

Test No. 4

Topics of The Test

Dhuning	Hait Dimension France Mation in 4D
Physics	Unit, Dimension, Errors, Motion in 1D

Chemistry	Atomic Structure & Classification of Elements.

Biology	Zoology : Animal Nutrition + Respiration Botany : Molecular basis of inheritance.	

Test-4 (Objective)

Test No. 4

	[PHYSICS]	7	A uniform wire of length / diameter D and density
1.	The SI Unit of thermal conductivity is	1.	ρ is stretched under a tension T. The correct relation
	(A) $Jsm^{-1}K^{-1}$ (B) $W^{-1}m^{-1}K^{-1}$		between its fundamental frequency f , the length L and
	(C) $Wm^{-1}K^{-1}$ (D) $Wm^{-2}K^{-1}$		the diameter D is
2.	The magnitude of any physical quantity		(A) for $\frac{1}{1}$ (D) for $\frac{1}{1}$
	(R) depends on the method of measurement		(A) $T \approx \frac{1}{LD}$ (B) $T \approx \frac{1}{L\sqrt{D}}$
	(B) does not depend on the method of measurement		1 1
	 (D) directly proportional to fundamental unit of mass, length and time 		(C) $f \propto \frac{1}{D^2}$ (D) $f \propto \frac{1}{LD^2}$
3.	The volume of a cube in m^3 is equal to the surface area of the cube in m^2 . The volume of the cube is	8.	The relation $p = \frac{\alpha}{\beta} e^{\frac{-\alpha z}{k\theta}}$, where <i>p</i> is pressure, Z is
	(A) 64 m^3 (B) 216 m^3		distance, k is Boltzmann constant and θ is
	(C) 512 m^3 (D) 195 m^3		temperature. The dimensional formula of eta will be
4.	If the magnetic flux is represented in weber, then the unit of magnetic induction will be		(A) $[M^0L^2T^0]$ (B) $[ML^2T]$ (C) $[ML^0T^{-1}]$ (D) $[M^0L^2T^{-1}]$
	(A) $\frac{Wb}{m^2}$ (B) $Wb \times m$	9.	The dimensional formula of $\frac{1}{\mu_0 \varepsilon_0}$ is
	(C) $Wb \times m^2$ (D) $\frac{Wb}{m}$		(A) $[M^0LT^{-2}]$ (B) $[M^0L^{-2}T^{-2}]$ (C) $[M^0LT^{-1}]$ (D) $[M^0L^2T^{-2}]$
5.	What are the units of $k = 1/4\pi\varepsilon_0$?	10.	If <i>E</i> , <i>M</i> , <i>L</i> and <i>G</i> denote energy, mass, angular momentum and gravitational constant respectively, then
	(A) $C^2 N^{-1} m^{-2}$ (B) $Nm^2 C^{-2}$		the quantity (E^2L^2 / M^5G^2) has the dimensions of
	(C) Nm ² C ² (D) Unitless		(A) angle (B) length
6.	From the dimensional consideration which of the		(C) mass (D) none of these
	following equations is correct ?	11.	The speed of light c, gravitational constant G and
	(A) $T = 2\pi \sqrt{\frac{R^3}{GM}}$ (B) $T = 2\pi \sqrt{\frac{GM}{R^3}}$		Planck's constant <i>h</i> are taken as fundamental units in a system. The dimensions of time in this new system should be
			(A) $[G^{1/2}h^{1/2}c^{-5/2}]$ (B) $[G^{-1/2}h^{1/2}c^{1/2}]$
	(C) $T = 2\pi \sqrt{\frac{GM}{R^2}}$ (D) $T = 2\pi \sqrt{\frac{R^2}{GM}}$		(C) $[G^{1/2}h^{1/2}c^{-3/2}]$ (D) $[G^{1/2}h^{1/2}c^{1/2}]$

Space for Rough Work

Tes	t-4 (Objective)	Horizon Test Series for Medical-20)16
12.	A gas bubble formed from an explosion under water oscillates with a period <i>T</i> proportional to $p^a d^b E^c$, where <i>p</i> is pressure, <i>d</i> is the density of water and <i>E</i> is the total energy of explosion. The value of a, b, c are (A) $a = 1, b = 1, c = 2$ (B) $a = 1, b = 2, c = 1$ (C) $a = \frac{5}{6}, b = \frac{1}{2}, c = \frac{1}{3}$ (D) $a = -\frac{5}{6}, b = \frac{1}{2}, c = \frac{1}{3}$	18. Assertion The error in the measurement of radiu the sphere is 0.3%. The permissible error in its sur area is 0.6%. Reason The permissible error is calculated by formula $\frac{\Delta A}{A} = \frac{4\Delta r}{r}$. (A) Both assertion and reason are true and reaso the correct explanation of assertion (B) Both assertion and reason are true but reason not the correct explanation of assertion (C) Assertion is true but reason is false	us of face ⁷ the on is on is
13.	(b) $6^{3} 2^{3} 3$ If σ =surface charge density, ε = electric permittivity the dimensions of $\frac{\sigma}{\varepsilon}$ are same as	(D) Both assertion and reason are false 19. The radius of sphere is measured to be (2.1 ± 0.5) Calculate its surface area with error limits (A (55.4 ± 26.4) cm ²)cm.
14.	(A) electric force (B) electric field intensity (C) pressure (D) electric charge If a, b, c and d are mass, length, time and current respectively, then b^2a/c^3d has the dimensions of	(B) $(55.4 \pm 0.02) \text{ cm}^2$ (C) $(55.4 \pm 2.64) \text{ cm}^2$ (D) $(55.4 \pm 0.26) \text{ cm}^2$	
15.	 (A) capacitance (B) electric field (C) permittivity (D) electric potential If R, C and L denote resistance, capacitance and 	20. If the length of rod A is 3.25 ± 0.01 cm and that of 4.19 ± 0.01 cm, then the rod B is longer than roby	B is od A
	inductance. Which of the following will not have the dimensions of frequency? (A) $[RL^{-1}]$ (B) $[R^{-1}C^{-1}]$ (C) $[L^{-1/2}C^{-1/2}]$ (D) $[RCL]$	(A) 0.94 ± 0.00 cm (B) 0.94 ± 0.01 cm (C) 0.94 ± 0.02 cm (D) 0.94 ± 0.005 cm 21. Position-time graph for motion with zero acceleration	ation
16.	A capillary tube is attached horizontally to a constant heat arrangement. If the radius of the capillary tube is increased by 10%, then the rate of flow of liquid will change nearly by (A) +10% (B) +46% (C) -10% (D) -40%	(A) (B) (B)	
17.	Percentage error in the measurement of mass and speed are 2% and 3% respectively. The error in the estimation of kinetic energy obtained by measuring mass and speed will be (A) 12% (B) 10% (C) 2% (D) 8%		

