

2

Test No. 3

(Topics of The Test)

Physics	Unit, Dimension & Errors, Motion in 1D.	
Chemistry	Atomic Structure.	

Biology	Zoology : Nutrition & digestion complete. Botany : Molecular basis of inheritance.

Test-3 (Objective)

3

Test No. 3

1.	[PHYSI Match the following colum	ICS] nns.	6.	If C be the capacitance and V be the electric potential, then the dimensional formula of CV^2 is (A) [M] ${}^{2}T^{-2}A^{0}$] (B) [M] $T^{-2}A^{-1}$]
	Column I	ColumnII		(-) $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$
(A)	Capacitance (i)	volt(ampere) ⁻¹		(C) $[M^{\circ}LI^{-2}A^{\circ}]$ (D) $[ML^{-2}IA]$
(B)	Magnetic induction (ii)	volt-sec(ampere) ⁻¹	7.	The equation of state of some gases can be expressed
(C)	Inductance (iii)	newton(ampere) ⁻¹ (metre) ⁻¹		as
<u>(D)</u>	Resistance (iv) A B C	coulomb ² (joule) ⁻¹		$\left(p+\frac{a}{V^2}\right)(V-b)=RT$
	(A) (ii) (iii) (iv) (i)			where, p is absolute the pressure, V is the volume, T
	(B) (iv) (iii) (ii) (i)			is absolute temperature and <i>a</i> and <i>b</i> are constants.
	(C) (iii) (iv) (i) (ii)			
	(D) (iv) (i) (ii) (iii)			(A) $[ML^{5}T^{-2}]$ (B) $[M^{-1}L^{5}T^{-2}]$
2.	The unit of universal gas	constant is		(C) $[ML^{-1}T^{-2}]$ (D) $[ML^{-5}T^{-2}]$
	(A) watt/K (B)) dyne/°C	8.	Dimensions of resistance in an electrical circuit, in
	(C) erg/K (D)) newton/°R		terms of dimension of mass <i>M</i> , of length <i>L</i> , of time <i>T</i>
3.	Parsec is the unit of			
	(A) time (B)) distance		(A) $[ML^2T^{-3}A^{-1}]$ (B) $[ML^2T^{-2}]$
	(C) frequency (D)) angular acceleration		(C) $[ML^2T^{-1}A^{-1}]$ (D) $[ML^2T^{-3}A^{-2}]$
4.	The unit of permittivity of (A) coulomb/newton-me	f free space, $\varepsilon_{_0}$, is $_{ m tre}$	9.	Dimensional formula for the universal gravitational constant <i>G</i> is
	(B) newton-metre ² /could	omb ²		(A) $[M^{-1}L^2T^{-2}]$ (B) $[M^0L^0T^0]$
	(C) coulomb ² /newton-me	etre ²		(C) $[M^{-1}]^{3}T^{-2}$ (D) $[M^{-1}]^{3}T^{-1}$
	(D) coulomb ² /(newton-m	netre) ²	10	If $F = energy$ $G = gravitational constant I = impulse$
5.	Which one of the following	g is not a derived unit ?		GIM ²
	(A) Planck's constant			and <i>M</i> = mass, then dimensions of $\frac{G_{MM}}{E^2}$ are same
	(B) Gravitational constant	nt		as that of
	(C) Charge			(A) time (B) mass
	(D) Electric current			(C) length (D) force

Space for Rough Work

Tes	t-3 (Objective)	Horizon Test Series for Medical-2016
11.	The magnetic force on a point charge is $\mathbf{F} = q(\mathbf{v} \times \mathbf{B})$ Here, $q = \text{electric charge}$	 18. A wheel completes 2000 revolutions to cover the 9.5 km distance, then the diameter of the wheel is (A) 1.5 km (B) 1.5 m (C) 7.5 cm (D) 7.5 m
	$\mathbf{B} = \text{magnetic field}$ The dimension of B is (A) [MLT ⁻¹ A] (B) [M ² LT ⁻² A ⁻¹]	 of 1.4 m/s returns in 2s. The total displacement of the ball is (A) 22.4 cm (B) zero (C) 44.8 m (D) 33.6 m
12.	 (C) [MT⁻²A⁻¹] (D) None of these Out of the following four dimensional quantities, which one qualifies to be called a dimensional constant ? (A) Acceleration due to gravity (B) Surface tension of water (C) Weight of a standard kilogram mass 	20. The displacement of a particle, starting from rest (at $t = 0$) is given by $s = 6t^2 - t^3$ The time in seconds at which the particle will obtain zero velocity again is (A) 2 (B) 4 (C) 6 (D) 8 21. Which of the following can be zero, when a particle is
13.	(D) The velocity of light in vacuum Dimensions of relative density is (A) $[ML^{-2}]$ (B) $[ML^{-3}]$ (C) dimensionless (D) $[M^2L^{-6}]$	in motion for some time ? (A) Distance (B) Displacement (C) Speed (D) None of these 22. A boy begins to walk eastward along a street in front
14.	The length, breadth and thickness of a block are given by $l = 12$ cm, $b = 6$ cm and $t = 2.45$ cm. The volume of the block according to the idea of significant figures should be (A) 1×10^{2} cm ³ (B) 2×10^{2} cm ³ (C) 1.763×10^{2} cm ³ (D) None of these	of his house and the graph of his displacement from home is shown in the following figure. His average speed for the whole time interval is equal to $\frac{1}{2} \frac{40}{2}$
15.	The difference in the lengths of a mean solar day and a sidereal day is about(A) 1 min(B) 4 min(C) 15 min(D) 56 min	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\$
16.	A boy standing at the top of a tower of 20 m height drops a stone. Assuming $g = 10 \text{ ms}^{-2}$, the velocity with which it hits the ground is (A) 20 ms^{-1} (B) 40 ms^{-1}	(A) 8 m min^{-1} (B) 6 m min^{-1} (C) $\frac{8}{3} \text{ m min}^{-1}$ (D) 2 m min^{-1} 23. An aeroplane flies 400 m due north and then 300 m
17.	 (C) 5 ms⁻¹ (D) 10 ms⁻¹ A particle has a displacement of 12 m towards east and 5 m towards north and finally 6 m vertically upwards. The sum of these displacement is (A) 12 m (B) 10.04 m (C) 14.31 m (D) None of these 	due south and then flies 1200 m upwards, the net displacement is (A) greater than 1200 m (B) less than 1200 m (C) 1400 m (D) 1500 m

