

Test No. 10

Topics of The Test

Physics	Work, Energy and Power.	$\Big)$
Chemistry	Solutions.	
Biology	Zoology : Excretion. Botany : Transportation in plants.	

	[PHYSICS]		
1.	A raindrop of mass 1 g falling from a height of 1 km hits the ground with a speed of 50 m s ⁻¹ . If the resistive force is proportional to the speed of the drop, then the work done by the resistive force is (Take g = 10 m s ⁻²) (A) 10 J (B) -10 J (C) 8.75 J (D) -8.75 J	4.	 (C) Negative, Positive (D) Negative, Negative A block of mass 1 kg is pushed up a surface inclined to horizontal at an angle of 30° by a force of 10 N parallel to the inclined surface as shown in the figure.
2.	A block of mass <i>m</i> is moving with a speed v on a horizontal rough surface and collides with a horizontally mounted spring of spring constant <i>k</i> as shown in the figure. The coefficient of friction between the block and the floor is μ . The maximum compression of the spring is		The coefficient of friction between block and the incline is 0.1. If the block is pushed up by 10 m along the incline, then the work against gravity is (Take g = 10 m s ⁻²) (A) 10 J (B) 50 J (C) 100 J (D) 150 J
	(A) $-\frac{\mu mg}{k} + \frac{1}{k}\sqrt{(\mu mg)^2 + mkv^2}$ (B) $\frac{\mu mg}{k} + \frac{1}{k}\sqrt{(\mu mg)^2 - mkv^2}$	5.	A particle acted upon by constant forces $(4\hat{i} + \hat{j} - 3\hat{k})N$ and $(3\hat{i} + \hat{j} - \hat{k})N$ is displaced from the point $(\hat{i} + 2\hat{j} + 3\hat{k})$ to point $(5\hat{i} + 4\hat{j} + \hat{k})$. The total work done by the forces in SI unit is (A) 20 (B) 40
	(C) $-\frac{\mu mg}{k} - \frac{1}{k}\sqrt{(\mu mg)^2 - mkv^2}$ (D) $\frac{\mu mg}{k} + \frac{1}{k}\sqrt{(\mu mg)^2 + mkv^2}$	6.	 (C) 50 (D) 30 A weightlifter lifts a weight off the ground and holds it up (A) work is done in lifting as well as holding the weight.
3.	 A body is being raised to a height <i>h</i> from the surface of earth. What is the sign of work done by (i) applied force (ii) gravitational force ? (A) Positive, Positive 		 (B) no work is done in both lifting and holding the weight. (C) work is done in lifting the weight but no work is required to done in holding it up. (D) no work is done in lifting the weight but work is
	(B) Positive, Negative		required to be done in holding it up.

Space for Rough Work

Test-10 (Objective)

7. A uniform chain of length 2 m is kept on a table such that a length of 60 cm hanges freely from the edge of the table. The total mass of the chain is 4 kg. The work done in pulling the entire chain on the table $(Take g = 10 \text{ m s}^{-2})$

(A)	12.9 J	(B)	6.3 J
(C)	3.6 J	(D)	2.0 J

 An electron and a proton are detected in a cosmic ray experiment, the first with kinetic energy 10 keV, and the second with 100 keV. The ratio of their speeds is

(where m_e and m_p are masses of electron and proton respectively)

(A)
$$\sqrt{\frac{1}{10} \frac{m_e}{m_p}}$$
 (B) $\sqrt{\frac{1}{10} \frac{m_p}{m_e}}$
(C) $\frac{1}{10} \frac{m_e}{m_p}$ (D) $\frac{1}{10} \frac{m_p}{m_e}$

9. The blades of a windmill sweep out a circle of area A. If the wind flows at a velocity v perpendicular to the circle, then the mass of the air of density ρ passing through it in time *t* is

(A)	Avpt	(B)	2 <i>Avpt</i>

(C)
$$Av^2\rho t$$
 (D) $\frac{1}{2}Av\rho t$

10. A 120 g mass has a velocity $\vec{v} = 2\hat{i} + 5\hat{j}$ m s⁻¹ at a certain instant. Its kinetic energy is

(A) 3 J (B) 4 J

- (C) 5 J (D) 1.74 J
- 11. In a ballistics demonstration a police officer fires a bullet of mass 50 g with speed 200 m s⁻¹ on soft plywood of thickness 2 cm. The bullet emerges with only 10% of its initial kinetic energy. The emergent speed of the bullet is

Horizon Test Series for Medical-2016

- (A) $2\sqrt{10} \text{ m s}^{-1}$ (B) $20\sqrt{10} \text{ m s}^{-1}$ (C) $10\sqrt{2} \text{ m s}^{-1}$ (D) $10\sqrt{20} \text{ m s}^{-1}$
- 12. A running man has half the kinetic energy than a boy of half his mass has. The man speed up by 1.0 m s^{-1} and then he has the same energy as the boy. The original speeds of the man and boy respectively are

(A) 2.4 m s⁻¹, 1.2 m s⁻¹

- (B) 1.2 m s^{-1} , 4.4 m s^{-1}
- (C) 2.4 m s^{-1} , 4.8 m s^{-1}
- (D) 4.8 m s^{-1} , 2.4 m s^{-1}
- Two bodies A and B have masses 20 kg and 5 kg respectively. Each one is acted upon by a force of 4 kg wt. If they acquire the same kinetic energy in times

t _^ a	nd $t_{\scriptscriptstyle B}$, th	en the ratio $rac{t_{\scriptscriptstyle A}}{t_{\scriptscriptstyle B}}$ is
(A)	$\frac{1}{2}$	(B) 2
(C)	$\frac{2}{5}$	(D) $\frac{5}{6}$

14. A bullet of mass *m* fired at 30° to the horizontal leaves the barrel of the gun with a velocity v. The bullet hits a soft target at a height *h* above the ground while it is moving downward and emerges out with half the kinetic energy it had before hitting the target.

Which of the following statements is correct in respect of bullet after it emerges out of the target ?

