

Test No. 7

Topics of The Test

Physics	Vectors + Laws of Motion		
---------	--------------------------	--	--

Chemistry	Solid state		

Biology	Zoology : Circulation. Botany : Photosynthesis, Respiration and Molecular Biology.

Test No. 7

	[PHYSICS]					
1	Given A = $2\hat{i} + 3\hat{i}$ and B = $\hat{i} + \hat{i}$. The component of	5.	If a vector $2i + 3j + 8k$ is perpendicular to the vector			
••	vector A along vector B is		$4\hat{j} - 4\hat{i} + \alpha \hat{k}$, then the value of α is			
	(A) $\frac{1}{\sqrt{2}}$ (B) $\frac{3}{\sqrt{2}}$		(A) -1 (B) $\frac{1}{2}$			
	(C) $\frac{5}{\sqrt{2}}$ (D) $\frac{7}{\sqrt{2}}$	6.	(C) $-\frac{1}{2}$ (D) 1 The position vector of a particle is			
2.	For any two vectors A and B, if $A \cdot B = A \times B $, the		$r = (a\cos\omega t)\hat{i} + (a\sin\omega t)\hat{j}$			
	magnitude of $C = A + B$ is equal to		The velocity vector of the particle is			
	(A) $\sqrt{A^2 + B^2}$ (B) A + B		(A) parallel to position vector(B) perpendicular to position vector			
	(C) $\sqrt{A^2 + B^2 + \frac{AB}{\sqrt{2}}}$ (D) $\sqrt{A^2 + B^2 + \sqrt{2}AB}$	_	 (C) directed towards the origin (D) directed away from the origin 			
3	A variable force, given by the two dimensional vector	1.	If $ A \times B = \sqrt{3}A \cdot B$, then the value of $ A + B $ is			
0.	$F = (3x^2\hat{i} + 4\hat{j})$, acts on a particle. The force is in		(A) $(A^2 + B^2 + AB)^{1/2}$			
	newton and x is in metre. What is the change in the kinetic energy of the particles as it moves from the point with coordinates $(2, 3)$ to $(3, 0)$? (The coordinates		(B) $\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$			
	(A) = 7 I (B) = 7 cm					
	(C) + 7 (D) 19 ((D) $(A^2 + B^2 + \sqrt{3}AB)^{1/2}$			
4.	A particle moves from position $3\hat{i} + 2\hat{j} + 6\hat{k}$ to	8.	A river is flowing from west to east with a speed of 5 m min^{-1} . A man can swim in still water with a velocity 10 m min^{-1} . In which direction should the man swim			
	$14\hat{i} + 13\hat{j} + 9\hat{k}$ due to a uniform force of $4\hat{i} + \hat{j} + 3\hat{k} N$.		so as to take the shortest possible path to go to the			
	Find the work done, if the displacement is in metre.		south ? (A) 30° east of south			
	(A) 16 J (B) 64 J		(B) 60° east of south			
	(C) 32 J (D) 48 J		(C) 60° west of south			
			(D) 30° west of north			

Space for Rough Work

Tes	t-7 (Objective)	Horizon Test Series for Medical-201						
9.	A boat moves with a speed of 5 km h^{-1} relative to water	(C) 0.25 N (D) 1 N						
	in a river flowing with a speed of 3 kmh ⁻¹ and having a width of 1 km. The time taken around a round trip is (A) 5 min (B) 60 min (C) 20 min (D) 30 min	16. A force F_1 of 500 N is required to push a car of mathematical network of the solution						
10.	Two vectors are perpendicular, if (A) $A \cdot B = 1$ (B) $A \times B = 0$	(A) zero (B) 1.5 ms^{-2} (C) 1 ms^{-2} (D) 0.5 ms^{-2}						
11.	(C) $A \cdot B = 0$ (D) $A \times B = AB$ A car moving with a speed of 50 km/h can be stopped	 17. A ball hits a vertical wall horizontally at 10 m/s ar bounces back at 10 m/s, then (A) there is no acceleration because 10 m/s = 10 m/s 						
	by brakes, over a distance of 6 m. If the same car is moving at a speed of 100 km/h, the stopping distance	 (A) there is no acceleration because 10 m/s - 10 m/s = 0 (B) there may be an acceleration because its initiation because its initiatio						
	is (A) 12 m (B) 18 m	(D) there is an acceleration because there is						
12.	(C) 6 m (D) 24 m In non-inertial frame, the second law of motion is written	(D) even though there is no change in momentum						
	as (A) $\vec{F} = m\vec{a}$ (B) $\vec{F} = m\vec{a} + \vec{F}_{P}$	there is a change in direction. Hence, it has a acceleration.						
	(C) $\vec{F} = m\vec{a} - \vec{F}_P$ (D) $\vec{F} = 2m\vec{a}$	18. A body of mass 2 kg has an initial velocity of 3 ms along OE and it is subjected to a force of 4 N in						
	where, \vec{F}_{P} is pseudo force while \vec{a} is the acceleration of the body relative to non-inertial frame.	direction perpendicular to OE. The distance of boo from O after 4 s will be						
13.	A man of mass 60 kg is riding in a lift. The weight of the man, when the lift is accelerating upwards and downwards at 2 ms^{-2} , are respectively (Taking g = 10 ms ⁻²) (A) 720 N and 480 N	t = 4s Acceleration = a s_2 a s_1						
	 (B) 480 N and 720 N (C) 600 N and 600 N (D) News of the shown 	$v = 3ms^{-1}, t = 4s^{E}$						
14.	(D) None of the above The x and y-coordinates of a particle at any time t are given by $x = 7t + 4t^2$ and $y = 5t$, where x and y are in metre and t is in second. The acceleration of the particle at t = 5 s is	 (A) 12 m (B) 20 m (C) 8 m (D) 48 m 19. A block of mass M is pulled along a horizont frictionless surface by a rope of mass m. If a force P applied at the free end of the rope, the force exerts 						
45	(A) Zero (B) 8 ms^{-2} (C) 20 ms ⁻² (D) 40 ms ⁻²	by the rope on the block is						
15.	A ball of mass 0.5 kg is moving with a velocity v of $2ms^{-1}$. It is subjected to a force of x Newton in 2s. Because of this force, the ball moves with a velocity of	(A) $\frac{1}{M+m}$ (B) $\frac{1}{M-m}$						
	3ms^{-1} . The value of x is (A) 5 N (B) 8 25 N	(C) P (D) $\frac{PM}{M+m}$						

(A) 5 N 8.25 N (B)