Test-3 (Objective)				Horizon Tes	t Serie	es for Medical-2016
24. The cov (A) (B) (C) (D)	e numerical ratio of ered is always less than one equal to one equal to or less tha equal to or greater	displacement to the distance an one than one	31.	A m upw shou two (Giv (A)	an throws balls ards one after th ald be the speed balls are in the s en g = 9.8 ms^{-2}) Any speed less	with the other of the sky at a than f	he same speed vertically r at an interval of 2s. What e throw so that more than any time ? 19.6 ms ⁻¹ ms ⁻¹
25. A b The (A) (C) 26. A bo 36% the	ody goes 20 km no displacement of bo 30 km (22.36 km (ody falls freely from 6 of the total height in around level. The he	 rth and then 10 km due east. dy from its starting point is B) 25.2 km D) 10 km the top of a tower. It covers the last second before striking eight of the tower is 	32.	(B) (C) (D) Two drop The is	More than 19.6 At least 9.8 ms bodies, A (of ma ped from heights ratio of the time t	ms ⁻¹ ms ⁻¹ ss 1 kg s of 16 aken b	g) and <i>B</i> (of mass 3 kg) are m and 25 m, respectively. y them to reach the ground
(A) (C) 27. A ca spe the (A)	50 m (100 m (ar starts from rest ar ed of 180 km/h in 1 car in this time inter 500 m (100 m	 B) 75 m D) 125 m nd accelerates uniformly to a 0s. The distance covered by val is B) 250 m D) 200 m 	33.	(A) (C) A m kmh com retai	5/4 5/12 etro train starts f ⁻¹ . After that it m es to rest after rdation. If total o time of travelling	(B) (D) rom re loves v trave listanc	12/5 4/5 est and in 5 s achieves 108 with constant velocity and elling 45 m with uniform be travelled is 395 m, find
28. A p acco 20 r seco	article moves in a eleration. It changes ms^{-1} while passing t ond. The value of <i>t</i> is	straight line with a constant s its velocity from 10 ms ⁻¹ to hrough a distance 135 m in t	34.	(A) (C) A ba the g	12.2 s 9 s all is thrown upwa ground. Find its in	, (B) (D) ards, it nitial v	15.3 s 17.2 s takes 4 s to reach back to elocity.
(A) (C) 29. A p dista dista spe- ave (A) (C) 20. The	12 (particle moving in a ance with speed of ance is covered in t ed of 4.5 ms ⁻¹ and trage speed of the part 4.0 ms ⁻¹ (5.5 ms ⁻¹ (D) 1.0 D) 9 straight line covers half the 3 ms ⁻¹ . The other half of the two equal time intervals with 1 7.5 ms ⁻¹ respectively. The article during this motion is B) 5.0 ms^{-1} D) 4.8 ms^{-1}	35.	(A) (C) From is the velo (Ass (A)	30 ms^{-1} 40 ms^{-1} In a balloon rising rown up at 10 m city with respect suming g = 10 m zero 10 ms^{-1}	(B) (D) vertica ns ⁻¹ ro to gro s ⁻²) (B)	10 ms^{-1} 20 ms^{-1} Ily upwards as 5 ms ⁻¹ stone elative to the balloon. Its und after 2 s is 5 ms^{-1} 20 ms^{-1}
30. The X-a: t in whe dire (A) (C)	position x of a particle xis is given by $x = 9$ second. What will be an it achieves maximized ction? 32 m (81 m (the with respect to time <i>t</i> along $t^2 - t^3$ where <i>x</i> is in metre and the position of this particle timum speed along the +X B) 54 m D) 24 m	36.	(C) Whe reac the r with (A) (C)	10 ms ⁻¹ en a ball is thrown hes a maximum maximum heigh velocity $\sqrt{3}v_0$ $9v_0$	(D) n up ve height t then (B) (D)	20 ms^{-1} ertically with veloctiy v_0 , it to <i>h</i> . If one wishes to triple the ball should be thrown $3v_0$ $3/2v_0$

