

SAMPLE PAPER

MENTORS TALENT SEARCH EXAMINATION

FOR STUDENTS IN CLASS XI AND GOING TO CLASS XII

Duration: 3 Hours.

Maximum Marks: 480

[Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.]

INSTRUCTIONS

- A. Question paper format:
- 1. The question paper consists of **THREE** parts (**Physics, Chemistry & Biology**). Each part containing 2 sections (Section-A and Section-B).
- 2. This Question Paper contains 17 pages, other than the OMR.
- 3. Part-I contains Physics questions. Section A of Part I contains 30 multiple choice questions and Section B of Part I contains 10 Assertion-Reason questions.
- 4. **Part-II** contains **Chemistry** questions. **Section A** of **Part II** contains **30** multiple choice questions and **Section B** of **Part II** contains **10 Assertion-Reason** questions.
- 5. **Part-III** contains **Biology** questions. **Section A** of **Part III** contains **30** multiple choice questions and **Section B** of **Part III** contains **10 Assertion-Reason** questions.
- 6. This booklet also contains the OMR answer sheet (i.e., A machine gradable response sheet).
- B. Answering on the OMR:
- 7. Each question will have 4 choices in both the sections, out of which only **one choice is correct**.
- 8. Fill the bubble with **Ball Pen (Blue or Black) ONLY**.
- C. Filling Name and Registration No.
- 9. On the **OMR sheet**, write your Name and Registration No. using ball pen. Also, put your signature in the appropriate box using ball pen.
- D. Marking Scheme:
- 10. (a) For each question, you will be awarded **4 marks** if you have darkened only one bubble corresponding to the right answer.
 - (b) In case you have not darkened any bubble, you will be awarded 0 mark for that question.
 - (c) In all other cases, you will be awarded -1 mark.

Name :	
Registration No.:	

Head Office : Jugeshwar Bhawan, Plot # 4, Main Boring Road, Patna - 800001

PART-I: PHYSICS

SECTION - A

(OBJECTIVE TYPE QUESTIONS)

1. From a point on the ground at a distance of 2 m from the foot of a vertical wall, a ball is thrown at an angle of 45° which just clears the top of the wall and then strikes the ground at a distance of 4 m from the foot of the wall on the other side. The height of the wall is

(A)
$$\frac{3}{2}$$
m (B) $\frac{2}{3}$ m (C) $\frac{3}{4}$ m (D) $\frac{4}{3}$ m

2. A ball of mass m hits a floor with a speed v making an angle of inclination α with the normal to the floor. The coefficient of restitution is e. Find the speed of the rebounded ball.

(A)
$$\sqrt{\sin^2 \alpha + e^2 \cos^2 \alpha}$$
 (B) $\sqrt{\sin^2 \alpha - e^2 \cos^2 \alpha}$
(C) $\sqrt{\cos^2 \alpha + e^2 \sin^2 \alpha}$ (D) $\sqrt{\cos^2 \alpha - e^2 \sin^2 \alpha}$

3. An automobile of mass m accelerates, starting from rest when the engine supplies a constant power P. Find its velocity and displacement as a function of time.

- 4. A stone is dropped from a height of 5 m and after 1sec. a projectile is thrown horizontally from the same point. The path of projectile as seen by stone is $(g = 10m/s^2)$
 - (A) st. line upwards

(B) st. line down wards

(C) parabola upwards

(D) parabola downwards

5. The block A in the figure weighs 100 N. The coefficient of static friction between the block and the table is 0.25. The weight of the block B is maximum for the system to be in equilibrium. The value of weight of B is.

6. The following relations can be derived by the method of dimensional analysis

(i)
$$Q = Q_0 e^{-t/RC}$$

(ii) $y = A = \cos \frac{2\pi}{\lambda} (ct - x)$
(iii) $K = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$
(iv) $V = \frac{\pi pr^4}{8\eta l}$
(A) (i) and (ii) (B) (ii) and (iii) (C) (iii) and (iv) (D) none

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037

[2]

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037

12. A smooth uniform rod of length *L* and mass *M* has two identical beads of negligible size, each of mass *m*, which can slide freely along the rod. Initially the two beads are at the centre of the rod and the system is given an angular velocity ω_0 about an axis perpendicular to rod and passing through

the mid point of rod (As shown in figure). There are no external forces. When the beads reach the ends of the rod the angular velocity of the system becomes

- **13**. Let g be acceleration due to gravity on the surface of earth and T be the rotational kinetic energy of earth. Suppose the earth's radius decreases by 2% due to internal forces. Then
 - (A) g decreases by 2% and T decreases by 4%
 - (B) g decreases by 4% and T decreases by 2%
 - (C) g increases by 4% and T increases by 4%
 - (D) g increases by 4% and T decreases by 4%
- 14. Three rings each of mass m kg and radius a are arranged as shown in figure. The moment of inertia of the arrangement about y y' axis will be

