

Test No. 5

Topics of The Test

Physics	Motion in 1D & 2D.	
---------	--------------------	--

Chemistry	Chemical Bonding.		
-----------	-------------------	--	--

Biology	Zoology : Respiration system in human. Botany : Plant Respiration.	
		/

Test-5 (Objective)

Test No. 5

[PHYSICS]

- 1. Which of the following statements is incorrect?
 - (A) Path length is a scalar quantity whereas displacement is a vector quantity.
 - (B) The magnitude of displacement is always equal to the path length traversed by an object over a given time interval.
 - (C) The displacement depends only on the end points whereas path length depends on the actual path followed.
 - (D) The path length is always positive whereas displacement can be positive, negative and zero.
- A drunkard is walking along a straight road. He takes 5 steps forward and 3 steps backward and so on. Each step is 1 m long and takes 1 s. There is a pit on the road 11 m away from the starting point. The drunkard will fall into the pit after
 - (A) 21 s (B) 29 s
 - (C) 31 s (D) 37 s
- 3. A cyclist moving on a circular track of radius 40 m completes half a revolution in 40 s. Its average velocity is
 - (A) zero (B) $4\pi \text{ m s}^{-1}$
 - (C) 2 m s^{-1} (D) $8\pi \text{ m s}^{-1}$
- 4. A body moving along a straight line travels one third of the total distance with a speed of 3.0 m s^{-1} . The remaining distance is covered with a speed of 4.0 m s^{-1} for half the time and 5.0 m s^{-1} for the other half of the time. The average speed during the motion is
 - (A) 4.0 m s^{-1} (B) 6.0 m s^{-1} (C) 3.8 m s^{-1} (D) 2.4 m s^{-1}
- 5. A motorboat covers the distance between two spots on the river in 8 h and 12 h downstream and upstream respectively. The time required by the boat to cover this distance in still water is

 (A)
 (B)
 (B)
 (A)
 - (C) 3.2 h (D) 18.12 h

- 6. The position x of a particle with respect to time t along x-axis is given by $x = 9t^2 t^3$ where x is in metres and t in seconds. What will be the position of this particle when it achieves maximum speed along the + x direction ?
 - (A) 54 m (B) 81 m
 - (C) 24 m (D) 32 m
- 7. A car starts from rest, attains a velocity of 36 km h⁻¹ with an acceleration of 0.2 m s⁻², travels 9 km with this uniform velocity and then comes to halt with a uniform deceleration of 0.1 m s⁻². The total time of travel of the car is
 - (A) 1050 s (B) 1000 s
 - (C) 950 s (D) 900 s
- 8. A particle moving along a straight line has a velocity $\nu \text{ m s}^{-1}$, when it cleared a distance of x m. These two are connected by the relation $\nu = \sqrt{49 + x}$. When its velocity is 1 m s⁻¹, its acceleration is
 - (A) 2 m s^{-2} (B) 7 m s^{-2}
 - (C) 1 m s^{-2} (D) 0.5 m s^{-2}

9. A particle moving with uniform acceleration has average velocities v_1, v_2 and v_3 over the successive intervals

of time t_1, t_2 and t_3 respectively. The value of $\frac{(v_1 - v_2)}{(v_2 - v_3)}$

will be

(A)
$$\frac{t_1 - t_2}{t_2 - t_3}$$
 (B) $\frac{t_1 - t_2}{t_2 + t_3}$
(C) $\frac{t_1 + t_2}{t_2 - t_2}$ (D) $\frac{t_1 + t_2}{t_2 + t_3}$

Space for Rough Work

Tes	t-5 (Objective)		Horizon Test Series for Medical-2016
10.	A body sliding on a smooth inclined plane requires 4 seconds to reach the bottom, Starting from rest at the	16.	Which of the following statements is false regarding the vectors?
	top. How much time does it take to cover one-fourth the distance starting from rest at the top ?		(A) The magnitude of a vector is always a scalar.
	(A) 1 s (B) 4 s		(B) Each component of a vector is always a scalar.
11.	(C) 2 S (D) 16 S A body A starts from rest with an acceleration a_1 . After		(C) Two vectors having different magnitudes cannot
	2 seconds, another body B starts from rest with an		(D) Vectors obey triangle law of addition
	acceleration a_2 . If they travel equal distances in the		
	5 th second, after the start of A, then the ratio $a_1 : a_2$ is	17.	Which of the following is not a scalar quantity?
	(A) 5:9 (B) 5:7		(A) Temperature (B) Coefficient of friction
	(C) 9:5 (D) 9:7		(C) Charge (D) Impulse
12.	An auto travelling along a straight road increases its speed from 30.0 m s ⁻¹ to 50.0 m s ⁻¹ in a distance of 180 m. If the acceleration is constant, how much time elapses while the auto moves this distance?	18.	Consider the quantities, pressure, power, energy, impulse, gravitational potential, electrical charge, temperature, acceleration. Out of these, the only vector quantities are
	(A) 0.0 S (B) 4.5 S (C) 3.6 S (D) 7.0 S		(A) impulse, pressure and acceleration
13.	Two parallel rail tracks run north-south. On one track		(B) impulse and acceleration
	train A moves north with a speed of 54 km h^{-1} and on the other track train B moves south with a speed of 90		(C) acceleration and gravitational potential
	km h ⁻¹ . The velocity of train A with respect to train B is $(A) = 10 \text{ m} \text{ sm}^{-1}$		(D) impulse and pressure
	(A) 10 m s^{-1} (B) 15 m s^{-1} (C) 25 m s^{-1} (D) 40 m s^{-1}	19.	Which of the following is not a property of a null vector?
14.	A bird is tossing (flying to and fro) between two cars		(A) $\vec{A} + \vec{0} = \vec{A}$
	moving towards each other on a straight road. One car has speed of 27 km h^{-1} while the other has the speed		(B) $2\vec{n} - \vec{n}$ where λ is a scalar
	of 18 km h^{-1} . The bird starts moving from first car		$(C) O \overline{A} = \overline{A}$
	km h^{-1} when the two cars were separated by 36 km.		$(D) \vec{z} \vec{z} \vec{z}$
	The total distance covered by the bird is		(D) A - A = 0
	(A) 28.8 km (B) 38.8 km	20.	The component of vector $\vec{A} = 2\hat{i} + 3\hat{j}$ along the direction
15.	A ball A is thrown vertically upwards with speed u. At		of $(\hat{i} - \hat{j})$ is
	at height h. At time t, the speed of A relative to B is		(A) $\frac{1}{\sqrt{2}}$ (B) $-\frac{1}{\sqrt{2}}$
	(A) u (B) $u - 2gt$		$\sqrt{2}$ $\sqrt{2}$
	(C) $\sqrt{u^2 - 2gh}$ (D) $u - gt$		(C) $\frac{1}{2}$ (D) $-\frac{1}{2}$