Test-3 (Objective) Horizon Test Series for Medical-2016 If an iron ball and a wooden ball of the same radius are (A) 12 ms⁻¹ 37. (B) 14 ms⁻¹ released from a height h in vacuum, then time taken (C) 15 ms⁻¹ (D) 16 ms⁻¹ by both of them, to reach the ground will be 42. A bullet loses 1/20 of its velocity after penetrating a (A) zero (B) unequal plank. How many planks are required to stop the bullet? (C) roughly equal (D) exactly equal (A) 6 (B) 9 38. From the top of a tower of two stones, whose masses (C) 11 (D) 13 are in the ratio 1:2 are thrown on straight up with an initial speed u and the second straight down with the Velocity-time (v -t) graph for a moving obejct is shown 43. same speed u. Then neglecting air resistance in the figure. Total displacement of the object during (A) the heavier stone hits the ground with a higher the time interval when there is non-zero acceleration and retardation is speed (B) the lighter stone hits the ground with a higher speed (C) both the stones will have the same speed when they hit the ground v (ms⁻ (D) the speed can't be determined with the given data 39. A particle moves along Y-axis in such a way that its y-coordinate varies with time t according to the relation 10 20 30 40 Ó 50 60 $y = 3 + 5t + 7t^2$. The initial velocity and acceleration ► t(s) of the particle are respectively (A) 60 m (B) 50 m

- (A) 14 ms⁻¹, -5 ms⁻²
- (B) 19 ms⁻¹, –9ms⁻²
- (C) -14 ms^{-1} , -5 ms^{-2}
- (D) 5 ms⁻¹, 14 ms⁻²
- 40. An object travels north with a velocity of 10 ms⁻¹ and then speeds up to a velocity of 25 ms⁻¹in 5 s. The acceleration of the object in these 5 s is
 - (A) 12 ms^{-2} in north direction
 - (B) 3 ms^{-2} in north direction
 - (C) 15 ms^{-2} in north direction
 - (D) 3 ms^{-2} in south direction
- 41. A man is 45 m behind the bus, when the bus start accelerating from rest with acceleration 2.5 ms⁻². With what minimum velocity should the man start running to catch the bus ?

44. A body starting from rest moves along a straight line with a constant acceleration. The variation of speed (v) with distance (s) is represented by the graph

(D) 40 m

(C) 30 m

Space for Rough Work

Space for Rough Work

Test	t-3 (Objective)		Horizon Test Series for Medical-2016
55.	What is the ratio of mass of an electron to the mass of a proton ?	62.	If an electron has spin quantum number of $+\frac{1}{2}$ and a
	(A) 1:1 (B) 1:2 (C) 1:3 (D) 1:1837		magnetic quantum number of -1, it cannot be represented in an
56.	The wavelength corresponding to maximum energy for hydrogen is 91.2 nm. The corresponding wavelength for He ⁺ ion is	63	 (A) s-orbital (B) p-orbital (C) d-orbital (D) f-orbital Which of the following statements about the electron
	(A) 2.28 nm (B) 22.8 nm	00.	is incorrect ?
	(C) 182.4 nm (D) 364.8 nm		(A) It is negatively charged particle
57.	Choose isosteres from the following.		(B) The mass of electron is equal to the mass of
	(A) NO_2^- and PO_4^{3-} (B) NO_2^- and O_3^-		(C) It is a basic constituent of all stome
	(C) CO_2, N_2O, NO_3^- (D) CIO_4^- and OCN^-		(D) It is a constituent of cathode rays
58.	In hydrogen spectrum, the different line of Lyman series are present in	64.	The number of nodal planes in p_x is
	(A) UV field (B) IR field		(A) 1 (B) 2
	(C) visible field (D) far IR field		(C) 3 (D) 0
59.	In wavelength of the radiation emitted when in a hydrogen atom electron falls from infinity to first stationary state would be $(R_{-} = 1.097 \times 10^{7} m^{-1})$	65.	The value of Planks's constant is 6.63×10^{-34} Js. The velocity of light is 3×10^8 ms ⁻¹ . Which value is closest to the wavelength in name 15
	(A) 91 nm (B) 191 nm		with frequency of $8 \times 10^{10} \text{s}^{-1}$?
	(C) 209 nm (D) 314 nm		(A) 2×10^{-23} (B) 3×10^{7}
60.	Which of the following options does not represent ground state electronic configuration of an atom ?	66.	(C) 4×10 ⁻¹⁰ According to Bohr's theory, the angular momentum of electron in 5th orbit is
	(A) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$ (B) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2$		(A) $25\frac{h}{\pi}$ (B) $1.0\frac{h}{\pi}$
	(C) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$		(C) $10\frac{h}{\pi}$ (D) $2.5\frac{h}{\pi}$
61.	(D) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ The two electrons in s-subshell will differ in (A) principal quantum number	67.	Uncertainty in the position of an electron (mass = 9.1×10^{-31} kg) moving with a velocity 300 ms ⁻¹ , accurate upon 0.001% will be (h = 6.63×10^{-34} Js)
	(B) azimuthal quantum number		(A) 19.3×10 ⁻² m (B) 5.76×10 ⁻² m
	(C) magnetic quantum number(D) spin quantum number		(C) 1.93×10 ⁻² m (D) 3.84×10 ⁻² m