Test-4 (Objective)

22. The speed-time graph of a particle moving along a solid curve is shown below. The distance traversed by the particle from t = 0s to t = 3s is

- 23. A boat is sent across a river with a velocity of 8 km/h. If the resultant velocity of boat is 10 km/h, then velocity of the river is
 - (A) 10 km/h (B) 8 km/h
 - (C) 6 km/h (D) 4 km/h
- 24. Select the incorrect statements from the following.
 - S1 Average velocity is path length divided by the time interval.
 - S2 In general, speed is greater than the magnitude of the velocity.
 - S3 A particle moving in a given direction with a non-zero velocity can have zero speed.
 - S4 The magnitude of average velocity is the average speed.
 - (A) S2 and S3 (B) S1 and S4
 - (C) S1, S3 and S4 (D) All four statements

```
25. A car moves from X to Y with a uniform speed v_u and returns to X with a uniform speed v_u. The average
```

returns to Y with a uniform speed v_a . The average speed for this round trip is

(A)
$$\frac{2v_d v_u}{v_d + v_u}$$
 (B) $\sqrt{v_u v_d}$

)
$$\frac{V_{d}V_{u}}{V_{d} + V_{u}}$$
 (D) $\frac{V_{u} + V_{d}}{2}$

26. The position x of a particle varies with time *t* as $x = at^2 - bt^3$. The acceleration of the particle will be zero at time *t* equal to

(A)
$$\frac{2a}{3b}$$
 (B) $\frac{1}{b}$
(C) $\frac{a}{3b}$ (D) c

(C

- 27. A stone falls freely from rest and the total distance covered by it in the last second of its motion equals the distance covered by it in the first three seconds of its motion. The stone remains in the air for
 - (A) 6 s (B) 5 s (C) 7 s (D) 4 s
- 28. A conveyor belt is moving horizontally at a speed of 4 ms⁻¹. A box of mass 20 kg is gently laid on it. It takes 0.1 s for the box to come to rest. If the belt continues to move uniformly, then the distance moved by the box on the conveyor belt is
 - (A) zero (B) 0.2 m
 - (C) 0.4 m (D) 0.8 m
- 29. A ball is projected horizontally with a velocity of 4 ms^{-1} from the top of a tower. The velocity of the ball after 0.7s is (Take g = 10 ms⁻²)
 - (A) 1 ms⁻¹ (B) 10 ms⁻¹
 - (C) 8 ms^{-1} (D) 3 ms^{-1}
- A particle moving with a uniform acceleration travels
 24 m and 64 m in the first two consecutive interval of
 4 s each. Its initial velocity will be
 - (A) 5 ms^{-1} (B) 3 ms^{-1}
 - (C) 1 ms^{-1} (D) 4 ms^{-1}
- 31. Two spheres of same size, one of mass 2 kg and another of mass 4 kg, are dropped simultaneously from the top of Qutab Minar (height = 72 m). When they are 1 m above the ground, the two spheres have the same
 - (A) momentum (B) kinetic energy
 - (C) potential energy (D) acceleration

Space for Rough Work

Tes	t-4 (Objective)	Horizon Test Series for Medical-2016
32. 33.	The velocity of a particle at an instant is 10 ms ⁻¹ . After 3 s its velocity will become 16 ms ⁻¹ . The velocity at 2s, before the given instant would have been (A) 6 ms ⁻¹ (B) 4 ms ⁻¹ (C) 2 ms ⁻¹ (D) 1 ms ⁻¹ A body is projected vertically upwards with a velocity u. It crosses a point in its journey at a height h twice, just after 1 and 7 s. The value of u in ms ⁻¹ is	(C) $\frac{at}{(a+b)}$ (D) $\frac{b^2t}{a+b}$ 38. An automobile travelling at 50 kmh ⁻¹ , can be stopped at a distance of 40 m by applying brakes. If the same automobile is travelling at 90 kmh ⁻¹ , all other conditions remaining same and assuming no skidding, the minimum stopping distance in metre is (A) 72 (B) 92.5 (C) 102.6 (D) 129.6
34.	(Take g = 10 ms ⁻²) (A) 50 (B) 40 (C) 30 (D) 20 A ball is thrown from height <i>h</i> and another from 2h. The ratio of time taken by the two balls to reach ground is (A) $1: \sqrt{2}$ (B) $\sqrt{2}: 1$	 39. A packet is dropped from a balloon which is going upwards with the velocity 12 ms⁻¹, the velocity of the packet after 2 s will be (A) -12 ms⁻¹ (B) 12 ms⁻¹ (C) -7.6 ms⁻¹ (D) 7.6 ms⁻¹ 40. If a ball is thrown vertically upwards with speed <i>u</i>, the distance covered during the last <i>t</i> second of its ascent is (A) ut - 1/(qt²) (B) (u + qt)t
35.	(C) 2:1 (D) 1:2 If relation between distance and time is $s = a + bt + ct^2$, find initial velocity and acceleration (A) $b + 2ct$, $2c$ (B) b , $2c$ (C) $2c$, b (D) $b + 2c$, $2c$	(C) ut (D) $\frac{1}{2}gt^2$ 41. Which of the following velocity-time graphs shows a realistic situation for a body in motion ?
36.	The displacement <i>x</i> of a particle varies with time <i>t</i> as $x = ae^{-\alpha t} + be^{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will (A) go on decreasing with time (B) be independent of α and β	(A) (B) (B) (C) (C) (C) (C)
37.	(c) Grop to zero when $\alpha = p$ (D) go on increasing with time A car starts from rest, moves with an acceleration <i>a</i> and then decelerates at a constant rate <i>b</i> for sometime to come to rest. If the total time taken is <i>t</i> . The maximum velocity of car is given by (A) $\frac{abt}{(a+b)}$ (B) $\frac{a^2t}{a+b}$	(C) $V = (D)$ (D) (D) (D) 42. Velocity-time curve for a body, projected vertically upwards, is (A) parabola (B) ellipse (C) hyperbola (D) straight line