Space for Rough Work

Tes	st-7 (Objective)	Horizon Test Series for Medical-2016				
20. 21.	A coin is dropped in a lift. It takes time t_1 to reach the floor when lift is stationary. It takes time t_2 when lift is moving up with constant acceleration. Then (A) $t_1 > t_2$ (B) $t_2 > t_1$ (C) $t_1 = t_2$ (D) $t_1 >> t_2$ A body of mass 8 kg is suspended through two light springs X and Y connected in series as shown in figure. The readings in X and Y respectively are	25. 26.	A ball of mass 150 g moving with an acceleration 20 ms ⁻² is hit by a force, which acts on it for 0.1 s. The impulsive force is (A) 0.5 N-s (B) 0.1 N-s (C) 0.3 N-s (D) 1.2 N-s A particle of mass <i>m</i> is projected with velocity v making an angle of 45° with the horizontal. When the particle lands on the level ground the magnitude of the change in its momentum will be			
		27.	(A) $2m\nu$ (B) $\frac{m\nu}{\sqrt{2}}$ (C) $m\nu\sqrt{2}$ (D) zero Sand is being dropped on a conveyor belt at the rate of M kgs ⁻¹ . The force necessary to keep the belt moving with a constant velocity of νms^{-1} will be (A) M ν Newton (B) 2M ν Newton			
22. 23.		28. 29.	(C) $\frac{M\nu}{2}$ Newton (D) Zero A Machine gun is mounted on a 200 kg vehicle on horizontal smooth road (friction negligible). The gun fires 10 bullets/s with a velocity of 500 ms ⁻¹ . If the mass of each bullet be 10 g, what is the acceleration produced in the vehicle ? (A) 25 cm s ⁻² (B) 30 cm s ⁻² (C) 40 cm s ⁻² (D) 50 cm s ⁻² Diwali rocket is ejecting 50 g of gases/s at a velocity of 400 ms ⁻¹ . The accelerating force on the rocket will be (A) 22 dyne (B) 20 N			
24.	A ball of mass <i>m</i> moves with speed v and it strikes normally with a wall and reflected back normally. If its time of contact with wall is <i>t</i> , then find force exerted by ball on the wall. (A) $\frac{2mv}{t}$ (B) $\frac{mv}{t}$ (C) mvt (D) $\frac{mv}{2t}$	30.	(C) 20 dyne (D) 100 N A disc of mass 100 g is kept floating horizontally in air by firing bullets, each of mass 5 g with the same velocity at the same rate of 10 bullets per second. The bullets rebound with the same speed in opposite direction, the velocity of each bullet at the time of impact is (A) 196 cm s ⁻¹ (B) 9.8 cm s ⁻¹ (C) 98 cm s ⁻¹ (D) 980 cm s ⁻¹			

	, .	T		(B)	speed will be sai	me, bi	ut time of descent will be
	10 N - 2 kg - 3 kg	g - 5 kg -		(C)	speed will be dif be same	ferent	t, but time of descent will
	(A) 1N (B)	5 N		(D)	speed and time of	of des	cent both are different.
42.	(C) 8 N (D) A block B is pushed mom surface with an initial veloc sliding friction between B a come to rest after a time	entarily along a horizontal ity v. If μ is the coefficient of and the surface, block B will	45.	A car inclin direc inclir 45°. ⁻ the in the c the c	nnon of mass 100 ed plane fires a sh tion with a velo nation of the inclin The coefficient of aclined plane is 0.3 annon ascends the ecoil is (g = 10 m	00 kg, ell of r city 18 ned pla frictior 5. The he inc s ⁻²)	located at the base of an nass 100 kg in a horizontal 80 kmh ⁻¹ . The angle of ane with the horizontal is between the cannon and height, in metre, to which lined plane as a result of
	(A) $\frac{v}{g\mu}$ (B)	$\frac{g\mu}{v}$		(A)	$\frac{7}{6}$	(B)	<u>5</u> 9
	(C) $\frac{g}{v}$ (D)	$\frac{\nu}{g}$		(C)	$\frac{2}{6}$	(D)	$\frac{1}{6}$
43.	The coefficient of static frid mass 2 kg and the table as What would be the maxim so that the two blocks do not the pulley are assumed to $(g = 10 \text{ ms}^{-2})$ 2 kg - A	tion μ_s , between block A of s shown in the figure is 0.2. um mass value of block B not move ? The string and be smooth and massless	46.	Stud arrar term	[CHEN y the figure of a some of particle used for the figure C		FRY] given below depicting the nich is the most appropriate
	(A) 2.0 kg (B) (C) 0.2 kg (D)	4.0 kg 0.4 kg		(A) (C)	Isotropy Irregular shape	(B) (D)	Anisotropy Amorphous nature
			•				

41. Three blocks of masses 2 kg, 3 kg and 5 kg are connected to each other with light string and are then placed on a frictionless surface as shown in the figure. The system is pulled by a force F = 10 N, then tension T₁ is equal to

Test-7 (Objective)

11

44. A solid sphere rolls down two different inclined planes of same height, but of different inclinations. In both cases

- (A) speed and time of descent will be same
- م الأسلم but tir of do . .

Horizon Test Series for Medical-2016

Space for Rough Work

Tes	t-7 (Objective)	1		Horizon	Test	Series	for Medical-201		
47.	loni in so	Ionic solids conduct electricity in molten state but not in solid state because			51. In the table given below, dimensions and angles various crystals are given. Complete the table by fill					
	(A)	in molten state free ions are furnished which are not free to move in solid state	the blanks.							
	(B)	in solid state ionic solids are hard, brittle and		Ť	ype of crystal	Dim	ensions	Angles		
		become soft in molten state	1		Cubic	a =	= <i>b</i> = <i>c</i>	$\alpha = \beta = \gamma = _p_$		
	(C)	all solids conduct electricity in molten state	2		Tetragonal		<u>q</u>	$\alpha = \beta = \gamma = 90^{\circ}$		
	(D)	in solid state ions are converted to atoms which	3		Orthorhombic	a =	≠ b ≠ c	<u></u>		
		are insulators.	4		Hexagonal	_	<u>s</u>	$\alpha = \beta = 90^{\circ}, \gamma = \underline{t}$		
48.	Examples of few solids are given below. Find out the example which is not correctly matched.		(A)	$\begin{array}{cc} p & q \\ 90^{\circ} & a = b \neq c \end{array}$	α = β	<i>r</i> = γ = 90	$a = b \neq c 120^{\circ}$		
	(A)	Ionic solids - NaCl, ZnS	(E	$= 120^{\circ} a \neq b \neq c 90^{\circ}$						
	(B)	Covalent solids - H_2 , I_2	(C (I)))	$120^{\circ} a \neq b \neq c$	α≠β	$\neq \gamma \neq 90$	$a \neq b \neq c 90$		
	(C)	Molecular solids - $H_2O_{(s)}$								
	(D)	Metallic solids - Cu, Sn	52. Which type of crystals contain more than one B					n more than one Brava		
49.	Wh mol	ich of the following statements is not correct about ecular crystals ?		()	A) Hexagonal	dral	(B) T	Friclinic Monoclinic		
	(A)	They are generally soft and easily compressible.	(C) Knomboneural (D) Monocimic							
	(B)	They are good conductors of electricity as the electrons are delocalised in the bonds.	00.	contribution to one unit cell in column l appropriate choice.						
	(C)	They have low melting and boiling points.								
	(D)	They consist of polar or non-polar molecules.		6	Column I	10	(ontribut	Column II ion to one unit cell)		
50.	Mor	oclinic sulphur is an example of monoclinic crystal	((A	Corner	(i)		l		
	syst syst	em. what are the characteristics of the crystal em?	(B)	Edge	(ii)		1/8		