Tes	Test-3 (Objective)					_	Horizon Test Series for Medical-2016
68.	Consider the following sets of quantum numbers			of quantum numbers	73.	The frequency of radiation emitted when electron falls from n = 4 to n = 1 in a hydrogen atom will be (Given ionisation energy of H = 2.18×10^{-18} l atom ⁻¹ and	
		n	1	m	S		$h = 6.625 \times 10^{-34}$ Js)
	(i)	3	0	0	$+\frac{1}{2}$		(A) $1.54 \times 10^{15} \text{s}^{-1}$ (B) $1.03 \times 10^{15} \text{s}^{-1}$ (C) $3.08 \times 10^{15} \text{s}^{-1}$ (D) $2.00 \times 10^{15} \text{s}^{-1}$
	(ii)	2	2	1	$+\frac{1}{2}$	74.	The ratio of area covered by second orbital to the first orbital is
	(iii)	4	3	-2	$-\frac{1}{2}$		(A) 1:2 (B) 1:16 (C) 8:1 (D) 16:1
	(iv)	1	0	-1	$-\frac{1}{2}$	75.	If principal quantum number $n = 4$, the total number of orbitals having $l = 3$ is
	(v)	3	2	3	$\left +\frac{1}{2} \right $		(A) 3 (B) 7 (C) 5 (D) 9
	Which of the following sets of quantum numbers is r possible ?				of quantum numbers is not		the answers given may be correct. Select the correct answers and mark it according to the codes:
	(A)	(ii), (iii)	and (iv) (B)	(i), (ii), (iii) and (iv)		Codes
69.	(C)	(II), (IV)	and (v)	(D)	(I) and (III)		(A) 1, 2 and 3 are correct
	mas	ае-вго s 1 ka h	aving k	inetic en	herov 0.5 J is		(C) 2 and 4 are correct
	(A)	6.626×	10 ⁻³⁴ m	(B)	13.20×10 ⁻³⁴ m		(D) 1 and 3 are correct
	(C)	10.38×	10 ⁻²¹ m	(D)	6.626×10 ^{−34} Å	76.	Which of the following statement (s) is (are) correct?
70.	The is-3	energy 28 kJ m	of secor Iol ^{–1} , he	nd Bohr c nce the e	orbit of the hydrogen atom energy of fourth Bohr orbit		1. The electronic configuration of Cr is [Ar] $3d^54s^1$. (Atomic number of Cr = 24).
	wou (A)	ld be –41 kJ	mol ⁻¹	(B)	–1312 kJ mol ^{–1}		2. The magnetic quantum number may have a negative value.
71.	(C) The	–164 k kinetic e	J mol ⁻¹ nergy o	(D) f an elect	-82 kJ mol ⁻¹ fron emitted from a surface		 In silver atom, 23 electrons have a spin of one type and 24 of the opposite type. (Atomic number of Ag = 47)
	freq	uencv fo	or the m	etal is 3.	$.62 \times 10^{12} \text{s}^{-1}$. is		4. For valency electron of potassium, value of n is 2
	(A)	6.6×10	⁻²⁷ Erg(5.5×10 ¹⁷	s ⁻¹ –3.62×10 ¹² s ⁻¹)	77.	What is the maximum numbers of electrons that can
	(B)	6.6×10) ⁻²⁷ Erg(-	-5.5×10 ¹	¹⁷ s ⁻¹ –3.62×10 ¹² s ⁻¹)		be associated with the following set of quantum
	(C)	6.6×10) ⁻²⁷ Erg(-	-5.5×10 ¹	¹⁷ s ⁻¹ +3.62×10 ¹² s ⁻¹)		numbers ? $n = 3$, $l = 1$, $m = -1$
	(D)	6.6×10) ⁻²⁷ Erg(5.5×10 ¹⁷	s ⁻¹ +3.62×10 ¹² s ⁻¹)		(A) 6 (B) 4
72.	Whi spec	ch of t cies?	he follo	owing is	a pair of isoelectronic	78.	(C) 2 (D) 10 Maximum number of electrons in a subshell with / = 3
	(A)	$Cl_{2}O_{3}$,	$ C _2^-$	(B)	ICI_2^-, CIO_2		and $n = 4$ is (D) 16
	(C)	IF+ I-		(D)	CIO⁻ CIE⁺		(A) 14 (B) 10 (C) 10 (D) 12
	(0)	" ₂ ," ₃		(U)			

Test-3 (Objective)

79. The correct set of four quantum numbers for the valence 85. In n = 6, the correct sequence for filling of electrons electron of rubidium atom (Z = 37) is will be (A) $ns \longrightarrow (n-1)d \longrightarrow (n-2)f \longrightarrow np$ (A) $5,1,1+\frac{1}{2}$ (B) $6,0,0,+\frac{1}{2}$ $ns \longrightarrow (n-2)f \longrightarrow np \longrightarrow (n-1)d$ (C) $5,0,0,+\frac{1}{2}$ (D) $5,1,0,+\frac{1}{2}$ (C) $ns \longrightarrow np \longrightarrow (n-1)d \longrightarrow (n-2)f$ (D) $ns \longrightarrow (n-2)f \longrightarrow (n-1)d \longrightarrow np$ 80. Which of the following is non-permissible ? Which of the following statement in relation to the 86. (A) n = 4, l = 3, m = 0 (B) n = 4, l = 2, m = 1hydrogen atom is correct? (C) n = 4, l = 4, m = 1 (D) n = 4, l = 0, m = 0(A) 3s, 3p and 3d-orbitals all have the same energy (B) 3s and 3p-orbitals are of lower energy than The ratio of the difference in energy between the first 81. 3d-orbital and second Bohr orbit to that between the second and the third Bohr orbit is (C) 3p-orbital is lower in energy than 3d-orbital (D) 3s-orbital is lower in energy than 3p-orbital The wavelength of a spectral line emitted by hydrogen 87. (A) (B) $\overline{2}$ atom in the Lyman series is $\frac{16}{15R}$ cm. What is the 4 (C) (D) value of n₂? (where, R = Rydberg constant) Calculate the wavelength of light required to break the 82. (A) 2 (B) 3 bond between two chlorine atoms in a chlorine (C) 4 (D) 1 molecule. The CI-CI bond energy is 243 kJ mol⁻¹ Which one of the following ions has electronic 88. $(h=6.6 \times 10^{-34} \text{Js}; c = 3 \times 10^8 \text{ms}^{-1}, \text{Avogadro's number} = 6.02 \times 10^{-23} \text{ mol}^{-1}).$ configuration [Ar] $3d^6$? (At. No : Mn = 25, Fe = 26, CO =27,Ni=28) (A) 4.91×10⁻⁷m (B) 4.11×10^{−6}m