Test-4 (Objective)

50. Match the column I with column II and mark the appropriate choice.

	ColumnI		Column II
	(Atomic number)		(Period, Group)
(A)	14	(i)	3, 14
(B)	53	(ii)	5, 2
(C)	38	(iii)	6, 10
(D)	78	(iv)	5, 17

- (A) $(A) \rightarrow (ii), (B) \rightarrow (iv), (C) \rightarrow (iii), (D) \rightarrow (i)$
- (B) $(A) \rightarrow (i), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (iii)$
- $(C) \quad (A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iv)$
- (D) $(A) \rightarrow (ii), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (iv)$
- 51. There are two rows of inner transition elements in the periodic table each containing 14 elements. The reason for this may be
 - (A) *f*-orbital has seven values for magnetic quantum number, hence total electrons are 14
 - (B) in the periodic table there is space to accommodate 14 electrons only
 - (C) only 28 inner transition elements have been discovered till date
 - (D) 28 is the maximum number of elements that any block can accommodate.
- 52. Which of the following is not correct statement for periodic classification of elements ?
 - (A) The properties of elements are the periodic functions of their atomic number.
 - (B) Non-metallic elements are less in number than metallic elements.
 - (C) The first ionisation energies of elements along a period do not vary in regular manner with increase in atomic number.
 - (D) For transition elements, the last electron enters into (n −2) d-subshell.
- 53. Which of the following transitions will involve maximum amount of energy ?
 - (A) $M \rightarrow M^+ + e^-$ (B) $M^- \rightarrow M^+ + 2e^-$

Horizon Test Series for Medical-2016

- (C) $M^{2+} \rightarrow M^{3+} + e^-$ (D) $M^+ \rightarrow M^{2+} + e^-$
- 54. Indicate the wrong statement on the basis of the periodic table.
 - (A) The most electronegative element in the periodic table is fluorine.
 - (B) Scandium is the first transition element and belongs to fourth period.
 - (C) There are three transition series in the periodic table each containing 10 elements.
 - (D) Along a period halogens have maximum negative electron gain enthalpy.
- 55. The first ionisation enthalpy of the elements are in the order of
 - (A) C<N<Si<P
 (B) N<Si<C<P
 (C) Si<P<C<N
 (D) P<Si<N<C
- 56. Which is correct increasing order of their tendency of the given elements to form M^{3-} ion ?
 - (A) Bi>Sb>As>P>N (B) Bi<Sb<As<P<N
 - (C) N<P<Sb<Bi<As (D) $Bi>Sb \sim N \sim P>As$
- 57. Which of the following elements will have highest second ionisation enthalpy?
 - (A) $1s^2 2s^2 2p^6 3s^2$
 - (B) 1s²2s²2p⁶3s¹
 - (C) $1s^2 2s^2 2p^6 3s^2 3p^2$
 - (D) $1s^2 2s^2 2p^6 3s^2 3p^3$
- 58. Which of the following arrangements represents the correct order of electron gain enthalpy?
 - (A) O<S<F<CI (B) CI<F<S<O
 - (C) S<O<CI<F (D) F<CI<O<S
- 59. As we move from left to right, the electronegativity increases. An atom which is highly electronegative has
 - (A) large size
 - (B) low electron affinity
 - (C) high ionisation enthalpy
 - (D) Iow chemical reactivity