Tes	t-5 (Objective)		Horizon Test Series for Medical-2016
21.	Two vectors \vec{A} and \vec{B} inclined at an angle θ have a resultant \vec{R} which makes an angle α with \vec{A} . If the directions of \vec{A} and \vec{B} are interchanged, the resultant will have the same (A) direction	26.	A river is flowing due east with a speed 3 m s ⁻¹ . A swimmer can swim in still water at a speed of 4 m s ⁻¹ . If swimmer starts swimming due north, then the resultant velocity of the swimmer is (A) 3 m s ⁻¹ (B) 5 m s ⁻¹ (C) 7 m s ⁻¹ (D) 2 m s ⁻¹
	(B) magnitude(C) direction as well as magnitude(D) none of these	27.	Resultant of two vectors <i>A</i> and <i>B</i> is of magnitude P. If \vec{B} is reversed, then resultant is of magnitude Q. What is the value of $P^2 + Q^2$?
22.	The direction cosines of $\hat{i} + \hat{j} + \hat{k}$ are (A) 1,1,1 (B) 2,2,2		(A) $2(A^2 + B^2)$ (B) $2(A^2 - B^2)$ (C) $A^2 - B^2$ (D) $A^2 + B^2$
23.	(C) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ (D) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ Three forces of magnitudes 6 N, 6 N and $\sqrt{72}$ N act at corners of cube along three sides as shown in figure. Resultant of these forces is	28.	The position of a particle is given by $\vec{r} = 3t\hat{i} + 2t^2\hat{j} + 5\hat{k}$, where <i>t</i> is in seconds and the coefficients have the proper units for \vec{r} to be in metres. The direction of velocity of the particle at <i>t</i> = 1 s is (A) 53° with x-axis (B) 37° with x-axis (C) 30° with y-axis (D) 60° with the y-axis A bird flies from (-3 m, 4 m, -3 m) to (7 m, -2 m, -3m) in the <i>xyz</i> - coordinates. The bird's displacement in unit vector is given by (A) $(4\hat{i} + 2\hat{j} - 6\hat{k})$ (B) $(10\hat{i} - 6\hat{j})$
24.	(A) 12 N along OB (B) 18 N along OA (C) 18 N along OC (D) 12 N along OE The (x, y, z) coordinates of two points A and B are given respectively as $(0, 4, -2)$ and $(-2, 8, -4)$. The displacement vector from A to B is	30.	(C) $(4i - 2j)$ (D) $(10i + 6j - 6k)$ A fighter plane is flying horizontally at an altitude of 1.5 km with speed 720 km h ⁻¹ . At what angle of sight (w.r.t horizontal) when the target is seen, should the pilot drop the bomb in order to attack the target ? (Take g = 10 m s ⁻² , tan23° = 0.43) (A) 23° (B) 32° (C) 12° (D) 42°
25.	(A) $-2\hat{i} + 4\hat{j} - 2\hat{k}$ (B) $2\hat{i} - 4\hat{j} + 2\hat{k}$ (C) $2\hat{i} + 4\hat{j} - 2\hat{k}$ (D) $-2\hat{i} - 4\hat{j} - 2\hat{k}$ If \vec{A} is a vector of magnitude 5 units due east. What is the magnitude and direction of a vector $-5\vec{A}$? (A) 5 units due east (B) 25 units due west (C) 5 units due west (D) 25 units due east	31.	If $\vec{A} = 2\hat{i} - 3\hat{j} - \hat{k}$ and $\vec{B} = 4\hat{i} - 6\hat{j} - 2\hat{k}$. Which of the following is correct? (A) \vec{A} and \vec{B} are equal vectors. (B) \vec{A} and \vec{B} are perpendicular vectors. (C) \vec{A} and \vec{B} are parallel vectors. (D) The dot product of \vec{A} and \vec{B} is zero.

