Depolarisation Depolarisation of the ventricles of atria (D) Depolarisation Depolarisation of atria 123. In connection with circulatory system, valves are present (A) Not only in heart and blood vessels of vertebrates and invertebrates, but in vertebrate lymphatics as well (B) Vertebrate heart only (C) Vertebrate heart and invertebrate hearts only (D) Vertebrate heart and invertebrate hearts and their blood vessels 124. In an old man's ECG, T-waves shall be (A) Flat (B) Inverted 	 Horizon lest series for Medical-2016 125. Heart rate is increased by all of the following except (A) Anoxia (B) Moderate CO₂ excess (C) Elevated body temperature (D) Increased intracranial pressure 126. Vasa vasorum supplies blood to (A) Pericardium (B) Blood vessels (C) Tunica adventitia and external part of tunica media (D) Vas deferens 127. Blood pressure is measured by (A) sphygmomanometer (B) stethoscope (C) electrocardiogram (D) phenocardiogram 128. All of the following are vasoconstrictor agents except (A) Norepinephrine (B) Partial heart block (C) Ventricular fibrillation (D) Myocardial infarction 130. Nature of blood plasma is (A) Acidic (B) Alkaline (C) Neutral (D) None of the above 131. Mark the odd one out. (A) Lymphocytes (D) Neutrophils 132. A mature human erythrocyte has the typical characteristics of (A) A eukaryote cell (B) A prokaryote cell (C) Both a eukaryote cell and a prokaryote cell
(C) Very prominent (D) Same as in addits	

Tes	t-8 (Objective)	Horizon Test Series for Medical-2016
133.	 Buffer salts present in blood are (A) Potassium (B) Sodium (C) Sodium and potassium both (D) Cobalt, sodium and potassium 	140. Which of the following is true for photosynthesis? (A) Reduction of CO_2 and water (B) Oxidation of CO_2 and water (C) Reduction of CO_2 and oxidation of water (D) Oxidation of CO_2 and reduction of water
134.	 The mechanism of blood clotting was first described by (A) Morawitz (B) Landsteiner (C) Willaim-Harvey (D) James Watson 	 (b) Oxidation of OC₂ and reduction of water 141. Which of the following is wrongly matched ? (A) Sorghum – Kranz anatomy (B) PEP carboxylase – Mesophyll cells (C) Blackman – Law of limiting factors
135.	 If naemoglobin instead of staying within the corpuscies remains free in the plasma, then (A) The viscosity of blood will rise (B) It will cause acidosis (C) Oxygen-carrying capacity of blood will be reduced (D) All of the above. 	(D) Photosystem-II – P ₇₀₀ 142. Cyclic-photophosphorylation results in the formation of (A) NADPH (B) ATP AND NADPH (C) ATP, NADPH and oxygen (D) ATP
136.	 CAM helps the plants in (A) secondary growth (B) disease resistance (C) reproduction (D) conserving water 	 143. In an experiment demonstrating the evolution of oxygen in Hydrilla, sodium bicarbonate is added to water in the experimental set-up. What would happen if all other conditions are favourable? (A) Amount of oxygen evolved decreases as carbon dioxide in water is absorbed by sodium bicarbonate.
137. 138.	Of the total incident solar radiation the proportion of PAR is (A) about 60% (B) less than 50% (C) more than 80% (D) about 70% Cyclic photophosphorylation links to	 (B) Amount of oxygen evolved increases as the availability of carbon dioxide increases. (C) Amount of oxygen evolved decreases as the availability of carbon dioxide increases. (D) Amount of oxygen evolved increases as carbon
139.	(A)PS-II(B)PS-I(C)dark reaction(D)both (A) and (B) $In C_3$ cycle for the fixation of every CO2 molecules, the reduction and regeneration steps required(A)3 ATP and 2 NADPH2(B)2 ATP and 2 NADPH2(C)2 ATP and 3 NADPH2(D)3 ATP and 1 NADPH2	 dioxide in water is absorbed by sodium bicarbonate. 144. In C₃-plants, the first stable compound formed after carbon dioxide fixation is (A) phosphoglyceraldehyde (B) malic acid (C) oxaloacetic acid (D) 3-phosphoglycerate
	· · · Z	