Space for Rough Work

Test-4 (Objective)			1		Horizon Tes	st Seri	es for M	edical-2016	
60.	What is the of the alkal	e decreasing or ine earth meta	der of basicity of hydroxides als ?			x		Y	Z
	(A) Be(Ol	H) ₂ >Mg(OH) ₂ >	Sr(OH) ₂ >Ba(OH) ₂		(A)	A noble gas	Alka	ali metal	Alkaline earth metal
	(C) Ba(O	H) ₂ >Be(OH) ₂ > H) ₂ >Sr(OH) ₂ >N	$M_{g(OH)_2}$ >Be(OH) ₂		(B)	Alkali metal	A no	oble gas	Alkaline earth metal
61.	(D) Sr(OF Which of th the electron	H) ₂ >Be(OH) ₂ >N ne following sta n gain enthalp	/lg(OH) ₂ >Ba(OH) ₂ atements is not correct about y ?		(C)	Alkaline earth metal	Alka	ali metal	A noble gas
	(A) In ger less r aroup	neral, the elect negative in goi	tron gain enthalpy becomes ing from top to bottom in a		(D)	Alkali metal	meta		A noble gas
	(B) The el	lectron gain ent eriod from left	halpy becomes less negative to right.	64.	vvni varia (A)	ation of the follo ation of atomic ra In a group, the	wing s adii in th ere is co	tatement ne periodic ontinuous	s regarding the table is not true? increase in size
	(C) The entha	elements havir gases have l lpies.	ng stable configuration like arge positive electron gain		(B)	with increase in In 4 <i>f</i> -series, th size with increa	n atomi iere is ase in a	c number a continu atomic nui	: ous decrease in mber.
	(D) Electron gain enthalpy of O or F is less than that of succeeding element.			(C) (D)	The size of ine In 3 rd period, t	rt gase he size	s is larger e of atom	than halogens. s increases with	
62.	A sudden I and third ic associated configuration	arge jump bet onization energ I with which o on?	ween the values of second gies of an element would be of the following electronic	65.	The peri (A)	increase in ato correct order of od of periodic ta SiO ₂ <p<sub>4O₁₀<s< td=""><td>mic nui acidic ble is O₃<cl<sub>2</cl<sub></td><td>mber. character ,O₇</td><td>of oxides in third</td></s<></p<sub>	mic nui acidic ble is O ₃ <cl<sub>2</cl<sub>	mber. character ,O ₇	of oxides in third
	(A) 1s²,2s	s ² 2p ⁶ ,3s ¹ 3p ²			(B) (C)	Cl ₂ O ₇ <so<sub>3<p<sub>4 SO₃<cl<sub>2O₇<p<sub>4</p<sub></cl<sub></p<sub></so<sub>	0 ₁₀ <si 0₁₀<si< td=""><td>0₂ 0₂</td><td></td></si<></si 	0 ₂ 0 ₂	
	(B) 1s ² ,2s	s ² 2p ⁶ ,3s ² 3p ¹		66	(D)	SiO ₂ <cl<sub>2O₇<p< td=""><td>40₁₀<s< td=""><td>iO₃</td><td>ill have highest</td></s<></td></p<></cl<sub>	40 ₁₀ <s< td=""><td>iO₃</td><td>ill have highest</td></s<>	iO ₃	ill have highest
	(C) 1s ² ,2s	s ² 2 <i>p</i> ⁶ ,3s ¹		00.	ioni	sation energy ?	ving ei	ements w	nii nave nignesi
	(D) 1s ² ,2s	s²2p ⁶ ,3s²			(A)	1s ² 2s ² 2p ⁶ 3s ¹	(B)	1s² 2s² 2	p ⁶ 3s ² 3p ³
63.	Few eleme	ents are mato energies. Ident	ched with their successive ify the elements.		(C)	1s ² 2s ² 2p ⁶ 3s ² 3	3 <i>p</i> ⁴ (D)	1s ² 2s ² 2	<i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ¹
	Floment			67.	In w with	hich of the follow the property me	ing, the entione	e order is r d.	not in accordance
	X	2372	5251		(A)	Li <na<k<rb -<="" td=""><td>Atomic</td><td>radius</td><td></td></na<k<rb>	Atomic	radius	
	Y	520	7297		(B)	F>N>O>C - loi	nisatior	n enthalpy	,
	Z	900	1758		(C) (D)	SI <p<s<ci-e F<ci<br<i-e< td=""><td>ectron</td><td>egativity egativity</td><td></td></ci<br<i-e<></p<s<ci-e 	ectron	egativity egativity	

Tes	t-4 (Objective)	-	Horizon Test Series for Medical-2016
68.	Which of the following is arranged in order of increasing metallic character ?	73.	An element with mass number 81 contains 31.7% more neutrons as compared to protons. Find the
	(A) P <si<na<be<mg< td=""><td></td><td>symbol of the atom.</td></si<na<be<mg<>		symbol of the atom.
	(B) Be <mg<p<na<si< td=""><td></td><td>(A) ⁸¹₃₄Se (B) ⁸¹₃₅Br</td></mg<p<na<si<>		(A) ⁸¹ ₃₄ Se (B) ⁸¹ ₃₅ Br
	(C) Si <be>Mg<na<p< td=""><td></td><td>(C) 81Kr (D) 81Bb</td></na<p<></be>		(C) 81 Kr (D) 81 Bb
	(D) P <si<be<mg<na< td=""><td>74</td><td>$(0)_{36} (1)_{37} (0)_{37} (1)_{37} ($</td></si<be<mg<na<>	74	$(0)_{36} (1)_{37} (0)_{37} (1)_{37} ($
69.	The main reason for showing anomalous properties of the first member of a group in s or <i>p</i> -block is	74.	effect.
	(A) maximum chemical reactivity		(A) There is no time lag between the striking of light
	(B) maximum electronegativity and different configurations		beam and the ejection of electrons from the metal surface.
	(C) small size, large charge/radius ratio		(B) The number of electrons ejected is inversely proportional to the intensity of light.
70.	 (D) tendency to form multiple bonds. The first ionization enthalpies of Na, Mg, Al and Si are in the order. 		(C) Photoelectric effect is not observed below threshold frequency.
	(A) Na <mg>Al<si (b)="" na="">Mg>Al>Si</si></mg>		(D) The kinetic energy of the electrons increases with increase in frequency of light used.
71	(C) Na <mg<al<si (d)="" na="">Mg>Al<si< td=""><td>75.</td><td>The spectrum of white light ranging from red to violet is</td></si<></mg<al<si>	75.	The spectrum of white light ranging from red to violet is
71.	number 64) is		called a continuous spectrum because
	(A) $[Xe]4f^35d^56s^2$ (B) $[Xe]4f^75d^26s^1$		(A) different colours are seen as different bands in the spectrum
	(C) $[Xe]4f^{7}5d^{1}6s^{2}$ (D) $[Xe]4f^{8}5d^{6}6s^{2}$		(B) the colours continuously absorb energy to form a spectrum
72.	The formation of the oxide ion, $O_{(g)}^{2-}$, from oxygen atom		(C) the violet colour merges into blue, blue into green, green into yellow and so on
	step as shown below:		(D) it is a continuous band of coloured and white light separating them.
	$O_{(g)} + e^- \rightarrow O_{(g)}^-; \Delta H^\circ = -141 \text{ kJ mol}^{-1}$	76.	A certain metal when irradiated by light $(x) = 3.2 \times 10^{16}$ Hz) emits photoelectrons with twice K E
	$O^{(g)} + e^- \rightarrow O^{2^-}_{(g)}; \Delta H^\circ = +780 \text{ kJ mol}^{-1}$ Thus, process of formation of O^{2^-} in gas phase is		as did photoelectrons when the same metal is
			irradiated by light ($v = 2.0 \times 10^{16}$ Hz). The v_0 of the metal is
	neon It is due to the fact that		(Δ) 1 2×10 ¹⁴ Hz (B) 8×10 ¹⁵ Hz
	(A) oxygen is more electronegative		(C) 1.2×10^{16} Hz (D) 4×10^{12} Hz
	(B) addition of electron in oxygen results in larger	77	The energy difference between the ground state of an
	size of the ion		atom and its excited state is 3×10^{-19} J. What is the
	(C) electron repulsion outweighs the stability gained		wavelength of the photon required for this transition?
	by achieving noble gas configuration		(A) 6.6×10 ⁻³⁴ m (B) 3×10 ⁻⁸ m
	 (D) O⁻ ion has comparatively smaller size than oxygen atom. 		(C) 1.8×10 ⁻⁷ m (D) 2×10 ⁴ m