Space for Rough Work

Tes	t-5 (Objective)		Horizon Test Series for Medical-201	6
32.	A Particle starts from origin at $t = 0$ with a velocity $5\hat{i}$ m s ⁻¹ and moves in <i>x</i> - <i>y</i> plane under the action of force which produces a constant acceleration of	37.	A cricketer can throw a ball to a maximum horizon distance of 100 m. With the same speed how mu high above the ground can the cricketer throw the sar ball ?	ıtal ıch me
	3i + 2j m s ⁻² . The <i>y</i> -coordinate of the particle at the instant when its <i>x</i> -coordinate is 84 m is		(A) 50 m (B) 100 m	
	(A) 12 m (B) 24 m		(C) 150 m (D) 200 m	
33.	(C) 36 m (D) 48 m In the question number 32, the speed of the particle at this time is	38.	A cricketer can throw a ball to a maximum horizon distance of 100 m. How high above the ground can t cricketer throw the same ball ?	ital the
	(A) 16 m s^{-1} (B) 26 m s^{-1}		(A) 100 m (B) 50 m	
	(C) 36 m s^{-1} (D) 46 m s^{-1}		(C) 25 m (D) 5 m	
34.	A swimmer can swim in still water at a speed of 5 m $m s^{-1}$.	39.	The ceiling of a hall is 40 m high. For maximular horizontal distance, the angle at which the ball m be thrown with a speed of 56 m s ^{-1} without hitting t ceiling of the hall is	um iay the
	should he swim ?		(A) 25° (B) 30°	
	в		(C) 45° (D) 60°	
	$f m s^{-1}$	40.	If R and H represent horizontal range and maximu height of the projectile, then the angle of projecti with the horizontal is	um íon
35.	 (A) 30° east of north (B) 60° east of north (C) 30° west of north (D) 60° west of north A girl riding a bicycle with a speed of 5 m s⁻¹ towards north direction, observes rain falling vertically down. If 		(A) $\tan^{-1}\left(\frac{H}{R}\right)$ (B) $\tan^{-1}\left(\frac{2H}{R}\right)$	
	she increases her speed to 10 m s ⁻¹ , rain appears to meet her at 45° to the vertical. What is the speed of the rais 2		(C) $\tan^{-1}\left(\frac{4H}{R}\right)$ (D) $\tan^{-1}\left(\frac{4R}{H}\right)$	
	$(A) = \sqrt{2} m c^{-1}$ (B) $5 m c^{-1}$	41.	The speed of a projectile at its maximum height	t is
	(A) $5\sqrt{2}$ m s ⁻¹ (B) 5 m s ⁻¹		$\frac{\sqrt{3}}{2}$ times its initial speed. If the range of the project	tile
36.	(C) $10\sqrt{2}$ m s ⁻¹ (D) 10 m s ⁻¹ Suppose that two objects A and B are moving with		is P times of the maximum height attained by it, th	ien
•••	velocities \vec{V}_A and \vec{V}_B (each with respect to some		Pequals	
	common frame of reference). Let \vec{V}_{AB} represent the velocity of A with respect to B. Then		(A) $\frac{4}{3}$ (B) $2\sqrt{3}$	
	(A) $\vec{v}_{AB} + \vec{v}_{BA} = 0$ (B) $\vec{v}_{AB} - \vec{v}_{BA} = 0$ (C) $\vec{v}_{AB} = \vec{v}_{A} + \vec{v}_{B}$ (D) $ \vec{v}_{AB} \neq \vec{v}_{BA} $		(C) $4\sqrt{3}$ (D) $\frac{3}{4}$	

les	t-5 (Objective)		Horizon Test Series for Medical-2016
42.	A cyclist starts from centre O of a circular park of radius 1 km and moves along the path OPRQO as shown in figure. If he maintains constant speed of 10 m s ⁻¹ , what is his acceleration at point R ?	46.	[CHEMISTRY] The electronic configuration of four atoms are given in brackets : $L(1s^22s^22p^1);$ $M(1s^22s^22p^5);$
	(A) 10 m s^{-2} (B) 0.1 m s^{-2} (C) 0.01 m s^{-2} (D) 1 m s^{-2}	47.	$\begin{array}{cccc} Q(1s^2 2p^2 2p^6 3s^1); & R(1s^2 2s^2 2p^2) \\ \hline \\ The element that would most readily form a diatomic molecule is \\ \hline (A) Q & (B) M \\ \hline (C) R & (D) L \\ \hline \\ How many and what types of bonds are present in \\ NH^+ 2 \end{array}$
43.	A stone tied to the end of a string 100 cm long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 22 s, then the acceleration of the stone is (A) 16 m s^{-2} (B) 4 m s^{-2}	48.	 (A) Four covalent bonds (B) Three covalent bonds and one ionic bond (C) Four ionic bonds (D) Three covalent bonds and one coordinate bond In which of the following molecules octet rule is not followed ?
44.	(C) 12 m s ⁻ (D) 8 m s ⁻ For a particle performing uniform circular motion, choose the incorrect statement from the following.		 (A) NH₃ (B) CH₄ (C) CO₂ (D) NO
	 (A) Magnitude of particle velocity (speed) remains constant. (B) Particle velocity remains directed perpendicular to radius vector. (C) Direction of acceleration keeps changing as particle moves. 	49. 50.	Two elements P and Q combine to form a compound. If P has 2 and Q has 6 electrons in their outermost shell, what will be the formula of the compound formed? (A) PQ (B) P_2Q (C) P_2Q_3 (D) PQ_2 How many number of electrons are involved in the formation of a nitrogen molecule 2
	(D) Magnitude of acceleration does not remain constant.		(A) Three (B) Four (C) Eight (D) Six
45.	What is approximately the centripetal acceleration (in units of acceleration due to gravity on earth, $g = 10$ m s ⁻²) of an air-craft flying at a speed of 400 m s ⁻¹ through a circular arc of radius 0.6 km? (A) 26.7 (B) 16.9	51.	 During a coordinate bond formation, (A) one electron from an atom is transferred to other (B) one electron each is lost from both the atoms (C) a pair of electrons is contributed by one atom and shared by both the atoms (D) a pair of electrons is transferred to the other
	(C) 13.5 (D) 30.2		atom.