Tes	t-8 (Objective)					Horiz	on Test	Serie	es for Medical-2016			
145.	The	mineral involved i	in the j	ohotolysis of water are			Α	в	С	D			
	I.	Manganese	II.	Calcium				_					
	III.	Magnesium	IV.	Chloride		(A)	4	5	2	3			
	(A) (C)	I and II only I. II and III only	(B) (D)	I, II and IV only I and IV only		(B)	5	3	1	4			
146.	Phot the h	olysis of water du	ring pl	hotosynthesis occurs with		(C)	5	4	1	2			
	(A)	PS-II	(B)	PS-I		(D)	4	3	5	1			
	(C)	ferredoxin	(D)	cytochrome									
147.	Chlo	rophyll-a and b dif	fer in l	having	149.	149. The net requirement of assimilatory power for the							
	(A)	chlorophyll-a	has	a methyl group and		TOLL	nation of	6 nexose	mole	cules in maize plant is			
	(D)	chlorophyll-b ha		(A) 72 ATP, 48 NADPH									
	(В)	 (B) chlorophyll-a has an aldehyde group and chlorophyll-b has a methyl group in position X (C) chlorophyll-a has a carboxyl group and chlorophyll-b has an aldehyde group in position X (D) chlorophyll-a has an ethyl group and chlorophyll-b 				(B)	90 ATP	, 60 NAD	РН				
	(C)					(C) 108 ATP 72 NADPH							
	(D)					(D)	180 AT	P. 72 NAI	OPH				
140	has an aldenyde group in position X												
148.	the c	correct answer fro	m the	given options.	150.	Amr	nonia rel	eases fro	m				
		Column-l		Column-II		(A)	photore	spiration	(B)	dark respiration			
	(A)	Warburg effect	(1)	Change in gene									
				frequency by chance		(C)	CAM		(D)	all of these			
	(B)	Pasteur effect	(2)	Postponing severance									
				in the leaves by	151	A)						
				applying cytokinin	151.	Č †				t .			
	(C)	Emerson effect	(3)	Decline in the			B						
				respiratory substrate) C)					
				due to a change from		7		cytf					
				anaerobic to aerobic		PS	-II (P ₆₈₀)		`o	 ► PS-I			
				respiration.				o ⁻	C				
	(D)	Wright effect	(4)	Inhibitory effect of			2H ₂ O	6					
				oxygen on			4	H ⁺ + O ₂					
				photosynthesis									
			(5)	Enhancement of		In th	e above s	schemati	c diagr	am, which is plastocyanin			
				photosynthesis by		?			e a.e.g.	,			
				to the effect of two									
				different wavelengths of		(A)	С		(B)	D			
				light.		(C)	A		(D)	В			