Space for Rough Work

Test-4 (Objective)			Horizon Test Series for Medical-2016
78.	The angular momentum of an electron stationary state can be expr $m_e vr = n \frac{h}{2\pi}$.Based on this expression	i in a given essed as an electron	 83. The energy of the electron in a hydrogen atom has a negative sign for all possible orbits because (A) when the electron is attracted by the nucleus and is present in orbit <i>n</i>, the energy is emitted and its
	can move only in those orbits for which momentum is(A) equal to <i>n</i>(B) integral multiplication	its angular iple of $\frac{h}{2\pi}$	 energy is lowered. (B) when the electron is attracted by the nucleus and is present in orbit <i>n</i>, the energy is absorbed and its energy is increased. (C) when the electron is repealed by the nucleus, the
	(C) multiple of <i>n</i> (D) equal to $\frac{h}{2\pi}$	only	(C) when the electron is repelled by the fuddeds, the energy is released and its energy is lowered.(D) None of these.
79.	What is the colour corresponding to the wallight emitted when the electron in a hydrony undergoes transition from $n = 4$ to $n = 2$ (A) Blue (B) Red	avelength of rogen atom ?	 84. An electron in excited hydrogen atom falls from fifth energy level to second energy level. In which of the following regions, the spectrum line will be observed and is part of which series of the atomic spectrum ? (A) Visible, Balmer (B) Ultraviolet, Lyman
80.	(c) relieve (b) Green If the radius of first Bohr orbit is x pm, the of the third orbit would be (A) $(3 \times x)$ pm (B) $(6 \times x)$ pm	n the radius	 (C) Infrared, Paschen (D) Infrared, Brackett 85. What will be the uncertainty in velocity of a bullet with a mass of 10 g whose position is known with ±0.01 mm?
	(C) $\left(\frac{1}{2} \times x\right)$ pm (D) (9 × x) pm		(A) $5.275 \times 10^{-33} \text{m s}^{-1}$ (B) $5.275 \times 10^{-25} \text{m s}^{-1}$ (C) $5.275 \times 10^{-5} \text{m s}^{-1}$ (D) $5.275 \times 10^{-28} \text{m s}^{-1}$
81.	The radius of hydrogen atom in ground sta What will be the radius of ${}_{3}LI^{2+}$ in the gro	ate is 0.53 A. und state ?	orbitals. Mark the statement which is not correct.
	(C) 0.17 Å (D) 0.53 Å		(B) <i>ns</i> -orbital has $(n+1)$ nodes.
82.	What does the negative electronic energy sign for all values of energy) for hydrogen a	gy (negative tom means?	 (C) The number of angular nodes is given by <i>l</i>. (D) The total number of nodes is given by (n-1) <i>i.e.</i>
	(A) The energy of an electron in the at than the energy of a free electron at taken as zero.	om is lower rest which is	sum of <i>l</i> angular nodes and $(n - l - 1)$ radial nodes. 87. Effective nuclear charge $(Z_{eff}e)$ for a nucleus of an atom is defined as
	(B) When the electron is free from the nucleus it has a negative value white more negative	influence of ch becomes	 (A) shielding of the outermost shell electrons from the nucleus by the innermost shell electrons (D) the nucleus electron electron
	(C) When the electron is attracted by the energy is absorbed which mean	the nucleus s a negative	 (B) the net positive charge experienced by electron from the nucleus (C) the attractive force experienced by the nucleus
	(D) Energy is released by hydrogen ato state.	m in ground	(D) and database infection experienced by the hiddeds from electron(D) screening of positive charge on nucleus by innermost shell electrons.