- (C) 8.81×10^{-31} m (D) 6.26×10^{-21} m
- 83. The energies E_1 and E_2 of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths *i.e.*, λ_1 and λ_2 will be
 - (A) $\lambda_1 = 2\lambda_2$ (B) $\lambda_1 = 4\lambda_2$
 - (C) $\lambda_1 = \frac{1}{2}\lambda_2$ (D) $\lambda_1 = \lambda_2$
- 84. The total number of atomic orbitals in fourth energy level of an atom is
 - (A) 16 (B) 32
 - (C) 4 (D) 8

Horizon Test Series for Medical-2016

- (A) Ni^{3+} (B) Mn^{3+} (C) Fe^{3+} (D) Co^{3+} 89. Deuterium nucleus contains
 - (A) 1p + 1n (B) 2p + 0n
 - (C) $1p + 1e^{-1}$ (D) 2p + 2n
- 90. If the photon of the wavelength 150 pm strikes an atom and one of its inner bound electrons is ejected out with a velocity of $1.5 \times 10^7 \text{ms}^{-1}$, what is the energy with which it is bound to the nucleus ?

(A)	1.2×10 ² eV	(B)	2.15×10 ³ eV
(C)	7.6×10 ³ eV	(D)	8.12×10 ³ eV

Space for Rough Work

Test-3 (Objective)

Horizon Test Series for Medical-2016

[ZOOLOGY]

- 91. Which of the following enzymes carries out the initial step in the digestion of milk in humans ?
 - (A) Rennin (B) Lipase
 - (C) Trypsin (D) Pepsin
- 92. The mucosal layer in the stomach form irregular folds known as
 - (A) villi (B) lumen
 - (C) rugae (D) crypts of Lieberkuhn
- 93. With reference to a normal human being, which one of the following statements is not correct ?
 - (A) Human saliva is slightly alkaline
 - (B) An adult human may secrete 1 to 1.5 litres of saliva per day
 - (C) Saliva is secreted by six pairs of salivary glands in human beings
 - (D) The salivary enzyme (ptyalin) breaks down cooked starch into maltose
- 94. Ptyalin is inactivated by a component of gastric juice known as
 - (A) pepsin (B) mucus
 - (C) renin (D) HCl
- 95. The lactase hydrolyses lactose into
 - (A) glucose (B) glucose and galactose
 - (C) fructose (D) glucose and fructose
- 96. Which one is the correct option for labels A, B and C in the given diagram ?

- (A) A-Liver, B-Mucosa, C-Peritoneum
- (B) A-Liver, B-Circular muscle layer, C-Serosa
- (C) A-Pancreas, B-mucosa, C-Peritoneum
- (D) A-Pancreas B-Submucosa, C-Serosa

- 97. Sphincter of Oddi guards
 - (A) hepato-pancreatic duct
 - (B) common bile duct
 - (C) pancreatic duct
 - (D) cystic duct

98. Human dental formula is

(A)
$$I\frac{2}{2}C\frac{1}{1}Pm\frac{2}{2}M\frac{3}{3}$$
 (B) $I\frac{2}{1}C\frac{1}{2}Pm\frac{2}{2}M\frac{3}{3}$

(C)
$$I\frac{1}{2}C\frac{2}{1}Pm\frac{2}{2}M\frac{3}{3}$$
 (D) $I\frac{1}{1}C\frac{2}{2}Pm\frac{2}{2}M\frac{3}{3}$

99. Given below is the diagram of hepatobiliary tree showing stones at various locations. Which stone is in cystic duct ?

(A) A	(B) B
(C) C	(D) None of these

- 100. Which of the following represents all proteolytic enzymes?
 - (A) Erepsin, trypsin, pepsin
 - (B) Cholecystokinin, pepsin, gastrin
 - (C) Lipase, duocrinin, trypsin
 - (D) Enterocrinin, gastrin, erepsin
- 101. Diastema refers to
 - (A) gap between the teeth
 - (B) gap between tongue and teeth
 - (C) ciliary cells on alimentary wall
 - (D) cell lining along pharynx