Space for Rough Work

Tes	t-5 ((Objective)					Horizon Tes	st Seri	ies for Medical-2016
52.	 Sodium chloride has a crystalline structure made up of Na⁺ and Cl⁻ ions. Why does NaCl not conduct electricity in solid state ? (A) Solids do not conduct electricity. (B) The ions of NaCl become mobile only in molten state and are not free to move in solid state. (C) The crystalline structure does not have ions. 						 58. What is the correct dipole moment of <i>NH</i>₃ arrespectively? (A) 4.90×10⁻³⁰ C m and 0.80×10⁻³⁰ C m (B) 0.80×10⁻³⁰ C m and 4.90×10⁻³⁰ C m (C) 4.90×10⁻³⁰ C m and 4.90×10⁻³⁰ C m (D) 0.80×10⁻³⁰ C m and 0.80×10⁻³⁰ C m 		moment of NH_3 and NF_3 0.80×10 ⁻³⁰ C m 4.90×10 ⁻³⁰ C m 4.90×10 ⁻³⁰ C m 0.80×10 ⁻³⁰ C m
53.	(D) In w direc (A) (C)	their charge. hich of the follow ctional ? NCl ₃ BeCl ₂	wing s (B) (D)	pecies the bond is non- RbCl BCl ₃	59.	Ma mc cho (A)	the bond enth blecules given in c bice. Column I Hydrogen (H ₂)	alpies olumn (i)	given in column II with the I and mark the appropriate Column II 498.0 kJ mol ⁻¹
54.	Whio (A) (C)	ch of the following SO_2 H_2O	g is nor (B) (D)	CO_2 NH_3		(B) (C)	$(A) \rightarrow (i), (B) \rightarrow (i)$	(ii) (iii) → (ii), (($946.0 \text{ k) mol}^{-1}$ $435.8 \text{ kJ mol}^{-1}$ C) → (iii) (C) → (i)
55.	Whie reso (A) (C)	ch of the following nating structures <i>NH</i> ₃ <i>O</i> ₃	g mole ? (B) (D)	ecules does not show any CO_3^{2-} SO_3	60.	(C) (C) (D) . In	$(A) \rightarrow (ii), (B) \rightarrow$ $(A) \rightarrow (i), (B) \rightarrow$ $(A) \rightarrow (iii), (B) \rightarrow$ water molecule, that an angle of 104.5	→ (iii), ([,] → (i), ([,] → (i), ([,] he two °. In <i>B</i>	(C) → (i) C) → (ii) C) → (ii) O - H bonds are oriented F_3 , the three $B - F$ bonds
56.	Whic cova whic (A) (C)	ch of the following alent compounds h form ionic comp Be Ca	y eleme as con pounds (B) (D)	ents forms predominantly npared to other elements s ? Mg Sr		are Be of 1 (A)	e oriented at an a -F bonds are ori the following will h BeF_2	angle o iented ave hi	of 120°. In BeF_2 , the two at an angle of 180°. Which ghest dipole moment ?
57.	Whic orde	'hich of the following are arranged in the decreasing der of dipole moment ?				(B) (C)	BF ₃ H ₂ O		
	(A) (B) (C) (D)	СН ₃ СI,СН ₃ БI, CH ₃ CI,CH ₃ F,Cl CH ₃ Br,CH ₃ Cl,C CH ₃ Br,CH ₃ F,C	CH ₃ F H ₃ Br CH ₃ F CH ₃ Cl		61.	(D) . WI (A) (C)	All have zero d hich of the followin F - O N - H	lipole n ng will (B) (D)	noment. be the strongest bond ? O – CI O – H

Tes	t-5 (Ob	ojective)		Horizon Test Series for Medical-2016
62. 63.	What is SO ₃ , CC (A) AI (B) AI (C) AI (D) AI Oxygen (A) or	s common between the following molecules: $O_3^{2^-}, NO_3^-$? Il have linear shape. Il have trigonal planar shape. Il have tetrahedral shape. Il have trigonal pyramidal shape. In molecule is formed by the axial s-s overlap and one p-p axial overlap wo p. p. axial overlaps	67.	 Which of the following statements is not true ? (A) Ionic bonds are non-directional while covalent bonds are directional. (B) Formation of <i>π</i>-bond shortens the distance between the two concerned atoms. (C) Ionic bond is possible between similar and dissimilar atoms. (D) Linear overlapping of atomic p-orbitals leads to a sigma bond.
	(C) tw (D) or	vo p-p axial overlaps vo p-p sidewise overlaps ne p-p axial and one p-p sidewise overlap	68.	How many sigma and pi bonds are present in toluene? (A) 10σ and 3π bonds
65.	(A) (i) (C) (i) The mo	$\begin{array}{c} 120^{\circ} \\ (i) \\ (i) \\ 120^{\circ} \\ (ii) \\ 120^{\circ} \\ ($	69.	(C) 15σ and 3π bonds (D) 6σ and 3π bonds Which of the following is the most stable state when two atoms come closer to each other to form a molecule?
66.	(A) (i) (C) (ii Accordi (A) th bc (B) pa sh (C) th pc (D) th	$\begin{array}{c} F \\ F $	70.	(i)(ii)(iii)(A)(i), when the bond is formed, the energy is minimum.(B)(ii), when the atoms touch each other, the energy is zero.(C)(iii), when the atoms are isolated, the energy is minimum.(D)(ii), when the attractive forces are more than repulsive forces.The BCI_3 is a planar molecule whereas NCI_3 is pyramidal, because(A) $B - CI$ bond is more polar than $N - CI$ bond(B) $N - CI$ bond is more covalent than $B - CI$ bond(C)nitrogen atom is smaller than boron atoms(D) BCI_3 has no lone pair but NCI3 has a lone pair of electrons.
		Space for R	lough	Work