- (A) $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$
- (B) $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
- (C) $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$

Η

(D) $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$

(L	Column I attice point)	Column II (Contribution to one unit cel						
(A)	Corner	(i)	l					
(B)	Edge	(ii)	1/8					
(C)	Face centre	(iii)	1/4					
(D)	Body centre	(iv)	1/2					

(A)	$(A) \rightarrow (ii), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (iv)$
(B)	$(A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (iv), (D) \rightarrow (i)$
(C)	$(A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iv), (D) \rightarrow (iii)$
(D)	$(A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii)$

8

Space for Rough Work

Te	st-7 (Objective)	Horizon Test Series for Medical-20				
54.	A cubic solid is made up of two elements P and Q. Atoms of P are present at the corners of the cube and		Which of the following statements is not correct about hexagonal close packing?			
	atoms of Q are present at body centre. What is the		(A)	In hcp, atoms oc	cupy	74% the available space.
	numbers of P and Q? (A) $P_{2} = Q_{2} = Q_{2}$		(B)	It is AB AB type aligned with the	pack first la	ing in which third layer is ayer.
	(A) $PQ_2, 6:6$ (B) $PQ, 6:6$		(C)	Be, Mg, Mo etc.	are fo	und to have hcp structure.
	(C) $P_2Q,6:8$ (D) $PQ,8:8$		(D)	The coordination	n num	ber is 6.
55.	(A) 8,8 (B) 4,4	60.	A solid AB has a rock salt structure. If radius of cation A^+ is 120 pm, what is the minimum value of radius of			
56	(C) 6,6 (D) 8,4 $\ln C_2E$ type (fluorite structure) $C_2^{2^+}$ ions form (A)		(Δ)	120 pm	(B)	240 nm
50.	structure and F^- ions are present in all (B) voids. The		(\mathbf{C})	200 pm		240 pm
	coordination number of Ca^{2+} is <u>(C)</u> and F^- is <u>(D)</u> . (A), (B), (C) and (D) respectively are		Whi	ch of the follow ched?	ing st	ructures is not correctly
	А В С Д		(A)	NaCl type	_	Cl ⁻ ions in ccp structure
	(A) ccp octahedral 8 4(B) bcc tetrahedral 4 8		()			Na ⁺ ions in half octahedral holes.
	(C) ccp tetrahedral 8 4		(B)	ZnS type	-	S ^{2–} ions in ccp structure.
57.	(D) ccp octahedral 4 8Match the column I with column II and mark the					Zn ²⁺ ions in alternate tetrahedral voids.
	appropriate choice.		(C)) CaF ₂ type	-	Ca ²⁺ ions in ccp structure
	Column I Column II					F ⁻ ions in all tetrahedral voids.
	(A) 0.155 - 0.225 (i) 4		(D)	Na ₂ O type	-	O ²⁻ ions in ccp structure.
	(B) 0.225 - 0.414 (ii) 8					Na ⁺ ions in all tetrahedral
	(C) 0.414 - 0.732 (iii) 3	00				noies.
	(D) 0.732 - 1.0 (iv) 6	62.	can	be designated as	ne pa	ttern of successive layers
	(A) $(A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iv), (D) \rightarrow (iii)$		(A)	AB AB AB	(B)	ABCABCABC
	(B) $(A) \rightarrow (ii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (iii)$ (C) $(A) \rightarrow (iv), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (ii)$		(C)	AB ABC AB	(D)	ABA ABA ABA
58.	(b) (A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (ii) (D) (A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (ii) If the radius of an octahedral void is <i>r</i> and radius of	63.	lf th 265	e distance betwee pm, the edge len	en Na gth of	⁺ and Cl [−] in NaCl crystal is the unit cell will be
	atoms in close packing is R, the relation between <i>r</i> and R is		(A)	265 pm	(B)	795 pm
	(A) $r = 0.414R$ (B) $R = 0.414r$		(C)	132.5 pm	(D)	530 pm
	(C) $r = 2R$ (D) $r = \sqrt{2R}$					

Tes	est-7 (Objective)					Horizon Test Series for Medical-201				
64.	Which of the following does not represent radius of the atom correctly ?			e 69.	An element crystallises in a structure having a fcc unit cell of an edge 200 pm. If 200 g of this element contains 24×10^{23} atoms then its density is					
	(i)	Simple cubic cel	I : Ra	adius = $\frac{a}{2}$		(A)	41.6	6 g cm ⁻³	(B)	313.9 g cm ⁻³
				-		(C)	8.11	7 g cm ^{–3}	(D)	400 g cm ⁻³
	(ii)	Face centred cu	bic ce	ell : Radius = $\frac{a}{3\sqrt{3}}$	70.	How many lithium atoms are present in a unit cell with edge length 3.5 Å and density 0.53 g cm ^{-3} ? (Atomic mass of Li = 6.94)				
	(iii)	Body centred cu	bic ce	ell : Radius = $\frac{\sqrt{3}}{4}a$		(A)	2		(B)	1
	(A)	(i)	(B)	(iii)		(C)	4		(D)	6
	(C)	(ii)	(D)	(i) and (ii)	71.	The	distar	nce betwee	n Na⁺	and CI^- ions in NaCI with a
65.	The	radii of Na⁺ and (CI⁻ ioi	ns are 95 pm and 181 pr	n	den	ISITY 2.	165 g cm °	IS (D)	200 mm
	resp	pectively. The edge	e leng	length of NaCl unit cell is		(A)	564 p	m	(B)	282 pm
	(A)	276 pm	(B)	138 pm	70	(C) 0	234 p		(U)	538 pm
66.	(C)	(C) 552 pm (D) 415 pm		/2.	length is about 300 pm and its molar mass is about 50					
	Total volume of atoms present in a <i>fcc</i> unit cell of a metal with radius <i>r</i> is			a	g mol ⁻¹ . What would be the density of the metal ?					
	mot	10		40		(A)	6.2 g	J Cm ^{−3}	(B)	3.1 g cm ⁻³
	(A)	$\frac{12}{3}\pi r^3$	(B)	$\frac{16}{3}\pi r^{3}$		(C)	9.3 g	J Cm ^{−3}	(D)	12.4 g cm ⁻³
				73.	In th	ne give	en crystal sti		e what should be the cation	
	(C)	$\frac{20}{3}\pi r^3$	(D)	(D) $\frac{24}{3}\pi r^3$		∧ vv	Incitie	epiaces Na		
67.	The	fraction of the tota	l volu	me occupied by the atom	s			(Na ⁺) (Cl	-) (N	(a^+) (Cl^-)
	pres	sent in a simple cu	ıbe is							
	(Δ)	$\frac{\pi}{2}$	(B)	π				(CI^{-}) (X) ((Na ⁺)
	(, ,)	4	(^D) <u>6</u>					Na ⁺ Cl) [
	(\mathbf{C})	π	(D)						A C	
	(C)	3√2	(U)	4√2						I) (Na)
68.	Re leng	lationship betwee oth a of a body-cer	n ato	mic radius and the edg	e	(A)	Sr ²⁺		(B)	K ⁺
	(A)	r = a/2	(B)	$r = \sqrt{a/2}$		(C)	Ľľ.		(D)	Br
	(C)	$r=\frac{\sqrt{3}}{4}a$	(D)	$r=\frac{3a}{2}$						