Space for Rough Work

Tes	t-3 (Objective)			Horizon Test	Seri	es for Medical-2016
102.	Which of the following cells produce HCl ?	110.	Cur	dling of milk in sm	nall in	testine takes place due to
	(A) β -cells (B) α -cells		(A)	trypsin	(B)	rennin
	(C) Oxyntic cells (D) Chief cells		(C)	ptyalin	(D)	chymotrypsin
103.	Which one of the following pairs of food components in humans reaches the stomach totally undigested ?	111.	Whi mar	ich of the following n?	g is th	e largest gland in an adult
	 (A) Protein and starch (B) Starch and fat 		(A)	Thymus	(B)	Liver
	(C) Fat and cellulose		(C)	Thyroid	(D)	Pancreas
	(D) Starch and cellulose	112.	Whi	ich is not used up	in hu	man body ?
104.	Glisson's capsules are found, in which organ of		(A)	Calcium	(B)	Phosphorus
	mammals?		(C)	Zinc	(D)	Barium
105	(A) Stomach (B) Kidney (C) Testis (D) Liver	113.	The pan	digestive enzym creatic juice is	ne tha	at is not found in human
105.	Enterokinase converts		(A)	nucleotidase	(B)	nuclease
	 (A) trypsinogen to trypsin (B) pepsinogen to pepsin (C) chymotrypsin to pepsinogen 		(C)	trypsin	(D)	lipase
		114.	The prot	epithelial cells lini ected from damag	ng the ge by	e stomach of vertebrates is HCl because
100	(D) pepsin to cnymotrypsin		(A)	hydrochloric aci	d is to	o dilute
100.	Digestive enzymes are		(B)	the epithelial ce	lls are	e resistant to the action of
	(A) hydrolases (B) oxidoreductases			HCI		
107	(C) transferases (D) lyases		(C)	HCI is neutralise	ed by a	alkaline gastric juice
107.	(A) chief cells (B) oxyntic cells		(D)	the epithelial ce secretion	lls ar	e covered with a mucous
	(C) mast cells (D) parietal cells	115.	Star	ch is converted to	malt	ose by the action of
108.	Which of the following processes will be affected by		(A)	invertase	(B)	amylase
	(A) Linid \rightarrow Eatty acid \rightarrow Glycerol		(C)	sucrose	(D)	maltase
	(B) Dipeptides \rightarrow Amino acid	116.	Har	dest part in anima	l bod	y is
	(C) Proteases \rightarrow Dipeptide		(A)	bone	(B)	hair
	(D) Amylase \rightarrow Maltose		(C)	dentine	(D)	enamel
109.	Medium, in which pepsin in active ?	117.	In h in th	orses, rabbits, ha le	res, tl	he cellulose gets digested
	(A) Neutral (B) Alkaline (C) Acidic (D) Isotonic		(A)	caecum	(B)	stomach
			(C)	appendix	(D)	rumen
			. /		. /	

Tes	t-3 (Objective)		Horizon Test Series for Medical-2016
118.	Which of the following can be absorbed by hepatic caeca?	124.	In the wall of alimentary canal, what is the actual sequence from outer to inner?
	(A) Glucose and amino acid(B) Glucose and linid		(A) Serosa, longitudinal muscle, mucosa, submucosa
	(C) Linid		(B) Mucosa, serosa, longitudinal muscle
	(D) Glucose		(C) Serosa, longitudinal muscle, circular muscle,
119.	Which of the following is correct chronological order for enzyme activity of some enzymes taking part in protein digestion ?		(D) Serosa, longitudinal muscle, submucosa, mucosa
	(A) Pepsin \rightarrow Trypsin \rightarrow Peptidase	125.	Both the crown and root of a tooth is covered by a
	(B) Pepsin \rightarrow Peptidase \rightarrow Trypsin		layer of bony hard substance called
	(C) Trypsin \rightarrow Pepsin \rightarrow Peptidase		(A) enamel (B) dentine
	(D) Peptidase \rightarrow Trypsin \rightarrow Pepsin		(C) bony socket (D) cement
120.	Cud chewing animals are known as	126.	Animals consuming only plant materials are referred
	(A) frugivorous (B) sanguivorous		as
	(C) ruminants (D) cannibals		(A) herbivorous (B) carnivorous
121.	Chloragen cells help in		(C) ominivorous (D) insectivorous
	(A) respiration (B) reproduction	127.	The amount of bile released is proportional to the amount of
400	(C) circulation (D) nutrition		(A) fat in meal
122.	what process is being shown in the given diagram ?		(B) protein in meal
			(C) carbohydrate in meal
			(D) All of these
	smooth	128.	The lacteals are found in
	contract		(A) Salivary glands (B) villi
b	volus of food direction		(C) spleen (D) mammary glands
	smooth	129.	Brunner's glands are located in
	relax		(A) oesophagus (B) intestine
			(C) stomach (D) duodenum
		130.	Which one of the following elements is essential for the life of animal and not for plants ?
	(C) Emulsification (D) Peristalsis		(A) Calcium (B) Iodine
123	Acetylcholinesterase enzyme splits acetylcholine into		(C) Phosphorus (D) Potassium
120.	(A) acetone and choline	131.	Cattle fed on spoilt sweet clover may suffer from deficiency of vitamin.
	(B) acetic acid and choline		(A) A (B) K
	(C) aspartic acid and acetylcholine(D) amino acid and choline		(C) D (D) E