Tes	t-5 (Objective)					Horizon Test Series for Medical-2016
71.	Whie (A)	ch of the following SO_4^{2-} and BF_4^{-}	g pairs (B)	are isostructural ? NH_3 and NH_4^+	77.	Hyb resp	ridisation state of Xe in XeF_2 , XeF_4 and XeF_6 ectively are
	(C)	CO_3^{2-} and CO_2	(D)	CH_4 and BF_3		(A)	sp^2 , sp^3d , sp^3d^2
72.	Whie from	ch type of hybridis I left to right in the	sation is given	s shown by carbon atoms compound :		(B)	sp^3d, sp^3d^2, sp^3d^3
	CH_2	$=$ CH $-$ C \equiv N?				(C)	sp^3d^2 , sp^3d , sp^3d^3
	(A)	sp²,sp²,sp	(B)	sp ² , sp, sp		(D)	sp ² ,sp ³ ,sp ³ d
	(C)	sp,sp ² ,sp ³	(D)	sp ³ ,sp ² ,sp	78.	Acco	ording to molecular orbital theory, which of the wing will not exist?
73.	The pyra	molecules like midal in shape. V	BrF ₅ a Vhat is	and XeOF ₄ are square the type of hybridisation		(A)	H_2^+ (B) Be_2
	show	vn in these molec	ules?	. 2		(C)	<i>B</i> ₂ (D) <i>C</i> ₂
	(A)	dsp°	(B)	dsp ²	79.	Bon	d order of N_2^+, N_2^- and N_2^- will be
74.	(C) Whi hybr (A) (B) (C)	sp°d ch of the follow idisation? The hybridised for each orbital. The number of number of atom Hybrid orbitals f	(D) ring sta orbitals hybrid ic orbit	sp ^{od-} atements is true about s have different energies I orbitals is equal to the als that are hybridised. ultiple bonds.	80.	(A)(B)(C)(D)The to fo inco	 2.5, 2.5 and 3 respectively 2, 2.5 and 3 respectively 3, 2.5 and 3 respectively 2.5, 2.5 and 2.5 respectively conditions for the combination of atomic orbitals rm molecular orbitals are stated below. Mark the rrect condition mentioned here.
	(D)	The orbitals wi hybridisation.	th diffe	erent energies undergo		(A) (B)	same energy. The combining atomic orbitals must nave nearly
75.	Orde (A)	er of size of sp, sp $sp^3 < sp^2 < sp$	o ² and (B)	sp^3 orbitals is $sp < sp^2 < sp^3$		(C)	maximum extent. Combining atomic orbitals must have same symmetry about the molecular axis.
	(C)	$sp^2 < sp < sp^3$	(D)	$sp^2 < sp^3 < sp$		(D)	Pi (π) molecular orbitals are symmetrical around
76.	The	ground state el	ectron	ic configuration of S is			the bond axis.
	3s ² 3	$3p^4$. How does it	form th	e compound SF ₆ ?	81.	Wha	at is the order of stability of N_2 and its ions?
	(A) (B)	Due to octahed	ral shap ce of v	be of S atoms acant 3d-orbitals which		(A)	$N_2 > N_2^+ = N_2^- > N_2^{2-}$
	(C)	Due to sp^3 hy	red ele /bridis:	ctrons in excited state ation of S atom which		(B)	$N_2^+ > N_2^- > N_2 > N_2^{2-}$ $N_2^- > N_1^+ > N_2 > N_2^{2-}$
	(D)	provides 6 elect Due to presend between S and	ronsto ce of 3 F	6 F atoms sigma and 3 pi bonds		(D)	$N_2^{2-} > N_2^- = N_2^+ > N_2$

Tes	st-5 (Objective)	Horizon Test Series for Medical-2016
82.	What will be the bond order of the species with electronic configuration $1s^2 2s^2 2p^5$?	(C) Ice has maximum density at 0°C due to H- bonding.
	(A) One (B) Two	(D) $KHCl_2(HCl_2^-)$ exists but $KHF_2(HF_2^-)$ does not
83.	 (C) Three (D) Zero 2s and 2p atomic orbitals combine to give how many molecular orbitals? (A) 2 (B) 4 (C) 8 (D) 6 	 exist due to lack of H-bonding in HCI. 90. Which of the following statements is not true ? (A) Intermolecular hydrogen bonds are formed between two different molecules of compounds. (B) Intramolecular hydrogen bonds are formed
84.	Which of the following molecules is paramagnetic in	between two different molecules of the same
	(A) H_2 (B) Li_2	(C) Intramolecular hydrogen bonds are formed within the same molecule.
85.	(C) B_2 (D) N_2 Oxygen molecule is paramagnetic in nature. What is	(D) Hydrogen bonds have strong influence on the physical properties of a compound.
	the paramagnetic content in terms of magnetic moment	[ZOOLOGY]
	(A) 1.732 (B) 3 (C) 1.5 (D) 2.5	91. What happens to the diaphragm when a person exhales?(A) relaxes and arches
86.	 The ice floats on water because (A) solids have lesser density than liquids (B) it has open-cage like structure in which lesser molecules are packed per mL than water 	 (B) relaxes and flattens (C) contracts and arches (D) contracts and flattens
	 (C) of hydrogen bonding ice is lighter than water (D) when ice is formed water molecules come closer and start floating 	92. Oxygen binds to the of deoxyhaemoglobin (A) alpha chains (B) beta chains
87.	Which of the following compounds shows maximum hydrogen bonding?	(C) globin portion (D) heme groups93. Swim bladder in fishes functions as
	(A) HF (B) H_2O (C) NH_3 (D) CH_3OH	 (A) Accessory respiratory organ (B) Hydrostatic organ (C) On the static organ
88.	Which of the following molecules shows intramolecular hydrogen bonding?	(C) Organ of sound production and sound perception (D) All of the above
	(A) o-Nitrophenol (B) p-Nitrophenol	(A) Complete rings
89.	 Which of the following statements is true about hydrogen bonding? (A) Cl and N have comparable electronegativities yet there is no H-bonding in HCl because size of Cl 	 (B) Incomplete rings (C) Incomplete dorsally (D) Incomplete laterally
	is large.(B) Intermolecular H-bonding results in decrease in m.p. and b.p.	 95. Which of the following has no blood but respires. (A) Earthworm (B) Hydra (C) Cockroach (D) Fish