Tes	t-7 (Objective)		Horizon Te	st Series 1	for N	/ledi	cal-	2016
74.	Which is the defect represented by the given figure?	80. Zi re	nc oxide loses ox action,	ygen on he	eating	g acco	ording	g to the
	$\begin{array}{c} (+) (-) (+) (-) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+$	Z	$nO \xrightarrow{heat} Zn^{2+} + \frac{2}{2}$	O ₂ + 2e ⁻				
	(+) $(-)$ $(+)$ $(-)$ $(+)$ $(-)$	It	becomes yellow o	on heating b	becal	lse		
		(A) Zn ²⁺ ions and and F-centres	electrons m are created	iove†	to inte	erstiti	al sites
	$(\underline{+})(\underline{-})(\underline{+})(\underline{+})(\underline{-})(\underline{+})(\underline{-})(\underline{+})(\underline{-})(\underline{+})(\underline{-})(\underline{+})(\underline{-})(\underline{+})(+$	(B) oxygen and ele ions become y	ectrons mov vellow	/e out	t of the	e crys	stal and
	(A) Schottky defect(B) Frenkel defect(C) Vacancy defect(D) Interstitial defect	(C	 Zn²⁺ again co oxide 	mbine with	oxyg	jen to	give	yellow
75.	What type of stoichiometric defect is shown by ZnS?	(D) Zn ²⁺ are repla	ced by oxyg	jen			
	 (A) Schottky defect (B) Frenkel defect (C) Both Frenkel and Schottky defects (D) Non staiphiometria defect 	81. TI be cc	nree types of ban blow showing the ponduction band. T	ds are show position of he figures A	vn in the v B a	the fi alenc ind C	gures ce ba repre	s given nd and sent
76.	 (b) Non-storenometric defect Which of the following will have metal deficiency defect? (A) NaCl (B) FeO (C) KCl (D) 7aO 			Empty Larg	y band e sy		Sr en	nall ergy
77.	An electron trapped in an anion site in a crystal is called	Partial		Fille	d d			>~r
	(A) F-centre(B) Frenkel defect(C) Schottky defect(D) interstitial defect	band	bands	(B)	Dand	(0	C)	
78.	Experimentally it was found that a metal oxide has			_			_	
	formula $M_{0.98}$ O. Metal M, is present as M ²⁺ and M ³⁺ in its oxide. Fraction of the metal which exists as M ³⁺ would be	(A) (B)	A Non-metal Semiconductor	B Metal Insulator	Se	emico Conc	c nduc lucto	tor r
	(A) 5.08% (B) 7.01%	(C)	Metal	Insulator	Se	emico	nduc	tor
	(C) 4.08% (D) 6.05%	(D)	Insulator	Conducto	r Se	emico	nduc	tor
79.	What is the effect of Frenkel defect on the density of ionic solids ?	82. W ge	hich type of se	emiconduc d in the gall	tor i ium a	s for as ind	med	when d in the
	(A) The density of the crystal increases.	fig	jure?					
	(B) The density of the crystal decreases.	(A) p	-type semicondu	ctor	Ge	Ge	Ge	Ge
	 (C) The density of the crystal remains unchanged. (D) There is no relationship between density of a 	(B) r	-type semicondu	ctor	Ge	Ge	<u>Ga</u>	Ge
	(D) I nere is no relationship between density of a	(C) N	lo change in con	ductivity	Ge	Ge	Ge	Ge
	crystal and delect present in it.	(D) I	t becomes super	conductor	Ge	Ge	Ge	Ge

Test-7 (Objective)	
--------------------	--

- 83. To get n-type of semiconductor, germanium should be doped with
 - (A) gallium (B) arsenic
 - (C) aluminium (D) boron
- 84. Which one of the following statements is wrong ?
 - (A) The conductivity of metals decreases with increase in temperature.
 (D) The conductivity of continuous ductors increases with
 - (B) The conductivity of semiconductors increases with increase in temperature.
 - (C) There is no superconductor at room temperature.
 - (D) Ionic solids conduct electricity due to presence of ions.
- 85. Which of the following shows correct range of conductivity?
 - (i) Conductors : 10^4 to 10^7 ohm⁻¹ m⁻¹
 - (ii) Insulators : 10^{-6} to 10^4 ohm⁻¹m⁻¹
 - (iii) Semiconductors : 10^{-10} to 10^{-6} ohm⁻¹m⁻¹
 - (A) (i) and (ii) (B) (i) only
 - (C) (ii) and (iii) (D) (i), (ii) and (iii)
- 86. The conductivity of intrinsic semiconductors can be increased by adding a suitable impurity. This process is called (P). This can be done with an impurity which is (Q) rich or deficient as compared to the semiconductor. Such impurities introduce (R) defects in them. Electron rich impurities result in (S) type semiconductors while electron deficit impurities result in (T) type semiconductors.

	Р	Q	R	S	т
(A)	doping	proton	point	р	n
(B)	doping	electron	non-stoichiometric	; p	n
(C)	energy gap	charged	impurity	n	р
(D)	doping	electron	electronic	n	р

87. Match the column I with column II and mark the appropriate choice.

V	Column I	Column II				
(A)	Fe in solid state	(i)	Electrolytic conductor			
(B)	NaCl in molten state	(ii)	p-type semiconductor			
(C)	CO ₂ in solid state	(iii)	Electronic conductor			
(D)	Si doped with aluminium	(iv)	Non-polar insulator			

Horizon Test Series for Medical-2016

- (A) $(A) \rightarrow (iv), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iii)$
- (B) $(A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (iv)$
- (C) $(A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (ii)$
- (D) $(A) \rightarrow (i), (B) \rightarrow (iv), (C) \rightarrow (iii), (D) \rightarrow (ii)$

Match the column I with column II and mark the appropriate choice.