- (A) The velocity of the bullet remains the same.
- (B) The velocity of the bullet will be reduced to half its initial value.
- (C) The velocity of the bullet will be more than half of its earlier velocity.
- (D) The bullet will continue to move along the same parabolic path.

Space for Rough Work

Test-10 (Objective)			Horizon Test Series for Medical-2016
15.	A particle is acted upon by a force <i>F</i> which varies with position <i>x</i> as shown in figure. If the particle at $x = 0$ has kinetic energy of 25 J, then the kinetic energy of the particle at $x = 16$ m is	19.	A particle in a certain conservative force field has a potential energy given by $V = \frac{20xy}{z}$. The force exerted on it is
	(A) 45 J (B) 30 J		(A) $\left(\frac{20y}{z}\right)\hat{i} + \left(\frac{20x}{z}\right)\hat{j} + \left(\frac{20xy}{z^2}\right)\hat{k}$ (B) $-\left(\frac{20y}{z}\right)\hat{i} - \left(\frac{20x}{z}\right)\hat{j} + \left(\frac{20xy}{z^2}\right)\hat{k}$ (C) $-\left(\frac{20y}{z}\right)\hat{i} - \left(\frac{20x}{z}\right)\hat{j} - \left(\frac{20xy}{z^2}\right)\hat{k}$
16.	(C) 70 J (D) 20 J A block of mass 10 kg is moving in <i>x</i> -direction with a constant speed of 10 m s ⁻¹ . It is subjected to a retarding force $F_r = 0.1x$ J m ⁻¹ during its travel from $x = 20$ m to $x = 30$ m. Its final kinetic energy will be (A) 250 J (B) 275 J (C) 450 J (D) 475 J A variable force, given by the 2-dimensional vector	20.	(D) $\left(\frac{20y}{z}\right)\hat{i} + \left(\frac{20x}{z}\right)\hat{j} - \left(\frac{20xy}{z^2}\right)\hat{k}$ A bolt of mass 0.2 kg falls from the ceiling of an elevator moving down with an uniform speed of 5 m s ⁻¹ . It hits the floor of the elevator (length of the elevator = 5 m) and does not rebound. The amount of heat produced by the impact is (Take g = 10 m s ⁻²) (A) 5 J (B) 10 J
18.	$\vec{F} = (3x^{2}\hat{i} + 4\hat{j})$, acts on a particle. The force is in newton and x is in metre. What is the change in the kinetic energy of the particle as it moves from the point with coordinates (2,3) to (3,0)? (The coordinates are in metres) (A) -7 J (B) zero (C) +7 J (D) +19 J Two men with weights in the ratio 4:3 run up a staircase	21.	 (K) 53 (D) 103 (C) 15 J (D) 20 J Consider a one-dimensional motion of a particle with total energy <i>E</i>. There are four regions A,B,C and D in which the relation between potential energy V, kinetic energy (K) and total energy E is as given below : Region A:V > E Region B:V<e< li=""> Region C:K>E </e<>
	in time in the ratio 12:11. The ratio of power of the first to that of second is (A) $\frac{4}{3}$ (B) $\frac{12}{11}$ (C) $\frac{48}{33}$ (D) $\frac{11}{9}$		Region D:V>K Which of the following regions the particle cannot be found ? (A) Region A (B) Region B (C) Region C (D) Region D
	Space for F		Mont

Space for Rough Work

5

Test-10 (Objective)

Horizon Test Series for Medical-2016

22. A bob of mass *m* is suspended by a light string of length L. It is imparted a horizontal velocity v_0 at the lowest point.

A such that it completes a semicircular trajectory in the vertical plane with the string becoming slack only

on reaching the topmost point, C.

Match the Column I with Column II

	Column I	Co	lumn II
(A)	Velocity v_0 is	(p)	3
(B)	Velocity at point <i>B</i> is	(q)	\sqrt{gL}
(C)	Velocity at point <i>C</i> is	(r)	$\sqrt{5gL}$
(D)	Ratio of kinetic energy at <i>B</i> and <i>C</i> is	(s)	$\sqrt{3gL}$

- (A) A-p, B-q, C-s, D-r
- (B) A-q, B-r, C-p, D-s
- (C) A-r, B-s, C-q, D-p
- (D) A-s, B-p, C-r, D-q
- 23. In a shotput event an athlete throws the shotput of mass 10 kg with an initial speed of 1 m s⁻¹ at 45° from a height 1.5 m above ground. Assuming air resistance to be negligible and acceleration due to gravity to be 10 m s⁻², the kinetic energy of the shotput when it just reaches the ground will be

(A)	2.5 J	(B)	5 J
(C)	52.5 J	(D)	155 J

24. A particle of mass *m* is moving in a horizontal circle of radius *r*, under a centripetal force equal to $-(k/r^2)$ where *k* is constant. The total energy of the particle is

(A)
$$-\frac{k}{r}$$
 (B) $-\frac{k}{2r}$
(C) $\frac{k}{2r}$ (D) $\frac{2k}{r}$

25. A bullet of mass *m* moving horizontally with a velocity v strikes a block of wood of mass *M* and gets embedded in the block. The block is suspended from the ceiling by a massless string. The height to which block rises is

(A)
$$\frac{v^2}{2g} \left(\frac{m}{M+m}\right)^2$$
 (B) $\frac{v^2}{2g} \left(\frac{M+m}{m}\right)^2$
(C) $\frac{v^2}{2g} \left(\frac{m}{M}\right)^2$ (D) $\frac{v^2}{2g} \left(\frac{M}{m}\right)^2$

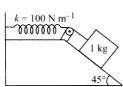
26. The bob of a pendulum is released from a horizontal position. If the length of pendulum is 2 m, what is the speed with which the bob arrives at the lower most point. Assume that 10% of its energy is dissipated against air resistance.

$$(Take g = 10 m s^{-2})$$

(A)
$$4 \text{ m s}^{-1}$$
 (B) 6 m s^{-1}
(C) 8 m s^{-1} (D) 10 m s^{-1}

27. An adult weighing 600 N raises the centre of gravity of his body by 0.25 m while taking each step of 1 m length in jogging. If he jogs for 6 km, the energy utilised by him in jogging is

(A)
$$9 \times 10^6 \text{ J}$$
 (B) $9 \times 10^5 \text{ J}$


- (C) $6 \times 10^6 \text{ J}$ (D) $6 \times 10^5 \text{ J}$
- 28. One man takes 1 minute to raise a box to a height of
 - 1 metre and another man takes $\frac{1}{2}$ minute to do so.