Tes	t-5 (Objective)	Horizon Test Series for Medical-2016
96.	In man, the structures with a function similar to spiracles of cockroach are (A) Lungs (B) Alveoli	102. The lungs of birds are more efficient than the lungs of humans because :(A) bird lungs use countercurrent exchange.
97.	 (C) Bronchioles (D) Nostrils Myoglobin differs from adult hemoglobin (a) in which of the following ways? (A) glutamic acid is replaced by valine in the beta chain (B) the two beta chains are replaced by gamma chains (C) it has two heme groups instead of four (D) it consists of only a single globin chain and heme group 	 (B) bird lungs have more surface area than human lungs. (C) bird lungs are able to concentrate the oxygen to much higher levels. (D) bird lungs use a one-way rather than an in-out air flow system. 103. Consider the following : A given volume of air is easier to move through the respiratory system than the same volume of water.
98.	Carbon dioxide is carried in the blood in all of the following ways except as (A) dissolved gas (B) bicarbonate ion (C) carbaminohaemoglobin (D) carboxyhaemoglobin	 II. Air holds more oxygen per unit of volume than does water. III. O₂ diffuses faster in air than it does in water. IV. Water breathers have more difficulty getting rid of CO₂ because it does not dissolve well in water. The correct statement include :
99.	Which ion replaces HCO_3^- when it diffuses out of the red blood cells into the plasma in systemic capillaries? (A) hydrogen ion (H ⁺) (B) hydroxyl ion (OH ⁻) (C) chloride ion (Cl ⁻) (D) CO_2^-	 (A) I, II, II, IV (B) I, II, II (C) II, III, IV (D) I, III, IV 104. Medullary inspiratory centre is always under direct. (A) Chemical control (B) Physical control (C) Nervous control (D) All of the scheme
100.	 Phagocytic cells found in alveolar walls are called as: (A) Kupffer cells (B) Pulmonary reticulocytes (C) Surfactant cells (D) Dust cell 	 (D) All of the above 105. The partial pressure of oxygen in systemic arteries is approximately : (A) 104 mm Hg (B) 100 mm Hg (C) 95 mm Hg (D) 40 mm Hg
101.	 The amount of air left in the lungs after a forceful expiration is called the (A) residual volume (B) vital capacity (C) tidal volume (D) tidal volume 	 106. Which of the following does not shift the oxy-haemoglobin dissociation curve to the right? (A) increased pH (B) increased carbon dioxide (C) increased temperature (D) 2,3-DPG

Tes	t-5 (Objective)	Horizon Test Series for Medical-2016				
107. 108.	 What is the primary function of the pneumotaxic center? (A) controls switch off point of inspiration (B) increases the respiratory rate (C) causes over-inflation of lungs (D) decreases the respiratory drive In a patient of chronic obstructive pulmonary disease, which of the following is likely to be increased ? 	 114. Methemoglobin is : (A) deoxygenated haemoglobin (B) oxygenated haemoglobin (C) reduced haemoglobin (D) oxidized haemoglobin 115. The Bohr shift describes (A) the outward movement of Cl⁻ from the blood cell in exchange for <i>HCO</i>⁻ moving into the cell 				
109.	 (A) FRC (B) Residual volume (C) Vital capacity (D) Tidal volume The basic respiratory rhythm is established by : 	 (B) the leftward shift of the entire oxygen equilibrium curve when temperature rises. (C) the rightward shift of the entire oxygen equilibrium curve when pH rises. (D) the rightward shift of the entire oxygen equilibrium 				
110.	 (A) dorsal group of respiratory nuclei (B) ventral group of respiratory nuclei (C) pneumotaxis center (D) apneustic center Among mammals, the efficiency of ventilation of lungs as compared to reptiles and birds is better developed by the presence of (A) Ribs and costal muscles 	 (D) the rightward shift of the entire oxygen equilibrium curve when pH falls. 116. In man, enlarged pharyngeal tonsils are called (A) Epithelial bodies (B) Infundibular folds (C) Adenoids (D) Arytenoids 				
111.	 (B) Only ribs (C) Costal muscles (D) Diaphragm Growth of male larynx is controlled by (A) Prolactin (B) Thyroxin (C) Progesterone (D) Testosterone 	 117. The following can be measured with spirometer except. (A) Tidal volume (B) Inspiratory reserve volume (C) Vital capacity (D) Functional residual capacity 118. What important buffer in blood plasma neutralizes the 				
112.	 In birds during inspiration. (A) Air passes through the trachea into the posterior air sac. (B) Air moves from the lungs in the anterior air sacs. (C) Both (a) and (b) (D) Air flows from posterior air sacs into the lungs. The trachea is lined by the : (A) transitional epithelium (B) cuboidal epithelium (C) columnar epithelium (D) psuedo-stratified epithelium 	 Http://www.internet/content/forced plasma neutralizes the H⁺ if its concentration rises above normal in blood plasma ? (A) haemoglobin (B) hydroxyl ion (C) carbonic acid (D) bicarbonate ion 119. Overinflation of the lungs results in the : (A) Haldane effect (B) Bohr effect (C) Herring-Breuer reflex (D) Hamburger phenomenon 				

Space for Rough Work

[13]

			Horizon lest series for Medical-2016				
120. In (A) (A) (B) (C)	 normal lungs Physiological dead space is always greater than anatomical dead space. Dead space volume may increases by more than half during a maximal inspiration. Oxygen transfer can always be explained by passive diffusion. All of the above 	125. 126.	The percentage of total lung capacity which cannot be emptied out is about. (A) 50 (B) 46 (C) 24 (D) 12 Consider the following animals : I. Bear				
121. WI coi (A) (B) (C)	 hich of the following would have the same O₂ htent? blood entering the lungs and blood leaving the lungs blood entering the right side of the heart and blood entering the left side of the heart blood entering the tissue capillaries and blood leaving the tissue capillaries blood entering the right side of the heart and blood leaving the tissue capillaries 	127.	II. Salmon III. Frog IV. Lizard Endotherms are (A) I only (B) I and III (C) II and III (D) II, III and IV A person has a dead space air of 100ml; a respiratory				
(-) 122. Co I. II. III.	 leaving the right side of the heart insider the following statements : Vocal cords are not involved in the prevention of the food entering into the wind pipe during swallowing. During swallowing, the epiglottis prevents food entering the wind pipe. Uvula prevents the entry of food into the nasal cavity during swallowing. 	128.	rate of 11 per minute and a tidal volume of 400 ml. What would be his alveolar ventilation ? (A) 6000 ml (B) 4200 ml (C) 3300 ml (D) 3000 ml Consider the following : I. a drop in the pH of the blood II. stretch receptors in the lungs III. impulses from the breathing centers in the medulla				
Th (A) (C) 123. Ch affu (A) (C) 124. Th CC inc (A) (B) (C)	cavity during swallowing.The correct statements are :(A)I, II, III(B)I and II(C)II and III(D)I and III(C)II and III(D)I and III(B)CO2(B)CO2(C)H ⁺ ions(D)Lactic acid(A)O2(B)CO2(C)H ⁺ ions(D)Lactic acid(A)The Presence of CO2 in blood will lower pH becauseCO2 combines with, with the rate of reaction is increased by(A)H2O to form H ⁺ and HCO_3^- , carbonic anhydrase(B)(B)H2O to form only HCO_3^- , carbonic anhydrase(C)H2O to form only H ⁺ , carbonic ions.(D)H ⁺ form HCO_3^- , oxyhaemoglobin		 IV. Severe deficiencies of oxygen. Which of the following is not involved in speeding up breathing? (A) I and II (B) I, II and III (C) II and III (D) IV only Given below are the partial pressures (in mm Hg) of various gases analyzed at a certain point in the respiratory passage; Oxygen – 100 Carbon dioxide – 40 Nitrogen – 543 This air is most likely : (A) Inspired air (B) Alveolar air (C) Expired air (D) Nasal cavity air 				