Column I			Column II
(A)	Ferromagnetic	(i)	$\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow$
(B)	Ferrimagnetic	(ii)	↑↓↑↓↑↓↑↓
(C)	Antiferromagnetic	(iii)	<u> </u>
(D)	Diamagnetic	(iv)	11 11 11 11 11
(E)	Paramagnetic	(v)	$\kappa \lor \rightarrow \uparrow \lor \urcorner$

- (A) (A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iv), (E) \rightarrow (v)
- (B) $(A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (iv), (E) \rightarrow (v)$
- (C) $(A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (ii), (E) \rightarrow (v)$
- (D) $(A) \rightarrow (v), (B) \rightarrow (iv), (C) \rightarrow (iii), (D) \rightarrow (ii), (E) \rightarrow (i)$
- 89. Ferrimagnetism is observed when the magnetic moments of the domains in the substance are
 - (A) oppositely oriented and cancel each other's magnetic moment.
 - (B) aligned in parallel and anti-parallel directions in unequal numbers
 - (C) randomly oriented and their magnetic moments get cancelled
 - (D) in same direction and get aligned in a magnetic field.

- 90. Fe₃O₄ is ferrimagnetic at room temperature but at 850 K, it becomes
 - (A) diamagnetic (B) ferrimagnetic
 - (C) paramagnetic (D) anti-ferromagnetic

Space for Rough Work

Test-7 (Objective)				Horizon Test Series for Medical-2016
91.	Matc optio A. B. C. D. (A) (B) (C)	[ZOOLOGY] h Column-I with Column-II and select the correct in from the codes given below : Column-I Factor II (i) Factor II (ii) Factor III (ii) Factor VIII (iii) Factor VIII (iii) Hageman factor Factor XII (iv) Antihaemophilic globulin A-(iii), B-(iv), C-(ii), D-(i) A-(ii), B-(i), C-(ii), D-(ii)	94. 95.	 Which one of the following statements is correct with regard to the principle of safe blood transfusion ? (A) The donor's red blood corpuscles should not contain antibodies against the recipient's serum. (B) The recipients serum should not contain antigens against the donor's antibodies. (C) The recipient's serum should not contain the antibodies against the red blood corpuscle of the donor. (D) The recipient's red blood corpuscles should not contain antibodies against the donor's antibodies against the factors (A) The recipient's red blood corpuscles should not contain antibodies against the donor's antigen.
92.	 (D) Hum envir (1) (2) (3) 	A-(i), B-(ii), C-(iii), D-(iv) an blood maintains homeostasis in the internal onment of the body by replenishment of nutrients and oxygen and elimination of metabolic wastes from the extracellular fluid replenishment of oxygen and elimination of CO_2 increasing the blood sugar level and conversion of urea into amino acids and destruction of wornout RBCs	96. 97.	 (A) AI, VIII, V (B) AI, IA, A (C) VIII, X, V (D) IX, VIII, X A drop of each of the following is placed separately on four slides. Which of them will not coagulate ? (A) Blood serum (B) Blood from pulmonary artery (C) Whole blood from pulmonary vein (D) Blood plasma In which of the following situations, there is a risk factor for children acquiring erythroblastosis foetalis ? (A) Mother is Rh – ve and father is Rh – ve
93.	(4) Whice (A) (C) Matce the sist the co A. B. C	maintenance of ion concentration in the blood and body fluids by eliminating nitrogenous wastes.th of the above statements are correct.1 only(B)1, 2 and 4(D)2 and 4(D)2 and 4(D)2 and 4(D)and body fluids given under Column-I with hape of nucleus given under Column-II and select orrect option from codes given below :Column-IColumn-IINeutrophils(i)Kidney-shaped EosinophilsS-shapedBasonbils(iii)3 to 5 lobes	98.	 (B) Mother is Rh - ve and father is Rh + ve (C) Mother is Rh + ve and father is Rh + ve (D) Mother is Rh + ve and father is Rh - ve Study the given figure and identify the cells labelled as A, B, C and D. C B and D. (A) A-Eosinophil, B-Erythrocyte, C-Neutrophil, D. Desembil
	C. D. (A) (B)	Dasophilis (iii) 3 to 5 lobes Monocytes (iv) 2 lobes (v) Disc-shaped A-(iii), B-(v), C-(i), D-(ii) A-(v), B-(iii), C-(i), D-(iv)		 D-Basophil (B) A-Eosinophil, B-Lymphocyte, C-Neutrophil, D-Monocyte (C) A-Erythrocyte, B-Basophil, C-Neutrophil, D-Lymphocyte

(D) A-Eosinophil, B-Monocyte, C-Neutrophil, D-Lymphocyte

Space for Rough Work

(C) A-(ii), B-(i), C-(v), D-(iii)

(D) A-(iii), B-(iv), C-(ii), D-(i)

[13]

Test-7 (Objective)	Horizon Test Series for Medical-2016
 105. Rh factor was discovered by (A) Landsteiner and Weiner (B) William Harvey (C) Malpighi 	(A) A–Aorta, B–Pulmonary vein, C–Pulmonary arteries, D–left ventricle, E–Semilunar valves, F– Left auricle, G–Right auricle, H–Superior vena cava, I–Right ventricle, J–Tricuspid valves, K–Inferior vena cava
 (D) none of these 106. Read the following statements and select the correct option. 	(B) A–Aorta, B–Pulmonary artery, C–Pulmonary veins, D–Left auricle, E–Tricuspid valves, F–Left ventricle, G–Right ventricle, H–Inferior vena cava, I–Right auricle, J–Semilunar valves, K–Superior
Statement 1: Lymph capiliaries are free and bind at one end. Statement 2: Lymph does not flow in a circular manner.	 (C) A–Aorta, B–Superior vena cava, C–Inferior vena cava, D–Right ventricle, E–Tricuspid valves, F–Right auricle, G–Left auricle, H–Pulmonary vein, I–Right ventricle, I–Semilunar, valves K–
 (A) Both statements 1 and 2 are correct and statement 2 is the correct explanation of statement 1. (B) Both statements 1 and 2 are correct but statement 2 is not the correct explanation of statement 1. 	 Pulmonary artery. (D) A-Aorta, B-Superior vena cava, C-Inferior vena cava, D-Left ventricle, E-Semilunar valves, F-Left auricle, G-Right auricle, H- Pulmonary artery, I-Rightventricle, J-Tricuspidvalves, K-Pulmonary vein.
(C) Statement 1 is correct and statement 2 is incorrect.(D) Both statements 1 and 2 are incorrect.	109. Which of the following is correct about human heart?(A) The volume of both atria > the volume of both ventricles
107. Which of the following statements is true for lymph?	(B) The volume of both ventricles > the volume of both atria.
(B) Blood–RBCs and some proteins	(C) The volume of both atria = the volume of both ventricles
(C) RBCs + WBCs + Plasma(D) RBCs + Proteins + Platelets	(D) Ventricles are upper chambers and atria are lower chambers in our heart.
108. The given figure shows the vertical section of human heart. Identify the parts labelled as A to K.	 110. Read the following statements and select the correct option. Statement 1 : The SA node acts as pacemaker.
	Statement 2 : The SA node is located in the wall of the right atrium near the interatrial septum.
K C	(A) Both statement 1 and 2 are correct and statement 2 is the correct explanation of statement 1
	 (B) Both statement 1 and 2 are correct and statement 2 is not the correct explanation of statement 1.
H - F	(C) Statement 1 is correct and statement 2 is incorrect.
	(D) Both statement 1 and 2 are incorrect.