- The energy of the two is
- (A) different
- (B) same
- (C) energy of the first is more
- (D) energy of the second is more

Test-10 (Objective) A 1 kg block situated on a rough incline is connected

29. to a spring of negligible mass having spring constant $100 \text{ N} \text{ m}^{-1}$ as shown in the figure.

The block is released from rest with the spring in the unstretched position. The block moves 10 cm down the incline before coming to rest. The coefficient of friction between the block and the incline is

(Take $g = 10 \text{ m s}^{-2}$ and assume that the pulley is frictionless)

(A)	0.2	(B)	0.3
(C)	0.5	(D)	0.6

30. Match the Column I with Column II.

	Column I	Column II	
(A)	When a body does work against friction, its kinetic energy	(p)	independent of time
(B)	Work done by a body is	(q)	time
(C)	Power of a body varies inversely as	(r)	force must be conservative
(D)	When work done over a closed path is zero	(s)	decreases

- (A) A-p, B-q, C-r, D-s
- (B) A-q, B-r, C-s, D-p
- (C) A-s, B-r, C-q, D-p
- (D) A-s, B-p, C-q, D-r
- 31. An elevator can carry a maximum load of 1800 kg (elevator + passengers) is moving up with a constant speed of 2 m s⁻¹. The frictional force opposing the motion is 4000 N. What is minimum power delivered by the motor to the elevator?

Horizon Test Series for Medical-2016

(A)	22 kW	(B)	44 kW
(C)	66 kW	(D)	88 kW

32. Water is flowing in a river at 2 ms⁻¹. The river is 50 m wide and has an average depth of 5 m. The power available from the current in the river is

(Density of water = 1000 kg m^{-3})

(A)	0.5 MW	(B)	1 MW
(C)	1.5 MW	(D)	2 MW

33. A spherical ball of mass m_1 collides head on with another ball of mass m_2 at rest. The collision is elastic. The fraction of kinetic energy lost by m_1 is

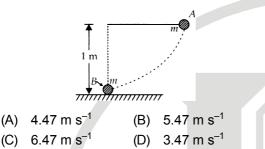
(A)
$$\frac{4m_1m_2}{(m_1 + m_2)^2}$$
 (B) $\frac{m_1}{m_1 + m_2}$
(C) $\frac{m_2}{(m_1 + m_2)^2}$ (D) $\frac{m_1m_2}{(m_1 + m_2)^2}$

A ball falls under gravity from a height of 10 m with initial downward velocity
$$u$$
. It collides with the grou

- 34. an nd, losses 50% of its energy in collision and then rises back to the same height. The initial velocity u is
 - (A) 7 m s^{-1} (B) 25 m s⁻¹
 - (C) 14 m s⁻¹ (D) 28 m s⁻¹
- 35. A ball of mass *m* moving with a speed $2v_0$ collides head-on with an identical ball at rest. If e is the coefficient of restitution, then what will be the ratio of velocity of two balls after collision?

(A)
$$\frac{1-e}{1+e}$$
 (B) $\frac{1+e}{1-e}$
(C) $\frac{e-1}{e+1}$ (D) $\frac{e+1}{e+1}$

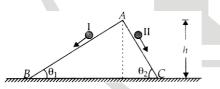
e+1 e-1 A ball of mass *M* falls from a height *h* on a floor which 36. the coefficient of restitution is e. The height attained by the ball after two rebounds is $(\Lambda) = 2h$


(A)	e ² h	(В) eh	2
(C)	e⁴h	(D	$\frac{h}{e^4}$	

Space for Rough Work

Test-10 (Objective)

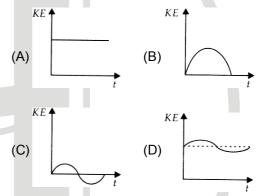
37. The bob A of a pendulum of mass *m* released from horizontal to the vertical hits another bob B of the same mass at rest on a table as shown in figure. If the length of the pendulum is 1 m, what is the speed with which bob B starts moving.


(Neglect the size of the bobs and assume the collision to be elastic) (Take $g = 10 \text{ m s}^{-2}$)

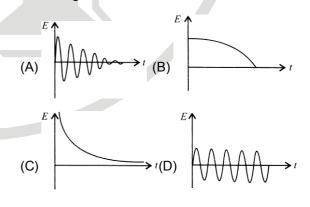
38. A trolley of mass 200 kg moves with a uniform speed of 36 km h^{-1} on a frictionless track. A child of mass 20 kg runs on the trolley from on end to the other (10 m away) with a speed 4 m s⁻¹ relative to the trolley in a direction opposite to its motion, and jumps out of the trolley. The final speed of the trolley is

(A) 8.4 m s^{-1} (B) 10.4 m s^{-1} (C) 12.2 m s^{-1} (D) 14.6 m s^{-1}

39. Two inclined frictionless tracks, one gradual and the other steep meet at A from where two stones are allowed to slide down from rest, one on each track as shown in figure. Which of the following statements is correct ?


- (A) Both the stones reach the bottom at the same time but not with the same speed.
- (B) Both the stones reach the bottom with the same speed and stone I reaches the bottom earlier than stone II.