Tes	t-3 (Objective)	Horizon Test Series for Medical-2016
132. 133.	The main source of Thiamine in Indian diet is. (A) Milk (B) Meat (C) Vegetables (D) Cereals Chronic alcoholism is characterized by the deficiency of Vitamin.	 (A) TAA; UTT; methionine? (B) TAA; AUU; no amino acid (= stop codon) (C) UAA; AUU; no amino acid (= stop codon) (D) CGG; GCC; alanine 139. The primary function of DNA polymerase is to
134.	(A) A (B) BT (C) C (D) E Regarding Vitamin C.	(A) add nucleotides to the growing daughter strand.(B) seal nicks along the sugar-phosphate backbone of the daugther strand.
	 It plays an important role in tissue oxidation It is needed for the formation of collagen It inhibits nitrosamine formation by intestinal mucosa I, II, III are correct (B) I, II are correct 	 (C) unwind the parent DNA double helix. (D) prevent reassociation of the denatured parent DNA strands. 140. The lagging daughter strand of DNA is synthesized in what appears to be the "wrong" direction. This
135.	 (C) II, III are correct (D) I, III are correct Which of the following is not a good source of calcium? (A) Milk (B) Green leafy vegetables (C) Ragi (D) Rice 	 synthesis is accomplished by (A) ligating (connecting short Okazaki fragments that are synthesized in short spurts in the "right" direction. (B) primase. (C) using multiple primers and DNA polymerase I.
136.	A small segment of DNA contains the base sequence CGT. If an mRNA transcript is made that includes this DNA sequence, what will be the anticodon on the tRNA that will bind to the corresponding mRNA codon for this DNA triplet? (A) CGT (B) GCA (C) CGU (D) GCT	 (D) Both (A) and (B) 141. RNA primers are necessary in DNA synthesis because (A) DNA polymerase can only add to an existing strand of nucleotides. (B) DNA polymerase can only add to an existing DNA strand. (C) DNA primase is the first enzyme in the replication complex.
137.	A functional piece of mRNA has 66 codons. What isthe maximum number of amino acids that could bepresent in the protein coded for by this mRNA?(A) 22(B) 64(C) 65(D) 66	 (D) All of the above 142. Proof reading and repair occur (A) at anytime durig or after synthesis of DNA. (B) only before DNA methylation occurs.
138.	A triplet base sequence in DNA reads ATT. What will be the corresponding mRMA codon, tRNA anticodon, and amino acid called by this DNA?	(C) only in the presence of DNA polymerase.(D) only in the presence of an excision repair mechanism.

Tes	t-3 (Objective)	Horizon Test Series for Medical-2016
143.	 DNA replication is an process andenergination (A) exergonic; does not require (B) endothermic; does require (C) endergonic; does require (D) entothermic: does not require 	 (B) Mistakes can be corrected at multiple steps in the process. (C) Uncorrected mistakes introduce mutations into the DNA base sequence. (D) Mistakes in the copying process are very common
144.	 (b) entothermic, does not require Which of the following statements about DN replication is false? (A) Okazaki fragments are the initiators of continue DNA synthesis along the leading strand. (B) Replication forks represent areas of active DN 	 Occurrances. 148. Assume that you chemically label both strands within a molecule of DNA. You then allow this DNA to replicate using unlabelled nucleotides. Which of the following statements about the two resulting DNA IA molecules is false?
145	 synthesis on the chromosomes. (C) Error rates for DNA replication are often less the one in every billion base pairings. (D) Ligases and polymerases function in the vicin of replication forks. The key finding of the Hershey and Chase experimentation in the vicin of the Hershey and the vicin of the vicin of the Hershey and	 (A) Both will have the chemical label. (B) One will have the chemical label, the other will not. (C) One strand within each molecule will have the chemical label.
	 on the mechanism of viral replication was that (A) protein, not DNA, is the hereditary material. (B) DNA, not protein, is the hereditary material. (C) protein and DNA play and equal role determining inheritance. (D) neither protein nor DNA play a role in determining 	 (D) Assuming no replication errors, both molecules will be genetically identical. 149. In order for the information contained in a gene to be used to produce a functioning protein, the in (A) DNA must be replicated (B) information must be transcribed into mRNA and then translated into amino acids.
146.	 inheritance. When a molecule of DNA replicates without error, ear of the resulting molecules contains (A) the same amount of A as T. (B) the same amount of G as C. (C) one new strand and one old strand. (D) All of the above 	 (C) tRNA must be transcribed into rRNA and ther translated into amino acids. (D) ribosome must be converted from rRNA into mRNA. 150. The process of gene transcription begins with the (A) binding of RNA polymerase to a region of DNA called the promoter.
147.	 Which of the following statements about the process of DNA replication in false? (A) Many different enzymes are needed for the process to function properly. 	 (B) removal of introns from the newly formed mRNA (C) joining of rRNA with various ribosomal proteins. (D) attachment of an mRNA molecule to the ribosome.

Tes	t-3 (Objective)	Horizon Test Series for Medical-2016
151.	 Genes can be inactivated by (A) inaccurate removal of introns. (B) transposable genetic elements. (C) movement of genes to heterochromatic regions 	 156. During transcription, the DNA site at which RNA polymerase binds is called (A) enhancer (B) promoter (C) regulator (D) receptor
152.	of the chromosome (D) All of the above. The genes that mulfunction in cancer normally (A) control RNA transcription	 (A) association of 50 S subunit of ribosome with initiation complex
	 (B) are responsible for organizing DNA packing. (C) code for enzymes that repair damaged DNA. (D) regulate cell division. 	 (B) formation of formyl-met-tRNA (C) binding of 30 S subunit of ribosome with mRNA (D) association of 30 S-mRNA with formyl-met-tRNA 158. Which one of the following triplet codes, is correctly
153.	Which of the following mechanisms of gene regulation operates after mRNA transcription but before translation of mRNA into protein?(A) mRNA splicing(B) DNA packing	 matched with its specificity for an amino acid in protein synthesis or as 'start' or 'stop' codon? (A) UAC – Tyrosin (B) UCG – Start (C) UUU – Stop (D) UGU – Leucine 159. What would happen if in a gene encoding a polypeptide of 50 amino acids. 25th codon (UAU) is mutated to
	(C) Repressors and activators(D) Protein degradation	UAA?
154.	 Homeobox polypeptide segments (A) serve as histones, facilitating DNA packing. (B) bind to DNA and activate or repress gene transcription. (C) are vastly different in different organisms. (D) act as enzymes, carrying out important chemical reactions. 	 (A) A polypeptide of 25 amino acids will be formed (B) A polypeptide of 24 amino acids will be formed (C) Two polypeptides of 24 and 25 amino acids will be formed (D) A polypeptide of 49 amino acids will be formed 160. In the genetic code dictionary, how many codons are used to code for all the 20 essential amino acids? (A) 60 (B) 20 (C) 64 (D) 61
155.	 In humans, the hormone testosterone enters cells and binds to specific proteins, which in turn bind to specific sites on the cells'DNA. These proteins probably act to (A) help RNA polymerase transcribe certain genes. (B) alter and pattern of DNA splicing. (C) stimulate protein synthesis. (D) unwind the DNA so that its genes can be transcribed. 	 161. Protein synthesis occurs (A) on ribosomes present in cytosol as well as in mitochondria (B) only on ribosomes attached to the nuclea envelope and endoplasmic reticulum (C) only on the ribosomes present in cytosol (D) on ribosomes present in the nucleolus as well as cytoplasm.