[15]

Test-7 (Objective)					Horizon Test	Serie	s for Medical-2016
111.	In th (A)	rombocytes, Sydersomes are 2-3 mitochondria in groups.	115.	Whi card	ch of the followir iac system is/are	ng stat correc	ements(s) regarding the ct ?
	(B)	Granules containing serotonin.		(i)	Human heart is a	an ecto	dermal derivative.
	(C) (D)	Iron containing vesicles. Glycogen granules		(ii)	Mitral valve, gua atrium and left v	rds the entricle	opening between the right e
112.	Read	d the following statements and select the correct		(iii)	SAN is located right atrium	on the	left upper corner of the
	ones	5.		(iv)	Stroke volume ×	 Heart 	rate = Cardiac output
	(i)	Nodal tissue is specialized cardiac musculature		(A)	(i) only	(B)	(i) and (iv)
		action.		(C)	(ii) and (iii)	(D)	(iv) only
	(ii)	Position of SAN - right corner of right atrium	116.	The norn	problem of electr nal heart by the co	rical dis onnect	scontinuity caused in the ive tissue separating the
	(iii)	Position of AVN - right corner of Ventricle		atria	from the ventricle	es is so	lved by
	(i∨)	AV bundle continues from AVN		(A)	coordinating electrical activity	ectrical y in the	activity in the atria with ventricles by connecting
	(v)	Purkinje fibres are modified cardiac muscle fibres			them via the bur	ndle of	His
		spread into the two ventricles.		(B)	having the A–V pacemaker	node	function as a secondary
	(A)	(i) and (ii) (B) (i) and (iii)		(C)	having an ectop	ic pace	emaker
	(C)	(ii), (iv) and (v) (D) All of these		(D)	coordinating ele	ectrical	activity in the atria with
113.	Chor	rdae tendineae are found in			electrical activity	y in the	ventricles by connecting
	(A)	ventricles of brain	447	M/bi	them via the vag		o a matahing nair 2
	(B)	joints of legs	Π7.	vv nie		wing is	s a matching pair ?
	(C) (D)	ventricles of heart atria of heart		(A)	of ventricular sys	stole	v valves at the beginning
114.	Duri	ng ventricular systole		(B)	Dup - sudden op beginning of ven	ening o tricula	of semilunar valves at the r diastole
	(A)	Oxygenated blood is pumped into the pulmonary artery and deoxygenated blood is pumped into		(C)	Pulsation of the r vessels	radial a	artery - valves in the blood
		the artery		(D)	Initiation of the h	neart b	eat - Purkinje fibres
	(В)	deoxygenated blood is pumped into the aorta and deoxygenated blood is pumped into the pulmonary vein	118.	In hu dias	umans, blood pas tolic right atrium c	sses fro of hear	om the post caval to the t due to
	(C)	Oxygenated blood is pumped into the pulmonary		(A)	stimulation of th	e sino	auricular node
		vein and deoxygenated blood is pumped into the pulmonary artery		(B)	pressure differe atrium	nce be	tween the post caval and
	(D)	Oxygenated blood is pumped into the aorta and		(C)	pushing open of	the ve	nous valves
		deoxygenated blood is pumped into the pulmonary artery.		(D)	suction pull		

Test-7 (Objective)				Horizon Test Series for Medical-2016				
119.	Haer (A) (B) (C) (D) Mate	moglobin contains 70% globin + 30%ha 80% globin + 20%ha 96% globin + 04%ha 89% globin + 11%ha ch Colump-I with Colum	ematin ematin ematin ematin n-ll and select the correct	122.	A re pass 1. 2. 3. 4.	d blood cell, ente ses by or through Atrioventricular v Semilunar valve Right atrium Right ventricle	ering tl the fol valves s	he right side of the heart lowing structures.
120.	optic	on from the codes given	below :		э. Whi	Ch of the following	g optio	ns represents the correct
	(A) (B)	Column I Superior vena cava	Column II (i) Carries deoxygenated blood to lungs (ii) Carries oxygenated		sequ (A) (B) (C)	uence ? $2 \rightarrow 3 \rightarrow 1 \rightarrow 4$ $3 \rightarrow 1 \rightarrow 5 \rightarrow 2$ $3 \rightarrow 5 \rightarrow 1 \rightarrow 2$	$ \begin{array}{c} \rightarrow 5 \\ \rightarrow 4 \\ \rightarrow 4 \end{array} $	
	(C)	Pulmonary artery	(ii) Carnes oxygenated blood from lungs (iii) Brings deoxygenated blood from lower part of body to right atrium	123.	(D) Mato optio	$5 \rightarrow 3 \rightarrow 1 \rightarrow 4$ ch Column-I with to on from the codes Column-I RBC	→ 2 Colum given (i)	n-II and select the correct below : Column-II Coagulation
	(D)	Pulmonary vein	(iv) Bring deoxygenated blood from upper part of body to right atrium		В. С. D.	Antibody Platelets Systole	(ii) (iii) (i∨)	Immunity Contraction Gas transport
	(A)	A-(ii), B-(iv), C-(iii), D)—(i)		(A)	A-(v) B-(i) C-((v) iv) D–	Hypertension (iii)
	(D) (C)	A = (iv), B = (i), C = (ii), D = A = (iv), B = (iii), C = (i), D = (iv), B = (iii), C = (i), D = (i)	-(III) (III)		(B)	A-(ii), B-(iv), C-	-(iii), D	(i)
	(O) (D)	A-(iv), B-(i), C-(iii), D-	(ii) –(ii)		(C)	A–(iv), B–(ii), C–	-(i),D((iii)
121.	The f	figure given below shows e.	e three stages in the cardiac	124.	(D) In th part	A–(iii), B–(v), C– le given figure of (1, 2, 3, 4, 5) cari	-(ii), D- the he ries ox	-(iv) eart which of the labelled ygenated blood ?
	Whie this (A) (C)	ch of the following seque ? 2, 3, 1 (B) 2, 1, 3 (D)	ences is correct regarding 1, 2, 3 3, 1, 2		(A) (C)	1, 2, 3 and 4 1 and 4	(B) (D)	1 and 5 3 and 5
					. /		. /	