Horizon Test Series for Medical-2016


- (C) Both the stones reach the bottom with the same speed and stone II reaches the bottom earlier than stone I.
- (D) Both the stones reach the bottom at different times and with different speeds.
- 40. A body of mass 0.5 kg travels in a straight line with velocity $v = ax^{3/2}$ where $a = 5 \text{ m}^{-1/2}\text{s}^{-1}$. The work done by the net force during its displacement from x = 0 to x = 2 m is

(A)	1.5 J	(B)	50 J
(C)	10 J	(D)	100 J

41. Which of the diagrams shown in figure most closely shows the variation in kinetic energy of the earth as it moves once around the sun in its elliptical orbit ?

42. Which of the diagrams shown in figure represents variation of total mechanical energy of a pendulum oscillating in air as function of time ?

Space for Rough Work

Tes	t-10 (Objective)	Horizon Test Series for Medical-2016			
43.	A raindrop falling from a height <i>h</i> above ground, attains a near terminal velocity when it has fallen through a height $\left(\frac{3}{4}\right)h$. Which of the diagrams shown in figure correctly shows the change in kinetic and potential energy of the drop during its fall up to the ground ?	46.	[CHEMISTRY]The volume of ethyl alcohol (density 1.15 g/cc) that has to be added to prepare 100 cc of 0.5 M ethyl alcohol solution in water is(A) 1.15 cc(B) 2 cc(C) 2.15 cc(D) 2.30 cc		
	(A) $h \rightarrow PE$ (B) $h/4$ KE (B) $h/4$ KE (B)	47. 48.	The normality of orthophosphoric acid having purity of 70% by weight and specific gravity 1.54 is (A) 11 N (B) 22 N (C) 33 N (D) 44 N The molarity of H SQ, solution, which has a density		
	(C) $\stackrel{PE}{\longleftarrow} (D) \stackrel{KE}{\longleftarrow} (D)$	49.	The molarity of H_2SO_4 solution, which has a density 1.84 g/cc at 35°C and contains 98% by weight is (A) 1.84 M (B) 18.4 M (C) 20.6 M (D) 24.5 M Mole fraction of the solute in a 1.00 molal aqueous solution is		
44.	A spherical ball A of mass 4 kg, moving along a straight line strikes another spherical ball B of mass 1 kg at rest. After the collision, A and B move with velocities v_1 m s ⁻¹ and v_2 m s ⁻¹ respectively making angles of 30° and 60° with respect to the original direction of	50.	(A) 1.7700 (B) 0.1770 (C) 0.0177 (D) 0.0344 How many grams of sulphuric acid is to be dissolved to prepare 200 mL aqueous solution having concentration of $[H_3O^+]$ ions 1 M at 25° temperature?		
	motion of A. The ratio $\frac{v_1}{v_2}$ will be (A) $\frac{\sqrt{3}}{4}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\sqrt{3}$	51.	$(H = 1, O = 16, S = 32 \text{ mol}^{-1})$ (A) 4.9 g (B) 19.6 g (C) 9.8 g (D) 0.98 g 450 mg of glucose is dissolved in 100 g of solvent. What is the molality of solution ? (A) 0.0025 m (B) 0.025 m (C) 0.25 m (D) 2.5 m		
45.	A cricket ball of mass 150 g moving with a speed of 126 km/h hits at the middle of the bat, held firmly at its position by the batsman. The ball moves straight back to the bowler after hitting the bat same velocity. Assuming that collision between ball and bat is completely elastic and the two remain in contact for	52. 53.	Calculate the mass of urea (NH ₂ CONH ₂) required in making 2.5 kg of 0.25 molal aqueous solution. (A) 37.5 g (B) 73.5 g (C) 53.7 g (D) 75.3 g The molarity of a solution containing 5.0 g of NaOH in 250 mL solution is		
	0.001 s, the force that the batsman had to apply to hold the bat firmly at its place would be (A) 10.5 N (B) 21 N (C) $1.05 \times 10^4 \text{ N}$ (D) $2.1 \times 10^4 \text{ N}$		 (A) 0.1 M (B) 0.5 M (C) 1.0 M (D) 2.0 M 		

Tes	t-10 (Objective)		Horizon Test Series for Medical-2016
54.	25 g of a solute of molar mass 250 mol ⁻¹ is dissolved in 100 mL of water to obtain a solution whose density is 1.25 g mL ⁻¹ . The molarity and molality of the solution are respectively (A) 0.75 and 1 (B) 0.8 and 1 (C) 1 and 0.8 (D) 1 and 0.75	62.	 (A) 173.9 mm Hg (B) 615.0 mm Hg (C) 347.9 mm Hg (D) 90.63 mm Hg The system that forms maximum boiling axeotrope is (A) carbon disulphide- acetone (B) benzene - toluene
55.	The molarity of a solution obtained by mixing 800 mLof 0.5 M HCl with 200 mL of 1 M HCl will be(A) 0.8 M(B) 0.6 M(C) 0.4 M(D) 0.2 M	63.	 (C) acetone - chloroform (D) n-hexane - n-heptane A solution of two liquids boils at a temperature more than the boiling point of either of them.
56.	Common salt obtained from sea water contains 95% NaCl by mass. The approximate number of molecules present in 10.0 g of the salt is (A) 10^{21} (B) 10^{22} (C) 10^{23} (D) 10^{24}		 Hence, the binary solution shows (A) negative deviation form Raoult's law (B) positive deviation from Raoult's law (C) no deviation from Raoult's law (D) positive or negative deviation from Raoult's law
57.	An aqueous solution of 6.3 g of oxalic acid dihydrate is made up to 250 mL. The volume of 0.1 NaOH required to made up to completely neutralise 10 mL of this solution is (A) 40 mL (B) 20 mL (C) 10 mL (D) 4 mL	64.	depending upon the compositionChoose the correct statement.(A) boiling point increases while vapour pressure decreases
58.	The volume of water to be added to 100 cm^3 of 0.5 N H ₂ SO ₄ to get decinormal concentration is (A) 400 cm ³ (B) 450 cm ³ (C) 500 cm ³ (D) 100 cm ³		 (B) boiling point decreases while vapour pressure increases (C) freezing point decreases while vapour pressure increases
59.	An aqueous solution of glucose is 10% in strength.The volume in which 1 g mole of it is dissolved will be(A) 18 L(B) 9 L(C) 0.9 L(D) 1.8 L	65.	 (D) freezing point increases while vapour pressure decreases An aqueous solution is 1.00 molal in KI. Which change will cause the vapour pressure of the solution to increases ?
60.	Mole fraction of a solute in benzene is 0.2 then find molelity of solute.(A) 3.2(B) 2(C) 4(D) 3.6		 (A) Addition of water (B) Addition of NaCl (C) Addition of Na₂SO₄ (D) Addition of 1.00 molal KI
61.	Vapour pressure of chloroform (CHCl ₃) and dichloro methane (CH ₂ Cl ₂) at 25°C are 200 mm Hg and 41.5 mm Hg respectively. Vepour pressure of the solution obtained by mixing 25.5 g of CHCl ₃ and 40 g of CH ₂ Cl ₂ at the same temperature will be (Molecular mass of CHCl ₃ = 119.5 u and molecular mass of CH ₂ Cl ₂ = 85 u)	66.	 (b) Addition of 1.00 molar Ki The vapour pressure of pure solvent is 0.8 mm of Hg at a particular temperature. On addition of a non-volatile solute 'A' the vapour pressure of solution becomes 0.6 mm of Hg. The mole fraction of component 'A' is (A) 0.25 (B) 0.75 (C) 0.5 (D) 0.35