Test-3 (Objective)			Horizon Test Series for Medical-2016
162.	Which step of translation does not consume a high energy phasphate bond?	gh 167.	(A) AAAT box(B) TATA box(C) GGTT box(D) CAAT box
	(A) Translocation		Which one of the following makes use of RNA as a
	(B) Amino acid activation		template to synthesize DNA?
	(C) Peptidyl-transferase reaction		(A) DNA polymerase
	(D) Aminoacyl tRNA binding to active ribosomal site		(B) RNA polymerase
163.	During replication of a bacterial chromosome DNA synthesis starts from a replication origin site.		(C) Reverse transcriptase
	(A) RNA primers are involved		(D) DNA dependant RNA polymerase
	(B) is facilitated by telomerase	168.	Telomerase is an enzyme which is a
	(C) moves in one direction of the site		(A) simple protein (B) RNA
	(D) moves in bi-directional way		(C) ribonucleoprotein (D) repetitive DNA
164.	In transgenics, expression of transgene in target tissue is determined by	169.	One gene-one enzyme hypothesis was postulated by
			(A) Hershey and Chase
	(A) enhancer (B) transgene		(B) A. Garrod
	(C) promoter (D) reporter	170.	(C) Beadle and Tatum
165.	E.coli cells with a mutated z gene of the lac operon cannot grow in medium containing only lactose as		(D) R. Franklin
			The okazaki fragments in DNA chain growth
	the source of energy because :		(A) polymerize in the 3' - to -5' direction and forms
	(A) the lac operon is constitutively active in these		replication fork
	(D) there exercises from the size of the s		(B) prove semi-conservative nature of DNA replication
	(B) they cannot synthesize functional beta-galactosidase		(C) polymerize in the 5'- to -3' direction and explain 3' -to -5' DNA replication
	(C) in the presence of glucose, E.coli cells do not utilize lactose		(D) result in transcription.
		171.	The length of DNA molecule greatly exceeds the
	(D) they cannot transport lactose from the medium into the cell		this DNA accommodated?
166.	During transcription holoenzyme RNA polymerase binds to a DNA sequence and the DNA assumes a saddle like structure at that point. What is that sequence called?		(A) super-coiling in nucleosomes
			(B) DNase digestion
			(C) through elimination of repititive DNA
			(D) deletion of non-essential genes

Tes	t-3 (Objective)		Horizon Test Series for Medical-2016
172.	 A sequential expression of a set of human genes (A) messenger RNA (B) DNA sequence (C) ribosome (D) transfer RNA 	177.	 Which one of the following pairs of nitrogenous bases of nucleic acids, is wrongly matched with the category mentioned against it? (A) Thymine, Uracil – Pyrimidines (B) Uracil, Cytosine – Pyrimidines
173.	 for the first time in (A) Salmonella typhimurium (B) Escherichia coli (C) Diplococcus pneumoniae (D) Neurospora crassa 	178.	 (C) Guanine, Adenine – Purines (D) Adenine, Thymine – Purines Haploids are more suitable for mutation studies than the diploids. This is because (A) haploids are reproductively more stable than
174.	Molecular basis of organ differentiation depends on the modulation in transcription by(A) ribosome(B) transcription factor(C) anticodon(D) RNA polymerase		 diploids (B) mutagens penetrate in haploids more effectively than diploids (C) haploids are more abundant in nature than diploids
175.	 In the DNA molecule (A) the total amount of purine nucleotides and pyrimidine nucleotides is not always equal (B) there are two strands which run parallel in the 5' ® 3' direction (C) the proportion of adenine in relation to thymine varies with the organism (D) there are two strands which run anti-parallel in 5' ® 3' direction 	179.	 diploids (D) all mutations, whether dominant or recessive are expressed in haploids. T.O. Diener discovered a : (A) free infectious DNA (B) infectious protein (C) bacteriophage (D) free infectious RNA What is not true for genetic code? (A) this posteriophage
176.	 Which one of the following pairs of codons is correctly matched with their function or the signal for the particular amino acid? (A) GUU, GCU – Alanine (B) UAG, UGA – Stop (C) AUG, ACG-start/Methionine (D) UUA, UCA-Leucine 	2	 (A) It is nearly universal (B) It is degenerate (C) It is unambiguous (D) A codon in mRNA is read in a non contiguous fashion.

Space for Rough Work