Tes	t-8 ((Objective)			Horizon Test Series for Medical-2016									
152.	Cho carb	ose the correct ohydrate molecul	combination of e involved in the (labelling the Calvin cycle.	155.	Cycl (A) (C)	lic photophosphor NADPH ATP + NADPH	ylatior (B) (D)	n produces ATP ATP + NADPHa + Oa					
		(A) $CO_2 + H_2O$					Adenosine dinhosphate contains							
							one high energy	bonds	S					
							two high energy	bonds	5					
	ADP					(C)	three high energ	y bon	ds					
	Reg	eneration CALVIN	CYCLE (B)			(D)	four high energy	bonds	S					
		\wedge	ATI	P + NADPH ₂	157.	Com	0							
	ATP 1		Reduction			(A)	little photosynthe	esis						
		(C	ADP + NAD	₽⁺		(B)	(B) beginning of photosynthesis							
		Sucro	se, Starch			(C)	rate of photosy	nthes	is equals to the rate of					
							respiration							
	(A)	A-RuBP, B-Tric	se phosphate, C-	sphate, C–PGA		(D)	None of these							
	(B)	A–PGA, B–RuE	P, C–Triose phos	phate	158.	In th	e given chart of ph	notoph	osphorylation. What does					
	(C)	A–PGA, B–Trio	se phosphate, C–	RuBP			epresent ?							
	(D)	A–RuBP, B–PG	A, C–Triose phos	phate										
153.	Phot yield	olysis of each wa	ter molecule in lig	ht reaction will			(e ⁻) e	(Fa					
	(A)	A) 2 electrons and 4 protons												
	(B)	4 electrons and	4 protons				e	- (?.)A					
	(C)	4 electrons and	3 protons				t		↓ I					
	(D)	2 electrons and	2 protons					(Cvi)					
154.	Iden	tify the correct co	mbinations of the	following :			P700		<u>+</u>					
		Substrate	Enzyme	Product				(
	Ι.	Phosphoenol pyruvate	hosphoenol PEP yruvate carboxylase				e	hacca 						
	II.	Malate	Malic enzyme	C ₄ acid		(A)	PC	(B)	FRS					
	III.	RuBP	Ribulose-5-	C ₃ acid		(C)	PQ	(D)	Cyt - a ₃					
			phosphate kinase	3	159.	The	special structure	prese	nt in C ₄ - plants is					
	IV.	Pyruvate	Pyruvate dikinase	C ₃ acid		(C)	Kranz type body	(D)	one-layered epidermis					
	(A)	III and IV	(B) I and II		160.	Core	e of chlorophyll is f	forme	d by					
	(C)	II and III	(D) I and IV			(A)	iron	(B)	manganese					
	. /					(C)	methyl group	(D)	magnesium					

Tes	t-8 (Obje	ective)								Horiz	on 1	e st	Seri	es fo	r M	edic	al-2	2016
161.	Photochemical reactions in the chloroplasts are directly involved in								(C)	K si	ranz mall c	anato hloro	omy plast	occu ts wh	rs who ereas	ere r bun	nesop dle sh	ohyl leatl	l have n have	
	(A)	synthesis of glucose and starch									inger,	ayıaı					المم	مما		
	(B)								(D)	(D) Kranz anatomy where mesophyll cells a diffused						is are				
	(C)	form	tormation of phosphoglyceric acid						166	Quantasomes occur on the surface of										
	(D)	photolysis of water and phosphorylation of ADP to ATP							(A)	CI	ristae			(B)	plas	smal	emma	a		
162.	Sola	risati	on is							(C)	n	uclea	enve	elope	(D)	thy	lakoi	ds		
	(A) formation of chlorophyll						167.	To fo	orm	n one	mole	cule	of gly	ceral	dehy	de ph	ospl	nate in		
	(B)	destruction of chlorophyll utilisation of sunlight effects of solar light							Call	/in (יוסס		.	d			
	(C)								(A)	(A) 9 ATP and 36 NADPH are required										
	(D)								(B)	6		and 6	NAL		are red	quire	a			
163.	Mate	Match the following with correct combination.							(C)	(C) 3 ATP and 3 NADPH are required										
		Col	umn-l			Column-II				(D)	(D) 9 AT P and 6 NADPH are required							n lindad		
	Α.	Carl	ooxylat	oxylation (1) Oxygen evolution				108.	intensity and the giving off and taking up of carbo											
	В.	Pho	hosphorylation (2) Photorespiration					dioxide by the leaves of a plant. Why is most carbon												
	C.	Photolysis of (3) RUBISCO						dioxide given off when the light intensity is zero					ero	units?						
	D.	water Phosphogly- (4) Chemosynthesis					hesis			8 7						-	+			
		colate			() ,				iour)											
	Е.	Nitro	osomoi	nas	(5)	A	Р			ber h		+		17			1			
		Α	В	С		D	Е			2 m2	5			\bigwedge				- 6850		
	(A)	1	2	3		4	5			50 6	4		+	+			+-	-		
	(B)	3	5	1		2	4			per	<u>9</u> 3		\mathbb{A}^{-}							
	(C)	2	3	5		4	1			Gm)	<u>م</u>	\vdash								
	(D)	1	3	4		2	5			u ng	1	\square		_				_		
164.	Radi	Radioactive C ¹⁴ is given to carbon dioxide and released							take	р Л	$ \downarrow \downarrow$					_				
	in a	to atmosphere. This carbon dioxide is taken by RuBP in a C_3 -plant. First radioactive C^{14} is seen, in which compound. (A) PGAL (B) PEP							000	51		10		20	30		40	5	0	
	com									2										
	(A)							Light intensity							-					
	(C)	RMP (D) PGA							(A)	В	ecau	se it i	s jus	t the	start o	of the	e exp	erim	ent	
165.	In H	atch a	and Sla	ack pa	thwa	ay,				(B)	0	nly re	espira	ation	is tał	king p	lace	at thi	s int	ensity
	(A)	chlo	roplas	ts are	of s	ame t	ype.			of light										
	(B)	Kranz anatomy occurs where mesophyll have						 (C) Only photosynthesis is taking place at thi intensity of light 						at this						