Tes	t-10 (Objective)	Horizon Test Series for Medical-2016
67.	At a constant temperature, which of the following aqueous solutions will have the maximum vapour pressure?	73. A solution of 1.25 of 'P' in 50 g of water lowers freezing point by 0.3°C. Molar mass of 'P' is 94.
	(Molecular weight NaCl = 58.5, $H_2SO_4 = 9.8 \text{ g mol}^{-1}$) (A) 1 molal NaCl (aq)	$K_{f(water)}$ = 1.86 K kg mol ⁻¹ . The degree of association of 'P' in water is
	(B) 1 molar NaCl (aq)	(A) 80% (B) 60%
	(C) 1 molal $H_2SO_4(aq)$	(C) 65% (D) 75%
	(D) 1 molar $H_2SO_4(aq)$	74. Distribution law was given by
68.	At 300 K two pure liquids A and B have vapour pressures respectively 150 mm Hg and 100 mm Hg.	(A) Ostwald (B) Nernst (C) Henry (D) vant's Hoff
	In an equimolar liquid mixture of A and B, the mole fraction of B in the vapour mixture at this temperature is (A) 0.6 (B) 0.5 (C) 0.8 (D) 0.4	 75. 58.5 g of NaCl and and 180 of glucose were separately dissolved in 1000 ml of water. Identify the correct statement regarding the elevation of boiling point of the resulting solution
69.	Vapour pressure of pure 'A' is 70 mm of Hg at 25° C. It forms an ideal solution with 'B' in which mole fraction of A is 0.8. If the vapour pressure of the solution is 84 mm of Hg at 25° C, the vapour pressure of pure 'B' at 25° C is	 (A) NaCl solution will show higher elevation of bp (B) glucose solution will show higher elevation of bp (C) both the solution will show equal elevation of bp (D) the bp elevation will be shown by neither of the solutions
	(A) 56 mm (B) 70 mm	76. 1×10^{-3} m solution of Pt(NH ₂),Cl ₄ in H ₂ O shows
70	(C) 140 mm (D) 28 mm	depression in freezing point by 0.0054°C. The structure
70.	At 25°C, the total pressure of an ideal solution obtained by mixing 3 moles of 'A' and 2 moles of 'B', is 184 torr.	of the compound will be(given $K_{sp}(H_2O) = 1.860 \text{ km}^{-1}$)
	What is the vapour pressure (in torr) of pure 'B' at the	(A) $[Pt(NH_3)_4]Cl_4$ (B) $[Pt(NH_3)_3Cl]Cl_3$
	same temperature ? (Vapour pressure of pure 'A' at	(C) $[Pt(NH_3)_2Cl_2]Cl_2$ (D) $[Pt(NH_3)Cl_3]Cl_3$
	25°C, is 200 torr). (A) 180 (B) 160	77. Dissolution of 1.5 g of a non-volatile solute (molecular weight = 60) in 250 g of a solvent reduces its freezing point by 0.01°C. Find the molal depression constant
71.	(C) 16 (D) 100 To observe an elevation of boiling point of 0.05°C, the	of the solvent.
71.	amount of a solute (molecular weight = 100) to be added	(A) 0.01 (B) 0.001
	to 100 g of water ($K_p = 0.5$) is	(C) 0.0001 (D) 0.1
	(A) 2 g (B) 0.05 g	78. If the elevation in boiling point of a solution of 10 g of
	(C) 1 g (D) 0.75 g	solute (molecular weight = 100) in 100 g of water is
72.	If α is the degree of dissociation of Na ₂ SO ₄ the van't	$\Delta T_{_{b}}$, the ebulliscopic constant of water is
	Hoff factor (i) used for calculating the molecular mass is	(A) 10 (B) 100 <i>T</i> _b
	(A) $1 + \alpha$ (B) $1 - \alpha$	(C) ΔT_{b} (D) $\frac{\Delta T_{b}}{10}$
	(C) $1+2\alpha$ (D) $1-2\alpha$	