Tes	t-4 (Objective)	Horizon Test Series for Medical-2016
88.	Which of the following is not a correct statement regarding the energies of orbitals? (A) The lower the value of $(n + l)$ for an orbital, lower	94. Maltose gives rise to two molecules of (A) fructose (B) lactose
	 (B) Energies of the orbitals in the same subshell decreases with increase in atomic number. 	 95. Which one of the following statements is true regarding digestion and absorption of food in humans ?
	 (C) Energy of <i>s</i>-orbital is lower than the <i>p</i>-orbital and that of <i>p</i>-orbital is lower than the <i>d</i>-orbital. 	(A) Oxyntic cells in our stomach secrete the proenzyme pepsinogen
89.	 (D) If two orbitals have same value for (<i>n</i> + <i>l</i>), the orbital with higher value of <i>n</i> will have lower energy. How many electrons in an atom have the following 	 (B) Fructose and amino acids are absorbed through intestinal mucosa with the help of carrier ions like Na²⁺
	quantum numbers ? $n = 4, m_s = -1/2$	(C) Chylomicrons are small lipoprotein particles that are transported from intestine into blood capillaries
	(A) 32 (B) 18 (C) 8 (D) 16	(D) About 60% of starch is hydrolysed by salivary amylase in our mouth
90.	In how many elements the last electron will have the following set of quantum numbers, $n = 3$ and $l = 1$?	96. Crypts of Leiberkuhn are involved in(A) secretion of succus entericus
	(A) 2 (B) 8	(B) secretion of rennin
		(C) secretion of ptyalin
01		97. The malnutrition disease in man is
91.	prevented by the presence of	(A) Cri-du-chat syndrome
	(A) epiglottis	(B) Klinefelter's syndrome
	(B) sphincter of Oddi	(C) Potbelly syndrome
	(C) ileo-caecal valve	(D) Edward's syndrome
92.	(D) gastric-oesophageal sphincterVitamin necessary for normal functioning of liver,	98. Which one of the following pairs of the kinds of cells and their secretion are correctly matched ?
	clotting of blood and preventing haemorrhage is	(A) Oxyntic cells - A secretion with pH
	(C) cvanocobalamin (D) riboflavin	(B) Alpha cells of - Secretion that decreases
93.	Proportion of which of the following should be increased	islets of blood sugar level
	in diet to improve strength and growth of bones?	Langerhans
	(A) Vitamin-D, Ca^{2+} and vitamin-K	(C) Kupffer's cells - A digestive enzyme that hydrolyses nucleic acids
	(B) Vitamin-D, Ca^{2+} and iodine	(D) Sebaceous - A secretion that
	(D) Vitamin-A, Ca ²⁺ and Zn ²⁺ (D) Vitamin-A, Ca ²⁺ and Zn ²⁺	glands evaporates for cooling

Tes	t-4 (Objective)	Horizon Test Series for Medical-2016
99.	 Which of the following is not a function of liver ? (A) Production of bile (B) Production of insulin (C) Glycogen storage (D) Detoxification 	106. The following is a scheme showing the fate of carbohydrates during digestion in the human alimentary canal. Identify the enzymes acting at stages indicated as A, B, C and D. Choose the correct option from those given.
100.	 The function of ductus choledochus is to carry. (A) Gastric juice (B) Bile and pancreatic juice (C) Urine (D) Bile juice only 	Lactose Maltose Sucrose
101.	Sacculus rotundus is a dilated part at posterior end of (A) ileum (B) oesophagus (C) ilium (D) colon	Galactose Giucose Fructose (A) A - Amylase, B - Maltase, C - Lactase,
102.	 Succus entericus is secreted by (A) Crypts of Leiberkuhn (B) Brunner's glands (C) Both (A) and (B) (D) None of these 	 D = Invertase (B) A - Amylase, B - Maltase, C - Invertase, D - Lactase (C) A - Amylase, B - Invertase, C - Maltase, D - Lactase (D) A - Amylase, B - Lactase, C - Maltase
103.	(b) None of these Find out the correctly matched pair. (A) Pepsinogen (B) HCl - Goblet cells (C) Mucus - Oxyntic cells (D) Pancreatic juice	 (b) A - Amyrase, D - Lactase, C - Martase, D - Invertase 107. The juice containing sodium glycocholate is released under the influence of (A) secretin (B) cholecystokinin (C) enterogasterone (D) enterocrinin
104.	 The factor which governs the absorption of digested food by intestinal villi is : (A) Peristalsis (B) Osmosis (C) Emulsification (D) Differential absorption 	 108. Carnassial teeth are modified for (A) crushing (B) tearing (C) grinding (D) cutting 109. Submucosa is thickest in (A) Oesophagus (B) Rectum
105.	Vitamin-D is synthesized in skin by the action of sunlight on (A) cholesterol (B) 7-hydroxy cholesterol (C) cephalin cholesterol (D) All of the above	 (C) Duodenum (D) Stomach 110. Secretin hormone in secreted form (A) stomach and stimulates gastric gland (B) duodenum and stimulates liver (C) thyroid and stimulates thyroid gland (D) duodenum and stimulates pancreas