The rate of photosynthesis is equivalent to the (D) rate of respiration

Space for Rough Work

small chloroplasts whereas bundle sheath have

granal chloroplasts.

Η

19

Tes	t-8 ((Objective)				Horizon Test Series for Medical-2016					
169.	Phot	orespiration coul	d easily	be detected in	Dire	ction for (Q. No. 175 to Q. Nos. 180)					
	(A)	C ₃ - plants	(B) (C ₄ - plants		(A) If both Assertion and Reason are true and Reason is the correct explanation of Assertion					
	(C)	Both (A) and (B)) (D) I	None of these		(B) If both Assertion and Reason are true but Reason					
170.	Whic	ch one of the fol	llowing	is wrong in relation to		is not correct explanation of Assertion.					
	phot	orespiration?				(C) If Assertion is true but Reason is false.(D) If both Assertion and Reason are false.					
	(A)	It is a characteri	istic of C	C₄ - plants	175.	Assertion : Cyclic pathway of photosynthesis first appeared in some eubacterial species. Reason : Oxygen started accumulating in the atmosphere after the non-cyclic pathway of photosynthesis evolved.					
	(B)	It is a characteri	istic of C	C₃ - plants							
	(C)	It occurs in chlo	roplasts								
	(D)	It occurs in day-	time onl	У	470						
171.	Grar	na is ill developed	d or abse	ent in the chloroplast in	176.	Assertion : Photosynthetically, C_4 -plants are less efficient than C_3 -plants					
	the	otom of the drillo				Reason : The operation of C_4 -pathway requires the involvement of only bundle sheath colls.					
	(A) (D)				177.	Assertion : Under conditions of high light intensity and					
	(B)	lear of sunnower	f			limited carbon dioxide supply, photorespiration has a					
	(C) (D)	bundle sheath of	i sugarca	ane leal		damage.					
172.	(D) Malie Kran	c acid (4-C) is pr	roduced	in which plant without		Reason : If enough carbon dioxide is not available to utilize light energy for carboxylation to processed, the excess energy may not cause damage to plants.					
	(A)	Bryophyllum	(B) 1	Kalanchoe	178.	Assertion : C_4 - photosynthetic pathway is more					
	(C)	Opuntia	(D)	All of these		efficient than the C ₃ -pathway. Reason : Photorespiration is suppressed in					
173	(C) The	two pigment syste	em theor	v of photosynthesis was		C ₄ - plants.					
170.	proposed by				179.	Assertion : The atmospheric concentration of card					
	(A)	Blackman	(B) l	Hill		respiration is referred to as carbon dioxide					
	(C)	Emerson	(D) /	Amon		compensation point. Reason : The carbon dioxide compensation point is					
174.	Who com	proved that oxy es from water ?	gen evo	lved in photosynthesis		reached when the amount of carbon dioxide uptake is less than that generated through respiration because					
	(A)	Calvin				the level of carbon dioxide in the atmosphere is more than that required for achieving carbon dioxide					
	(B)	Mayer				compensation point.					
	(C)	Blackman			180.	Assertion : Photorespiration decreases net photosynthesis.					
	(D)	Ruben, Hassid a	and Kam	en.		Reason : Rate of respiration in dark and light is almost same in all plants.					
					םנ						

Space for Rough Work