Tes	t-10 (Objective)	Horizon Test Series for Medical-2016
79.	The boiling point of water is 100°C. What will be the boiling point of an aqueous solution containing 0.6 g of urea (molar mass = 60) in 100 g of water ? (K_b for water = 0.52 K/m)	85. The temperature at which 10% aqueous solution (w/V) of glucose will exhibit the osmotic pressure of 16.4 atm, is (R = 0.082 dm ³ atm K ⁻¹ mol ⁻¹) (A) 360° (B) 180 K
80.	(A) 1000.052°C (B) 101.052°C (C) 120.52°C (D) None of these What is the freezing point of a solution containing 8.1 g HBr in 100 g water assuming the acid to be 90% ionised ? (K_r for water = 1.86 K mol ⁻¹)	 (C) 90 K (D) 360 K 86. A solution containing 4 g of polyvinyl chloride polymer in 1 L of dioxane was found to have an osmotic pressure of 4.1×10⁻⁴ atm at 27°C. The approximate molecular weight of the polymer is (A) 1500 (B) 10000
81. 82.	(A) 0.85° C (B) 3.53° C (C) 0° C (D) -0.35° C The concentration (in mol/L) of the solution having osmotic pressure 0.0821 atm at 300 K will be (A) 0.33 (B) 0.066 (C) 0.3×10^{-2} (D) 3 During the depression of freezing point experiment an equilibrium is established between the molecules of (A) liquid solvent and solid solvent	 (C) 2.4×10⁵ (D) 2×10¹² 87. Camphor is often used molecular mass determination because (A) it is readily available (B) it has a very high cryoscopic constant (C) it is volatile nature (D) it is solvent for organic substances 88. The degree of dissocation of XY in case of the following reaction is found to be 0.4 from vapour density measurement. If the observed vapour density of XY be 100 then its molecular weight is 200 measurement.
83.	 (B) liquid solute and solid solvent (C) liquid solute and solid solute (D) liquid solvent and solid solute (A) 6% solution of urea is isotonic with (A) 0.05 M solution of glucose (B) 6% solution of glucose (C) 25% solution of glucose 	100 then its molecular weight is $XY \rightarrow X + Y$ (A) 140 (B) 70 (C) 280 (D) 210 89. A solution containing 10 g per dm ³ of urea (molecular mass = 60 g mol ⁻¹) is isotonic with a 5% solution of a non-volatile solute. The molecular mass of this non-volatile solute is (A) 250 g mol ⁻¹ (B) 300 g mol ⁻¹
84.	 (D) 1 M solution of glucose van't Hoff factor more than unity indicates that the solute in solution is (A) dissociated (B) associated (C) Both (a) and (b) (D) canot say anything 	 (C) 350 g mol⁻¹ (D) 200 g mol⁻¹ 90. Which of the following colligative properties can provide molar mass of proteins (or polymers or colloids) with greater precision ? (A) Relative lowering of vapour pressure (B) Elevation in boiling point (C) Depression in freezing point (D) Osmotic pressure
	Snace for R	Rough Work

[12]

Tes	t-10 (Objective)	Horizon Test Series for Medical-2016		
	[ZOOLOGY]	97. Flame cells / solenocytes are excretory organs of (A) Platyhelminthes (B) Annelids		
91.	 Protozoa like Amoeba that live in fresh water (A) pump out excess water and salt through contractile vacuoles (B) eliminate water and salt through cell membrane (C) actually do not gain any water from the environment 	 (C) Arthropods (D) Mollusks 98. Most crustaceans have a pair of specialized excretory structures called as (A) Book lungs (B) Malphighian tubules (C) Flame cells (D) Green gland 		
	(D) have contractile vacuole that pump out excess water	 99. The vertebral levels that correspond to the location of the human kidney are (A) T-10 to T-12 (B) L1 to L5 		
92.	 Animals living in fresh water I. Do not drink water II. Are covered by impervious body covering III. Lose salts to the environment through ionocytes (A) I only is correct (B) I and II are correct (C) II and III are correct (D) I, II and III are correct 	 (A) 1-10 to 1-12 (B) 1-10 to 1-12 (C) T12 to L-2 (D) L4 to S1 100. Urine produced by each nephron empties into the collecting duct, which passes through a into a that drains urine into the (A) Calyx, papilla, ureter (B) Papilla, calyx, ureter (C) Calyx, papilla, renal pelvis (D) Papilla, calyx, renal pelvis 		
93.	 A terrestrial organism must (A) conserve water (B) have a large body size (C) have a separate genitary and urinary system (D) store large amount of water in alimentary canal 	 101. Which of the following is common to many nephrons? (A) Bowman's capsule (B) PCT (C) DCT (D) Collecting duct 		
94.	In humans small amount of uric acid is produced in metabolism of (A) Urea (B) Creatinine (C) Purines (D) Pyrimidines	 102. In the epithelial cells lining the PCT, (A) The apical membrane is thrown into many microvilli and mitochondria are concentrated near the basolateral surface 		
95.	 Which of the following are ureotelic ? (A) Mammals, most adult amphibians living on land, and many marine fish and turtles (B) Mammals living on land but not aquatic mammals, most adult amphibians living on land, many marine fishes and turles 	 (B) The apical membrane is thrown into only a few microvilli and mitochondria are concentrated near the apical surface (C) Microvilli are absent (D) Many microvilli are present all around the cell and mitochondria are randomly distributed 		
	(C) All mammals, all amphibians and all marine fishes but not turtles(D) All amniotes	103. The filtrates that are almost completely reabsorbed in the tubule do not include(A) sugar(B) vitamins		
96.	 Crocodiles excrete (A) Ammonia and urea (B) Ammonia and uric acid (C) Urea and uric acid (D) Ammonia, urea and uric acid 	 (C) organic nutrients (D) water 104. The only mechanism for reabsorption of any protein present in the filtrate is by (A) Passive diffusion (B) Pinocytosis (C) Active transport (D) Facilitated diffusion 		
	0	Pough Work		