Test	t-4 (Objective)		Horizon Test Series for Medical-2016
111.	Which of the following vitamins is water soluble as well as an antioxidant ?	120.	Digestion and distribution of nutrients both functions are performed by
	(A) Vitamin-B ₁ (B) Vitamin-A		(A) blastocoel (B) coelom
	(C) Vitamin-D (D) Vitamin-C		(C) spongocoel (D) coelenteron
112.	Bile acids are	121.	The term "External respiration" means :
	(A) Carbohydrates (B) Steroids		I. pulmonary ventilation
	(C) Proteins (D) Fats		II. gas exchange between the air and blood
113.	Compound saccular glands are		III. Transport of gas by the blood
	(A) intestinal glands (B) salivary glands		IV. Cellular respiration
	(C) gastric glands (D) endocrine glands		(A) I, II, III, IV (B) I, II, III,
114.	The opening of the Ampula of veter is guarded by	100	(C) I, II, IV (D) I, III, IV
	sphincter ?	122.	Phonation, or the production of sound, is the function
	(A) Pyloric (B) Ileo-caecal		
	(C) Oddi (D) Muscularis mucosa		(A) Pharynx (B) Larynx
115.	Poison glands of snake are modified	100	(C) Trachea (D) Lips and tongue
	(A) sebaceous glands	123.	cavity in humans ?
	(B) ceruminous glands		(A) Filtration of the air
	(C) salivary glands		(B) Humidification of the air
	(D) endocrine glands		(C) Warming of the air
116.	Least peristalsis occurs in		(D) Removal of carbon dioxide from the air
	(A) rectum (B) stomach	124.	Identify the structure that does not form a part of the
	(C) oesophagus (D) duodenum		human respiratory system.
117.	A person is suffering from long standing constipation.		(A) the pharynx (B) the bronchus
	It is likely that ?		(C) the larynx (D) the hyoid
	(A) His intestinal bacteria will get killed by poisonous gases produced by accumulated faeces.	125.	The ability of the lungs to stretch or expand is called their
	(B) He will suffer from piles.		(A) resilience (B) compliance
	(C) He will feel severe pain in the stomach due to		(C) capacitance (D) elasticity
	(D) He will suffer from vitamin-B deficiency as its	126.	The type of cartilage, present in the tracheal rings, is
	absorption is inhibited.		the :
118.	The largest variety of digestive enzymes is found in		(A) Hyaline (B) Elastic
	(A) carnivores (B) herbivores	107	(C) Fibrous (D) Calcified
	(C) omnivores (D) parasites	127.	A respiratory unit does not include :
119.	The layer of cells that secretes enamel of tooth is		(A) Terminal bronchiole
	(A) dentoblast (B) ameloblast		(C) Alveolor dueto
	(C) osteoblast (D) odontoblast		(C) Alveoli

Test-4 (Objective)		Horizon Test Series for Medical-2016		
128.	The double layered membrane covering the lung surface is called as : (A) Pericardium (B) Pleura	Inhalation would be brought about by : (A) I and III (B) II and III		
	(C) Mesentery (D) Peritoneum	(C) I and IV (D) II and IV		
129.	A negative intrapleural pressure :	135. In the bird respiratory system, which of the following structures is the actual gas exchange surface ?		
	(A) is caused by accumulation of fluid in pleural cavity.	(A) Bronchus (B) Alveolus		
	(B) does not allow the lungs to expand.	(C) Bronchiole (D) Parabronchi		
	(C) helps in expiration.	[BOTANY]		
	(D) keeps the lungs inflated.	136. The process of transfer of genetic information from DNA		
130.	Which of the following is the last structure through which the exhaled air passes ?	to RNA / formation of RNA from DNA is		
	(A) bronchiole (B) larvnx	(A) Transversion (B) Transcription		
	(C) pharynx (D) trachea	(C) Translation (D) Translocation		
131.	Under normal resting conditions, almost the entire	137. One gene one enzyme hypothesis was proposed by		
	respiratory effort is due to the :	(A) Jacob and Manod		
	(A) contraction and relaxation of diaphragm (B) movements of the rib cage	(B) Beadle and Tatum		
	(C) abdominal muscles	(C) Watson and Crick		
	(D) sternocleidomastoid muscle	(D) Garrod and Jenson		
132.	The division of the respiratory tree from which the alveoli	129 DNA polymorrase bolins in		
	branching off are the :	(A) Califfing of this DNA strends		
	(A) tertiary bronchi	(A) Splitting of two DINA strands		
	(B) bronchioles	(B) Proof reading of DNA		
	(C) terminal bronchioles	(C) Renaturation of DNA		
133	(D) respiratory broncholes Which of the following leads to expiration 2	(D) Joining monomers of DNA		
133.	(A) Contraction of diaphragm	139. Polypeptide chain is initiated by		
	(R) Elevation of the rib cage	(A) Glycine (B) Leucine		
	(C) Contraction of internal intercostal muscles	(C) Methionine (D) Lysine		
	(D) Contraction of external intercostal muscles	140. Genetic code determines		
134.	Consider the following:	(A) Sequence of amino acids in protein chain		
	I. Contraction of the diaphragm	(B) Variations		
	II. Relaxation of the diaphragm	(C) Constancy of morphological traits		
	III. Contraction of internal intercostals	(C) Constancy of morphological traits		
	IV. Contraction of external intercostals			

141. Khorana et al synthesised RNA with copolymer of	147 Which is true according to Chargeff a mile 2
 UGUGUGUGUGIt produced a peptide with alternate cysteine and valine. The codons for the two are (A) UGU and GUG (B) UUG and GGU (C) GUG and UGU (D) UGG and GUU 	(A) $A + G = T + C$ (B) $A = C$ (C) $G = T$ (D) $A + T / C + G = 1$ 148. Successive nucleotides are covalently linked through (A) Glycosidic bonds (B) Phosphodiester bonds (C) Hydrogen bonds
 (b) COC and COC 142. In the genetic dictionary, there are 64 codons as (A) 64 amino acids are to be coded (B) 64 types of tRNAs are present (C) There are 44 nonsense codons and 20 sense codons (D) Genetic code is triplet 143 Nucleotide arrangement in DNA can be seen by 	 (D) Nitrogen bonds 149. Pneumococcus experiment proves that (A) DNA is a genetic material (B) Bacteria undergo binary fission (C) bacteria do not reproduce sexually (D) At times RNA controls production of DNA
 (A) X-ray crystallography (B) Electron microscope (C) Ultracentrifuge (D) Light microscope 144. Okazaki segment are formed during 	 150. During elongation of polypeptide chain, sigma factor is (A) Functionless (B) Retained for specific function (C) Released for re-use (D) Required during closing of chain 151. Three dimensional shape of tRNA is
(A) Transduction (B) Transcription (C) Replication (D) Translation	(A) L-shaped (B) Clover leaf-like
 145. Amino acid binding site of tRNA is (A) 5'end (B) Anticodon loop (C) DHU loop (D) -CCA 3' end. 	 (C) X-shaped (D) Y-shaped 152. Best method to determine paternity is (A) Protein analysis
 146. In which of the following will DNA melt at the lowest temperature (A) 5'-AATAAAGC-3' 3'-TTATTTCG-5' (B) 3'-AATGCTGC-5' 3'-TTACCACG-5' (C) 5'-ATGCTGAT-3' 3'-TACGACTA-5' (D) 5'-GCATAGCT-3' 3'-CGTATCGA-5' 	 (B) Chromosome counting (C) Gene counting (D) DNA finger printing 153. First deciphering of genetic code through trinucleotide synthesis was performed by (A) Beadle and tatum (B) Watson and Crick (C) Nirenberg (D) Ochoa