Tes	Test-7 (Objective)				Но	rizc	on Tes	t Series	for Med	ical-2016
125.	Cho repr	ose the schematic diagram which properly esents pulmonary circulation in humans.		(v) (vi)	Aorta Veins	a s an	id venu	iles		
(A)	Left Riat	auricle <u>Deoxygenated</u> Lungs Oxygenated blood blood blood blood blood		(vii)	Arter	iole	es and o	capillarie	S.	
(B) (C)	Left Righ Rig	auricle $\xrightarrow{\text{Oxygenated}}_{\text{blood}}$ Lungs $\xrightarrow{\text{Deoxygenated}}_{\text{blood}}$ t ventricle ht ventricle $\xrightarrow{\text{Deoxygenated}}_{\text{blood}}$				1		8	A Heart – D	
(D)	Rig Lung	$\begin{array}{c} \text{Is} & \xrightarrow{\text{blood}} & \text{Left auticle} \\ \text{ht ventricle} & \xrightarrow{\text{Oxygenated}} \\ \text{blood} & \xrightarrow{\text{blood}} \\ \text{ls} & \xrightarrow{\text{Deoxygenated}} \\ & \xrightarrow{\text{blood}} \\ \end{array} \\ \begin{array}{c} \text{Left auricle} \end{array}$								
126.	Whi circu	ch of the following sequences is truly a systemic Ilation pathway ?		(A)	A (V)		B (iii)	(i)	D (vii)	
	(A)	Right ventricle \rightarrow Pulmonary aorta \rightarrow Tissues \rightarrow Pulmonary veins \rightarrow Left auricle		(B) (C)	(∨ii) (∨)		(iv) (iii)	(i) (ii)	(vi) (vii)	
	(B)	Right auricle \rightarrow Left ventricle \rightarrow Aorta \rightarrow Tissues \rightarrow Veins \rightarrow Right auricle	128.	(D) Rea	(vii) d the f	ollo	(v) wing s	(i) tatement	(vi) s and selec	t the correct
	(C)	Left auricle \rightarrow Left ventricle \rightarrow Pulmonary aorta \rightarrow Tissues \rightarrow Right auricle		option. Statement 1 : The 4-chambered heart						t of birds is
	(D)	Left auricle \rightarrow Left ventricle \rightarrow Aorta \rightarrow Arteries \rightarrow Tissues \rightarrow Veins \rightarrow Right atrium.		Supe Stat	superior to the 4-chambered heart of crocodiles. Statement 2 : Crocodilian heart retains both systemeters and the systemeters are a systemeters.					codiles. oth systemic
127.	The labe	given figure is of circulatory system. Identify the lled parts (A–D) from the list (i–vii).		aort	a while	e av	ian he	art has lo	st left syste	mic arch.
	(i)	Pulmonary circulation		(A)	Both 2 is t	stat he o	tement correct	1 and 2 a explana	re correct a tion of state	nd statement ement 1.
	(ii)	Systemic circulation		(B)	Both	stat	tement	1 and 2 a	re correct a	nd statement
	(iii)	Superior vena cava		2 is not the correct explanation of statement 1					statement 1.	
	(iv)	Inferior vena cava		(C)	State	eme rec	ent 1 i t.	is correc	t and stat	ement 2 is
				(D)	Both	sta	temen	t 1 and 2	are incorre	ct.
				14/						

Space for Rough Work

Space for Rough Work

Tes	t-7 ((Objective)			Horizon Test Series for Medical-2016	
139.	Photosynthetic pigments such as chl a, chl b, xanthophyll and carotene can be separated by which of the following techniques ?			(A)	The curve showing the amount of absorption of different wavelengths of light by a photosynthetic pigment is called as absorption spectrum.	
	(A)	Paper chromatography		(B)	Chl a and chl b absorb maximum light in blue and red wavelength of light	
	(B) (C)	Gel Electrophoresis X-ray diffusion		(C)	Rate of photosynthesis is maximum in blue and red wavelength of light.	
	(D)	ELISA test		(D)	All of these	
140.	Whic phote	ch range of wavelength (in nm) is called as osynthetically active radiation (PAR)?	143.	Whie for c	ch of the following serves as the source of energy hemosynthetic bacteria?	
	(A)	100–390 (B) 390–430		(A)	Sun	
	(C)	400–700 (D) 760–100		(B)	Infra-red rays	
141.	. Study the following statements regarding chl a			(C)	Organic substances	
	molecule.				Inorganic chemicals	
	(i) (ii)	Molecular formula of chl a is $C_{55}H_{72}O_5N_4Mg$ It is the primary photosynthetic pigment.	144.	White phase	ch of the following is produced during the light se of photosynthesis?	
	(iii)	In pure state, it is red in colour and thus it absorbs more blue wavelength of light than the red wavelength.		(A) (B) (C)	NADPH ₂ Both ATP and NADPH ₂	
	(iv)	It is soluble in water as well as petroleum ether.		(D)	Carbohydrates	
	Whic	ch of the above statements is/are not correct ?	145.	In cyclic photophosphorylation, the electron release by reaction centre (P_{700}) is ultimately accepted by		
	(A)	(i) and (iii) (B) (iii) and (iv)		(A)	ferrodoxin	
	(C)	(iii) only (D) (iv) only		(B)	NADP ⁺	
142.	Give	en graph represents the absorption spectra of three		(C)	reaction centre (P ₇₀₀)	
	Sele	ct the correct statement regarding this.		(D)	Plastocyanin	
			146.	Whic is co	ch of the following statements about dark reactions prrect ?	
		\bigwedge Chlorophyll- <i>b</i>		(A)	They occur in darkness	
		t A		(B)	They are not light dependent	
				(C)	They are dependent upon the products synthesized during light reactions.	
	:			(D)	All of these.	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.	Read of P	ction centre of PS I is and reaction centre S II is	
				(A)	P ₆₈₀ , P ₇₀₀ (B) P ₇₀₀ , P ₆₈₀	
		č		(C)	P ₈₀₀ , P ₆₀₀ (D) P ₇₀₀ , P ₉₀₀	
		Space for R	lough	Worl	K	