Tes	t-10	(Objective)					Horizon Test Series for Medical-2016
105.	Abo	ut how many neph	rons a	re present in each kidney?	113.	Ang	giotensinogen is secreted into the blood by
	(A)	1 lakh	(B)	1 Million		(A)	Macula densa
	(C)	2 million	(D)	10 Million		(B)	Juxta-glomerular cells
106.	The	location of the ki	dney o	an be described as :		(C)	Juxta-medullary nephrons
	(A)	Retroperitoneal	(B)	Retrosternal		(D)	Liver
	(C)	Intrapelvic	(D)	Epigastrium	114.	Rer	nin released by juxtaglomerular cells is a/an
107.	The	Renal plasma flo	w per	minute is approximately		(A)	Proenzyme (B) Prohormone
	(A)	125 ml/min	(B)	650 ml/min		(C)	Enzyme (D) Hormone
	(C)	1200 ml/min	(D)	1500 ml/min	115.		cula densa are Endothelium lining afferent and efferent arterioles
108.		net filtration press	sure e	stimated in human kidney		(A) (B)	Epithelium in DCT near afferent and efferent arterioles
	(A)	20 mm Hg	(B)	30 mm Hg		(C)	Specialized epithelium of thick segments of loop of Henle
	(C)	40 mm Hg	(D)	60 mm Hg		(D)	Specialized epithelium of PCT of the nephron
109.	The	filtration fraction i	n hum	ans is approximately	116.		cula densa are stimulated by
	(A)	19%	(B)	25%		(A) (B)	Low concentration of Na ⁺ in the fluid in DCT Low concentration of Cl ⁻ in the fluid in DCT
	(C)	33%	(D)	50%		(C) (D)	High concentration of Na ⁺ in the fluid in DCT High concentration of Cl ⁻ in the fluid in DCT
110.	The	normal blood urea	a level	varies between	117.	` ´	e part of the nephron that is least permeable to
	(A)	< 1.0 mg / dL	(B)	15-40 mg / dL		wat (A)	er is Thick segment of ascending limb of loop of Henle
	(C)	70-100 mg / dL	(D)	100-140 mg / dL		(R)	Thick segment of descending limb of loop of
111.	elim			urine output required to duced in human body per		(C) (D)	Henle Distal convoluted tubule Collecting duct
	(A)	1000 ml	(B)	1500 ml	118.	The (A)	e normal plasma osmolality is about 100 mOsm / L (B) 200 mOsm / L
	(C)	500 ml	(D)	750 ml		(C)	300 mOsm / L (D) 400 mOsm / L
112.		ation slits are			119.	'Co (A)	lumns of Bertini' are Extensions of cortical tissue into medulla
	(A)	Pores in the vas	cular e	endothelium		(B)	Extensions of medullary tissue into cortex
	(B)			s of podocytes (foot cells)		(C)	Connection between testicular ducts and renal ducts
	(C)			digitations of foot cells		(D)	Connection between ovarian and renal ducts
	(D)	Pores in the non	cellul	ar basement membrane			
				Space for R	l	Mor	۲

Space for Rough Work

Tes	t-10 (Objective)	Horizon Test Series for Medical-2016
120.	 (A) Angiotensinogen causes vasoconstriction (B) Renin is secreted by macula densa (C) Aldosterone is produced by adrenal medulla (D) ADH is secreted when plasma osmolality is increased. 	 (A) I, II and III (B) I and III (C) I and II (D) II and III 128. Consider the following part of a nephron : Thick segment of descending limb of loop of henle Thin segment of descending limb of loop of henle II. Thick segment of ascending limb of loop of henle
121. 122.	 (A) Regulation of blood pH (B) Production of proteins from glucose (C) Regulation of blood volume and blood pressure (D) Regulation of RBC production The main site of the action of aldosterone is the 	IV. DCT Which of the above is/are nor lined by cuboidal epithelium? (A) I and III (B) II and IV (C) II only (D) IV only 129. During urea cycle
123.	 (A) Collecting duct (B) DCT (C) PCT (D) Loop of henle The part of the nephron that is most important during concentration of urine is (A) PCT (B) Thick segment of ascending limb of loop of henle (C) Hair pin bend of loop of Henle 	 (A) One molecule of ammonia & one molecule of CO₂ are eliminated (B) Urea gets converted to ammonia (C) Urea gets converted to uric acid (D) Two molecules of ammonia & one molecule of CO₂ are excreted
124.	 (D) Collecting duct The two kidneys of a human being are interconnected by (A) Corpus renalis (B) Perinephric fat 	 130. The smooth muscle of urinary bladder involved in mictuirition is (A) Sartorius (B) Cremaster (C) Trygon (D) Detrussor
125.	 (C) Bidders canals (D) None of these The correct sequence of amino acids in the urea cycle is (A) ORNITHINE → CITRULLINE → ARGININE (B) ORNITHINE → ARGININE → CITRULLINE (C) CITRULLINE → ORNITHINE → ARGININE (D) CITRULLINE → TYROSINE → PHENYLALANINE 	 131. Deamination in the liver initially produces (A) ammonia (B) arginine (C) ornithine (D) urea 132. Study the following diagram of the human nephron:
126.		
127.	Consider the following : I. Myogenic mechanisms II. Juxtaglomerular mechanism III. Extrinsic neural control mechanism Which of the above are involved in the regulation of GFR?	In which region, the fluid can first be called as urine under normal physiological conditions ? (A) 1 (B) 2 (C) 3 (D) 4

Test-10 (Objective)	Horizon Test Series for Medical-2016		
 133. What part of the human nephron is represented in the following diagram ? (A) PCT (B) DCT (C) Loop of henle (D) Collecting duct 134. The main site for the reabsorption of the amino acids in the human nephron is the : (A) PCT (B) DCT (C) Loop of Henle (D) Collecting duct 135. In diabetes insipidus : (A) concentrated urine is produced by the kidneys (B) concentrated urine with glycosuria will be produced by the kidneys (C) dilute urine with glycosuria will be produced by the kidneys (D) dilute urine without glycosuria will be produced by the kidneys. (BOTANY] 136. Who is called father of plant physiology ? (A) Calvin (B) J.C. Bose (C) Stephen Hales (D) Van Helmont 137. In terms of permeability, the cell wall and plasmalemma are : (A) Permeable and differentially permeable (B) Both semipermeable (C) Semipermeable and differentially permeable 	Horizon Test Series for Medical-2016139. Diffusion pressure of pure solvent is :(A) Always more than its solution(B) Sometimes more than its solution(C) Less than its solution140. What will be zero in a fully turgid cell ?(A) T.P.(B) W.P.(C) S.P.(C) S.P.(D) O.P.141. In a flaccid cell :(A) S.P. = 0(B) S.P. = O.P.(C) S.P. > O.P.(D) S.P. < O.P.		
(B) Both semipermeable	(A) Potometer (B) Barometer		
 138. If the cell is placed in hypertonic solution, what will happen ? (A) Endosmosis (B) Exosmosis (C) Deplasmolysis (D) No change 	by (A) Curtis (B) Dixon and Jolly (C) Kramer and Kozlowski (D) None of the above		