Test-4 (Objective)		Horizon Test Series for Medical-2016		
154.	 Regulator gene controls chemical synthesis (Operon concept) by (A) Inhibiting transcription of mRNA (B) Inhibiting enzymes (C) Inhibiting passage of mRNA (D) Inhibiting substrate enzyme reaction 	 161. Viroids differ from viruses in (A) Satellite RNA packaged with viral genome (B) Naked DNA molecules (C) Naked RNA molecules only (D) Naked DNA packaged with viral genome 162. In split genes, the coding sequences are called (A) Exons (B) Introns 		
155.	 In operon concept, the operator gene combines with (A) Regulatory protein to switch off structural gene transcription (B) Regulatory protein to switch on structural gene transcription (C) Inducer to switches off structural gene transcription (D) Regulator gene to switch off structural gene transcription 	 (C) Cistrons (D) Operons 163. Operator gene of <i>lac</i>-operon is turned on when lactose molecules bind to (A) Promoter site (B) mRNA (C) Operator gene (D) Regulator protein 164. Genes regulate growth and differentiation through (A) Transformation (B) Translocation (C) translation and Transduction (D) Transcription and translation. 		
156.	In viruses, the nucleic acid is : (A) DNA (B) RNA (C) Both A or B (D) Either A or B	 (A) Rhizobium and Azotobactor (B) Escherichia and Agrobacterium (C) Rhizobium and Diplococcus (D) Nitrosomonas and Klebsiella 		
157. 158.	The one used in recombinant DNA technology. (A) Plasmid (B) Plastid (C) Ribosome (D) Mutation In Rous Sarcoma Virus information flow is: (A) DNA —→Protein—→ RNA (B) Protein—→ DNA —→RNA (C) RNA —→DNA—→Protein	 166. Intron is part of DNA which (A) Codes for protein synthesis (B) Helps in joining pieces of DNA (C) Does not code for protein synthesis (D) Initiates transcription 167. In operon model, regulator gene function as : (A) Repressor (B) Regulator (C) Inhibitor (D) All the above 		
159. 160.	 (D) DNA→RNA→Protein The term gene was coined by (A) Mc Clinto (B) Morgan (C) Johanesen (D) De Duve Operon model of gene regulation and organisation of prokaryotic was proposed by (A) Messelson and Stahl (B) Wilkins and Franklin (C) Beadle and Tatum (D) Jacob and Monod 	 168. Restriction endonuclease is used in (A) Tissue culture (B) genetic engineering (C) Cell fractionation (D) Regeneration 169. The names, Temin and Baltimore are associated with (A) Photorespiration (B) RNA synthesis (C) Reverse transcription (D) Translation 		

Test-4 (Objective)		Horizon Test Series for Medical-2016		
170.	In <i>Escherichia coli,</i> the product of i gene combines with	Dire Thes	ctions (Q. Nos. 176 to 180) : se questions consist two statement each printed as	
	(A) Operator gene to switch off structural genes(B) Inducer gene to switch off structural genes	Assertion and Reason. While answering these question, you are required to choose any one of the following four options.		
	(C) Operator gene to switch on structural genes(D) Regulator gene to switch off structural genes	(A)	Both Assertion and Reason are true and Reason is the correct explanation of Assertion.	
171.	Operon contains (A) Operator and regulator genes	(B)	Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.	
	(B) Operator and structural genes	(C)	Assertion is true but Reason is false.	
	(C) Operator and regulator genes, and repressor	(D)	Both Assertion and Reason are false.	
	(D) Operator gene, regulator gene, repressor, structural genes and promoter gene	176.	Assertion : A single strand of m-RNA is capable of forming a number of different polypeptide chains.	
172.	Lactose operon of Escherichia coli is		Reason : Termination codons occur in m-RNA.	
	(A) Monocistronic (B) Inducible	177.	Assertion : Amber codon is a termination codon.	
173.	(C) Repressible (D) Both B and C Tryptophan operon of Escherichia coli is		Reason : If in m-RNA, a termination codon is present, the protein synthesis stops abruptly whether the protein synthesis is completed or not.	
	(A) Monocistronic (B) Inducible(C) Unregulated (D) Repressible	178.	Assertion : Watson and Crick provided experimental proof of semiconservative nature of DNA relication.	
174.	House keeping genes (A) Produces Antibodies		Reason : DNA polymerase binds nucleotides in replication.	
175	(B) Constantly operates for cellular activity(C) Form hormones	179.	Assertion : DNA code is not copied in the synthesis of transfer RNA.	
	(D) Function only at the time of reproduction		Reason : Transfer RNA move out of the nucleus and after attaching on the ribosomes, form the template.	
175.	(A) RNA	180.	Assertion : Polytene chromosomes have a high amount of DNA.	
	(B) DNA(C) DNA and RNA(D) DNA and proteins		Reason : Polytene chromosomes are formed by repeated replication of chromosomal DNA without separation of chromatids.	
	(D) DNA and proteins			
	Succe for F	Dough	Work	
		งอนษุท		

[18]