Tes	t-5 (Objective)	Horizon Test Series for Medical-2016
130.	As the blood passes through the systemic capillaries	[BOTANY]
131.	 (A) Its pH rises (B) Its oxygen dissociation curve shift to the left (C) Carbonate ions pass from the RBC to the plasma (D) The concentration of chloride ions in RBC falls Cyanosis is seen when concentration of (A) deoxygenated Hb increases (B) deoxygenated Hb decreases (C) oxygenated Hb increases (D) oxygenated Hb decreases (D) oxygenated Hb decreases (D) oxygenated Hb decreases 	 136. Respiration in plants (A) Occurs only during day (B) Results in the formation of vitamins (C) Is characteristic of all living cells (D) Often requires CO₂ 137. In plants energy is produced during the process of- (A) Photosynthesis (B) Transpiration (C) Respiration
	 (A) Tidal volume (TV) + Inspiratory reserve volume (IRV) (B) IRV + Expiratory reserve volume (ERV) (C) IRV + TV + ERV (D) ERV + Residual volume (RV) 	 (D) Water absorption 138. A very important feature of respiration is that – (A) It liberates energy (B) It provides O₂ (C) Utilize CO₂
133.	 The diffusing capacity of the respiratory membrane is times than that of the oxygen because carbon dioxide is lipid soluble than oxygen. (A) 250, Higher, Less(B) 250, Lesser, More (C) 20, Higher, More (D) 20, Lesser, Less 	 (D) Synthesize complex compounds 139. What is the function of molecular oxygen in cellular respiration? (A) It causes the breakdown of citric acid.
134.	 The respiratory disorder characterized by wheezes during expiration and caused by hypersensitivity of respiratory passages to allergen, is called as : (A) Chronic bronchitis (B) Emphysema (C) Bronchial asthma (D) Pneumonitis 	 (B) To combine with glucose to produce carbon di- oxide. (C) To combine with carbon from organic molecules to produce carbon dioxide. (D) To combine with hydrogen from organic molecules to produce water. 140. Sugars are not as good as fats as a source of energy for cellular repriration because sugars
135.	 (D) Pneumonitis The occupational pneumoconiosis, that can lead to the development of mesothelioma of lung, is (A) Anthracosis (B) Silicosis (C) Bagassosis (D) Asbestosis 	 for cellular respiration, because sugars (A) produce toxic amino groups when broken down. (B) contain more hydrogen (C) usually bypass glycolysis and the Krebs cycle. (D) contain fewer hydrogen atoms and electrons.

[15]

Test	t-5 (Objective)	Horizon Test Series for Medical-2016				
141.	 The major reason that glycolysis is not as energy productive as respiration is that (A) NAD⁺ is regenerated by alcohol or lactate production, without the high-energy electrons passing through the electron transport chain. 	 147. R.Q. of fatty substances is generally (A) Unity (B) Less than one (C) Greater than one 				
	 (B) it is the pathway common to fermentation and respiration. (C) it does not take place in a specialized membrane-bound organelle. (D) pyruvate is more reduced than CO₂; it still contains much of the energy from glucose. 	(D) Zero148. The R.Q. value of Oxalic acid is(A) 1.0(B) 0.7(C) 1.5(D) ∞ 149. During the stage in the complete oxidation of glucose, are the greatest number of ATP molecules formed from ADP				
142. 143.	 The tissue of highest respiratory activity is (A) Meristems (B) Ground tissue (C) Phloem (D) Mechanical tissue Protein is used as respiratory substrate only when (A) Carbohydrates are absent (B) Fats are absent (C) Both carbohydrates and fats are exhausted (D) Fats and carbohydrates are abundant. 	 (A) glycolysis (B) krebs cycle (C) conversion of pyruvic acid to acetyl Co-A (D) electron transport chain 150. How many ATP molecules could maximally be generated from one molecule of glucose, if the complete oxidation of one mole of glucose in CO₂ and H₂O yields 686 kcal and the useful chemical energy available in the high energy phosphate bond of one mole of ATP is 12 kcal2 				
144.	 Respiration is an (A) Endothermic process (B) Exothermic process (C) Anabolic process (D) Endergonic process 	 (A) Thirty (B) Fifty - seven (C) One (D) Two 151. All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membranes in eukaryotes and in cytosol in prokaryotes. This enzyme is 				
145. 146.	Apparatus to measure rate of respiration and R.Q. is (A) auxanometer (B) potometer (C) respirometer (D) manometer In some succulent plants like Opuntia the R.Q is zero because (A) CO_2 is released without any absorption of O_2 (B) O_2 is absorbed but CO_2 is not released (C) There is often compensation point in these plants due to thick phylloclades.	 (A) isocitrate dehydrogenase (B) malate dehydrogenase (C) succinate dehydrogenase (D) lactate dehydrogenase. 152. The overall goal of glycolysis, krebs cycle and the electron system is the formation of (A) ATP in one large oxidation reaction (B) sugars (C) nucleic acids 				
	(D) None of these.	(U) ATP IN SMAIL STEPWISE UNITS.				