Test-10 (Objective)	Horizon Test Series for Medical-2016		
Test-10 (Objective) 48. Wilting occurs when : (A) Phloem is blocked (B) Xylem is blocked (C) Both xylem and phloem are blocked (D) A few roots are removed 49. The most widely accepted theory' of ascent of sap is: (A) Capillary force theory (B) Atmospheric pressure theory (C) Pulsating action of living cells (D) Transpiration pull and cohesion tension theory 50. Many transplanted plants do not survive due to : (A) They do not like new soil (B) They do not get required mineral salt (C) Most of the root hairs are lost during transplantation (D) Leaves get damaged 51. In the following diagram, if the T.P. of cell B increases to 18, what would be the changes with regard to water movement ? (A) A, C, D and E absorb water from B (B) Water diffuses into B (C) B actively absorbs water from neighbouring cells	152. The osmotic potential of a solution is denoted by the symbol :(A) ψ_x (B) $\Delta \psi$ (C) ψ_p (D) ψ_s 153. Transpiration-cohesion-tension theory operates in :(A) Active absorption(B) Passive absorption(C) Both active and passive(D) None of these154. Girdling experiment cannot be performed in sugarcane because :(A) It cannot withstand injury(B) Vascular bundles in it are scattered(C) Phloem in it situated internal to xylem(D) Sugarcane plants are too delicate155. Water potential in a cell of root hair absorbing water is :(A) Zero(B) Less than zero(C) More than zero(D) More than that of soil water156. At incipient plasmolysis, water potential (ψ_w) is equal to :(A) $\psi_s + \psi_p + \psi_m$ (D) $\psi_p + \psi_m$ 157. When water moves through a semipermeable membrane then which of the following pressure develops ?(A) O.P.(B) S.P.(C) T.P.(D) W.P.158. Addition of a solute to pure water causes :(A) Negative water potential(B) More negative water potential(C) Positive water potential(D) More positive water potential(D) More positive water potential(D) More positive water potential		

Space for Rough Work

Tes	t-10 (Objective)	Horizon Test Series for Medical-2016
159.	 What will be the direction of net osmotic movement of water if a solution 'A', enclosed in a semipermeable membrane, having an osmotic potential of -30 bars and turgor pressure of 5 bars is submerged in a solution 'B' with an osmotic potential of -10 bars and 0 turgor pressure ? (A) Equal movement in both directions (B) B to A (C) No movement 	 166. When plant cell wall is kept in saline drip, cell : (A) Decreases in size (B) Bursts out (C) Increases in size (D) Remains unchanged 167. If water enters in a cell, the pressure exerted by its swollen protoplast is : (A) Turgor pressure
160.	(D) A to B	 (B) D.P.D. (C) Osmotic pressure (D) Imbibition 168. Which of the following maintains the shape of the cell? (A) Osmotic pressure
161. 162.	of : (A) Guttation (B) Plasmolysis (C) Imbibition (D) Diffusion When a plasmolysed cell is placed in a hypotonic solution then water will move inside the cell. Which	 (B) Turgor pressure (C) Wall pressure (D) Osmosis 169. The values of osmotic potential (π) and pressure potential (p) of cells A, B, C and D are given below : (π) (p)
163.	(A) Greater than pure solvent	Cell A -1.0 0.5 Cell B -0.6 0.3 Cell C -1.2 0.6 Cell D -0.8 0.4 Identify the correct sequence that shows the path of
164.	 (B) Less than pure solvent (C) Equal to the pure solvent (D) Less than or greater than pure solvent A sufficient atmospheric pressure required to push the water upto the top of tall plants must be : 	movement of water from among the following : (A) $D \rightarrow C \rightarrow A \rightarrow B$ (B) $B \rightarrow D \rightarrow A \rightarrow C$ (C) $B \rightarrow C \rightarrow D \rightarrow A$ (D) $C \rightarrow B \rightarrow A \rightarrow D$ 170. The potential energy of water is referred as : (A) Water potential (B) Osmotic potential
165.	 (A) 6 atm (B) 2 atm (C) 20 atm (D) all of these The continuity of water column in xylem is maintained due to : (A) Evaporation of water (B) Cohesive property of water (C) Presence of air bubbles (D) None of the above 	 (C) Gravity potential (D) Pressure potential 171. Water can be absorbed from a hypertonic external solution by : (A) Adding more water in the external solution (B) Auxin treated cells (C) Adding a buffer in the external solution (D) Cytokinin treated cells
		Pough Work

Space for Rough Work

Test-10 (Objective)	Horizon Test Series for Medical-2016
	 (A) No movement of water (B) Equilibrium between the two (C) Movement of water from cell 'A' to 'B' (D) Movement of water from cell 'B' to 'A' 176. If flowers are cut and dipped in dilute NaCl solution, then: (A) Transpiration is low (B) Endosmosis occurs (C) No bacterial growth takes place (D) Absorption of solute inside flower cell takes place 177. In plants, water supply is due to : (A) Osmosis (B) Imbibition (C) Guttation (D) Adhesion force 178. Which of the following plant material is an efficient water imbibant ? (A) Lignin (B) Pectin (C) Agar (D) Cellulose 179. Active transport : (A) Releases energy (B) Requires energy (C) Produces a toxic substance 180. Which of the following would be in insignificant amount in the xylem sap ? (A) Phosphate (B) Water (C) Sugar (D) Nitrate

Space for Rough Work