Tes	t-7 (Objecti	ve)			Horizon Test Series for Medical-20				
Direction : Refer the given diagramatic representation of an electron micrograph of a section of chloroplast to answer the Q. Nos. 148 and 149				c representation of an on of chloroplast to	153.	Cons path (i)	sider following statements with respect to the C_4 way and select the correct ones. Mesophyll cells possesses both RuBisCO and		
		•				(ii)	PEPcase enzymes. Initial CO ₂ fixation occurs in mesophyll cells.		
	(× ×		(iii)	Final CO ₂ fixation occurs in bundle sheath cells.		
				Y Y		(A)	(i) and (ii) (B) (ii) and (iii)		
						(C)	(i) and (iii) (D) (i), (ii) and (iii)		
				Z	154.	Whi	ch of the following conversions involve ATP		
148	Select the opt	ion that corr	ectly id	dentifies X Y and Z		syntl	hesis during glycolysis ?		
	X	Y	Z			(A)	Glucose \rightarrow Glucose–6–phosphate		
(A)	Stroma	Grana	Chlor	roplast DNA		(B)	Fructose-6-phosphate→Fructose-1,6 biphosphate		
(B)	Stroma	Grana	Starc	h granule		(C)	1,3-bisphosphoglyceric acid (BPGA) \rightarrow		
(C)	Grana	Stroma	Starc	h granule		. ,	3-phosphoglyceric acid (PGA)		
(D)	Grana	Stroma	Chlor	roplast DNA		(D)	All of these.		
149.	Select the opt	ion which co	rrectly	depicts the functions	155.	Sele	ect the wrong statement.		
	v parts X, Y a	μα Ζ. V		7		(A)	Oxidative decarboxylation of pyruvic acid		
(A)	A Dark reaction	I Light reacti	on	Cytoplasmic			dehydrogenase		
(~)	Dark reaction	Light reacti	on	inheritance		(B)	All living cells whether aerobic or anaerobic.		
(B)	Light reaction	Carbohydra	ate	Carbohydrate		()	perform glycolysis.		
		synthesis		storage		(C)	Cyanide does not stop chemiosmosis.		
(C)	Light reaction	Carbohydra storage	ate	Carbohydrate synthesis		(D)	Respiratory chain uses O_2 as final hydrogen acceptor.		
(D)	Carbohydrate synthesis	Carbohydra storage	ate	Cytoplasmic inheritance	156.	Pyru man	ivic acid, the key product of glycolysis can have y metabolic fates. Under aerobic condition it forms		
150.	Which one is in	nvolved in Z-	schem	e of photosynthesis?		(A)	lactic acid (B) $CO_2 + H_2O$		
	(A) PSI	(B)	PS	II		(C)	Acetyl CoA+CO ₂ (D) Ethanol + CO ₂		
	(C) e ⁻ Carrie	ers (D)	All	of these	157.	Mito	chondria are called powerhouses of the cell. Which		
151.	Yellowish col	our of autu	mn fo	liage is due to the		of the	e following observations support this statement ?		
	presence of a	type of xant	hophy	ll pigment called as		(A)	Mitochondria synthesize ATP.		
	(A) lutein	(B)	lyce	opene		(B)	The entrumos of the Krehe' evels and the		
152	(C) fucoxant	thin (D) te is a type o	zea f phyce	axanthin obilin pigments ?		(C)	cytochromes are found in mitochondria		
102.	(A) Phycocy	/anin (R)	Alle	ophycocyanin		(D)	Mitochondria are found in almost all plant		
	(C) Phycoer	vthrin (D)	All	of these			and animal cells.		
	(2) 1.9000	, (C)	,						

Test-7 (Objective)				Horizon Test Series for Medical-2016				
158.	Site (A)	of Krebs' cycle in mitochondria is outer membrane (B) matrix		(C)	Stateme incorrect	nt 1 is correct a	nd statement 2 is	
	(C) oxysomes (D) inner membrane			(D)	Both stat	ement 1 and 2 are	incorrect.	
159.	Value of RQ in succulents is			. Last e ⁻ acceptor during ETS is				
	(A) unity (B) infinite			(A)	0.	(B) cvta		
	(C)	less than unity (D) zero		(\mathbf{C})	O_2	(D) ctv a		
160.	. Categorise the given summary equations under				cyld ₂	(D) Ciya ₃	recording metabolia	
	respective phases and select the correct option.			5. Which of the following statements regarding metabolic nathway is incorrect 2				
	1. $C_6 \Pi_{12} O_6 + NAD + 2ADP + 2PI \rightarrow 2C_3 \Pi_4 O_3 + 2ATP + 2NADH + 2H^+$			(A) Many of the store of styreducie act was in				
	II. Pyruvic acid + 4NAD ⁺ + FAD ⁺ + 2H ₂ O + ADP + Pi \rightarrow 3CO ₂ + 4NADH + 4H ⁺ + ATP + FADH ₂ NADH + H ⁺ NAD ⁺			(A)	reverse	the steps of giv	corysis can run in	
				(D)	(D) Storeb sucress or all sector must be budgetured			
				before it can enter the glycolysis.				
	III.	II. Pyruvate \longrightarrow C ₂ H ₄ OH+CO ₂		(C)	After fats	After fats are digested, glycerol enters glycolysis		
					After fat	digestion fatty a	cide can no longer	
				(D)	participa	te in cellular respira	ation.	
	(A) (B)	I II III Glycolysis Fermentation Krebs' cycle Krebs' cycle Fermentation Glycolysis	166.	At the end of glycolysis, X is the net energy gain from one molecule of glucose <i>via</i> Y, but there is also energy stored in the form of Z. Identify X, Y and Z.				
	(C)	Krebs' cycle Glycolysis Fermentation			X	Y	Z	
	(D)	Glycolysis Krebs' cycle Fermentations		(A)	1 ATP	Oxidative	NADH + H ⁺	
161.	Whic	ch of the following steps of respiration is amphibolic		()		nhosnhorylation		
	? (A)	Chrashrain		(B)		Ovidativo		
	(A) (B)	Ovidative decarboxylation of pyruvate		(D)	27113	nhoonhondation		
	(D) (C)				4.470			
	(C) (D)			(C)	1AIP	Substrate level	FADH + H ⁺	
162.	Refe	er the given equation				phosphorylation		
	$2(C_{r_4}H_{c_9}O_c) + 145O_c \rightarrow 102CO_c + 98H_cO + Energy$			(D)	2ATPs	Substrate level	NADH + H⁺	
	The RQ in this case is					phosphorylation		
	(A)	(A) 1 (B) 0.7		57. Consider the first reaction of TCA cycle.				
	(C) 1.45 (D) 1.62		Citrate					
163.	Read the given statements and select the correct option.			Acetyl CoA + OAA + H_2O $\xrightarrow{\text{outube}}$ A +CoA				
	Statement 1 : Mitochondria are known as powerhouse of the cell.			What is true about compound A? (A) First product of TCA cycle				
	 Statement 2 : ATP synthesis occurs in mitochondria. (A) Both statement 1 and 2 are correct and statement 2 is the correct explanation of 			(B)	B) Tricarboxylic acid and six carbon compound			
				(C)	lt undero		n in the presence of	
				(\mathbf{O})	enzyme	aconitase to form (cis-aconitate	
		statement 1.		(D)		200 101 101 101 101 101 101 101 101 101	acomato	
	(B)	statement 1 and 2 are correct but statement 2 is not the correct explanation of statement 1.		(U)		36.		

Space for Rough Work

Space for Rough Work