Tes	t-5 (Objective)	1	Horizon Test Series for Medical-2016				
153.	The energy-releasing process in which the substrate is oxidised without an external electron acceptor is called	159. F	Respiratory enzymes are located in (A) Mitochondrial matrix (mitochondria)				
	(A) fermentation	((B) Perimitochondrial space				
	(B) photorespiration	((C) Cristae				
	(C) aerobic respiration	((D) Outer membrane				
	(D) glycolysis		The correct sequence of electron acceptor in ATP syn-				
154.	In germinating seeds fatty acids are degraded exclusively in the	((A) Cyta ₃ a b c (B) Cyt b c a a ₃				
	(A) proplastids (B) glyoxysomes	((C) Cytbca ₃ a (D) Cytcbaa ₃				
	(C) peroxisomes (D) mitochondria	161. F	FADH ₂ is produced during the following reaction				
155.	Aerobic respiratory pathway is appropriately termed :	(,	(A) Succinic acid to fumaric acid				
	(A) parabolic (B) amphibolic	((B) Fumaric acid to malic acid				
	(C) anabolic (D) catabolic	((C) Succinyl Co-A to succinic acid				
156.	Which of the following statements regarding metabolic pathways is incorrect ?		(D) Isocitric acid to oxaloacetic acid				
			Which of the following is non-enzymatic phosphorylation?				
	(A) Many of the steps of glycolysis can run in reverse	н ((A) Formation of fructose 1, 6-diphosphate				
	(B) Starch, sucrose or glycogen must be hydrolysed before it can enter the glycolysis.	((B) Formation of dihydroxyacetone phosphate				
	(C) After fats are digested, glycogen enters glycolysis by forming DHAP.	((C) Formation of 1, 3-diphosphogylceraldehyde(D) All the above				
	(D) After fat digestion, fatty acids can no longer participate in cellular respiration.		n Kreb cycle GTP is formed in				
			(A) Substrate level phosphorylation				
157.	A single ATP produce	((B) Oxidative phosphorylation				
	(A) 8 kcal (B) 10 kcal	((C) Photophosphorylation				
	(C) 12 kcal (D) 100 kcal	((D) Decarboxylation				
158.	Decarboxylation is not involved in	164. V	What is active glucose?				
	(A) Electron transport system	((A) FAD – glucose				
	(B) Glycolysis	((B) NAD – glucose				
	(C) Kreb's cycle	(C) Phosphoglucose				
	(D) Alcoholic fermentation	(D) Glycerophosphate				

Test-5 (Objective)				-		Horizon Test Se	ərie	s for	Medical-2016			
165.	Match Column-I with Column-II and select the correct option from the codes given below.				169.	169. Substrate level phosphorylation occurs during step of Krebs' cycle ?						
		Column - I Column - II				(A)	Succinyl - CoA ® Succinic acid					
	(A)	Glycolysis	(i)	Inner mitochondrial		(B)	Isocitric acid ® Ox	alos	uccini	c acid		
	()		()	membrane		(C)	Oxalosuccinic acid	l® a	α -ket	o glutaric acid		
	(B)	TCA cycle	(ii)	Mitochondrial matrix		(D)	Malic acid ® OAA					
	(C)	ETS	(iii)	Cytoplasm	170.	Pho	Phosphorylation of glucose during glycolysis is					
	(A) $A - (iii), B - (i), C - (ii)$				cata	catalyzed by						
	(B) $A - (iii), B - (ii), C - (i)$					(A) (D)	 A) phosphoglucomutase B) phosphoglucoisomerase C) houstkinger 					
	(C)	(C) $A - (i), B - (ii), C - (iii)$				(D)						
	(D)	(D) $A - (ii), B - (i), C - (iii)$				(C) (D)	nbosnbonulase	nexokinase				
166.	Sele	ect the wrong stat	tement	with respect to glycolysis.	171	(D) Elec	priospriorylase.	(sta)	m (E]	(S) is located in		
	(A)	(A) It occurs outside mitochondria.(B) It is an anaerobic phase.				mito	chondrial	310				
	(B)					(A)	Outer membrane (I	B)	Inter	membrane space		
	(C)	Glucose under	goes pa	artial oxidation to form 2		(C)	inner membrane (I	D)	matri	х.		
		molecules of pyruvic acid.		172.	The	end product of oxidation phosphorylation is						
	(D)	(D) Glucose is phosphorylated to glucuse-6-				(A)	NADH (I	B)	Oxyg	len		
167.	phosphate by isomerase enzyme.				(C)	ADP (I	D)	ATP	+ H ₂ O			
	associated with utilization of ATP?			173.	Match Column - I with Column - II and select the correct							
	(A)	(A) Glucose ® Glucose-6-phosphate				optic	Column	/en t	below.	Column II		
	(B)	Fructose-6-p 6-biphosphate	phosphate ® Fructose-1,			Α.	Molecular oxygen		(i)	α -Ketoglutaric		
	(C)	PEP ® Pyruvic	cacid							acid		
	(D)	both (A) and (E	3)			В.	Electron acceptor		(ii)	Hydrogen		
168.	Identify A and B in the given reaction :									acceptor		
	Pyruvic acid + CoA + NAD ⁺ $\xrightarrow{Mg^{-1}}$ Pyruvate dehydrogenase					C.	Pyruvate dehvdrogenase		(iii)	Cytochrome C		
	A+	$A + B + NADH + H^+$				D.	Decarboxylation		(iv)	Acetyl CoA		
	(•)			B	_	(A)	A - (ii), B - (iii), C -	(iv),	D - (i)			
	(A) (P)			CO_2		(B)	A - (iii), B - (iv), C -	(ii),	D - (i)			
	(Б) (С)	CO				(C)	A - (ii), B - (i), C - (iii), D - (iv)					
	(O) (D)	Acetyl CoA		H_2O		(D)	A - (iv), B - (iii), C - (i), D - (ii).					
	()	,		2								
Space for Rough Work							k					

[18]

Space for Rough Work