15. If the rate of change of magnitude of velocity is a and the magnitude of rate of change of velocity is b then in a uniform circular motion

(A) $a \neq 0, b \neq 0$ (B) $a = 0, b \neq 0$ (C) a = 0, b = 0 (D) $a \neq 0, b = 0$

- **16.** The vector sum of two forces is perpendicular to their vector differences. In that case, the forces
 - (A) cannot be predicted
- (B) are equal to each other
- (C) are equal to each other in magnitude
- (D) are not equal to each other in magnitude
- **17.** From a building two balls A and B are thrown such that A is thrown upwards and B downwards (both vertically). If V_A and V_B are their respective velocities on reaching the ground, then

(A)
$$V_A > V_B$$

(C)
$$V_A < V_B$$

(B)
$$V_A = V_B$$

(D) their velocities depends on their masses

[4]

23. A disc is rolling (without slipping) on a horizontal surface. C is its centre and Q and P are two points equidistant from C. Let V_P , V_Q and V_C be the magnitude of velocities of points P, Q and C respectively, then

- (A) $V_Q > V_C > V_P$ (B) $V_Q < V_C < V_P$ (C) $V_Q = V_P, V_C = \frac{1}{2}V_P$ (D) $V_Q < V_C > V_P$
- 24. For the given uniform square lamina ABCD, whose centre is O, I represents moment of inertia about axis represented, then

(A) $I_{AC} = \sqrt{2}I_{EF}$ (B) $\sqrt{2}I_{AC} = I_{EF}$ (C) $I_{AD} = 3I_{EF}$ (D) $I_{AC} = I_{EF}$

Suppose, the acceleration due to gravity at the Earth's surface is 10 m s^{-2} and at the surface of Mars it is 4.0 m s⁻². A 60 kg passenger goes from the Earth to the Mars in a spaceship moving with a constant velocity. Neglect all other objects in the sky. Which part of figure best represents the weight (net gravitational force) of the passenger as a function of time?

(A) x + y (B) x - y (C) 2x + y (D) 2x - y

[6]

25.

28. The circular motion of a particle with constant speed is

(A) periodic but not simple harmonic

- (C) periodic and simple harmonic
- (B) simple harmonic but not periodic
- (D) neither periodic nor simple harmonic
- **29.** A motor drives a body along a straight line with a constant force. The power P developed by the motor must vary with time t according to

30. The mass of the liquid flowing per second per unit area of cross- section of the tube is proportional to (pressere difference across the ends)^{*n*} and (average velocity of the liquid)^m. Which of the following relations between m and n is correct.

(A) m = n (B) m = -n (C) $m^2 = n$ (D) $m = -n^2$

SECTION – B

(ASSERTION & REASON TYPE QUESTIONS)

In the questions given below, two statements—an Assertion and a Reason are given. Give the appropriate response as:

- (A) Both Assertion and Reason are true and Reason is correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not correct explanation of Assertion.
- (C) Assertion is true, Reason is false.
- (D) Assertion is false, Reason is true.
- **31.** Assertion : A football player having mass m moving with velocity v will cause more injury to the player having mass 2 m and moving with velocity v/2.

Reason : Both have equal momentum.

32. Assertion : A fat man is standing on a light plank (floating on a calm lake). The person moves from one end of the plank to the other. A person standing on the shore finds he has hardly moved any distance.

Reason : Momentum shall remain conserved.

- **33.** Assertion : An athlete when throws a javelin, work is done by the athlete on the javelin.
 - **Reason** : Javelin does a negative work (on the athlete).
- **34.** Assertion : The work done by the gravitational force on lifting a book from the table is negative.
 - **Reason** : The displacement is opposite to the weight.
- **35.** Assertion : Angle between $\hat{i} + \hat{j}$ and \hat{i} is 45°
 - **Reason** : $\hat{i} + \hat{j}$ is equally inclined to both \hat{i} and \hat{j} and the angle between \hat{i} and \hat{j} is 90°.
- **36.** Assertion : When the range of projectile is maximum, the time of flight is the largest.
 - **Reason** : Range is maximum when angle of projection is 45°

 [3] Sample Paper Class XI
 37. Assertion : KE of system after the collision can never be greater then KE of system before collision. Reason : KE is lost due to presence of non conserative forces
 38. Assertion : A projectile, launched from ground, collides with a vertical wall and returns to ground. The total time of flight is same had there been no collision.
 Reason : The collision changes only the horizontal component of velocity.
 39. Assertion : A series of small speed breakers are more eefective than a single large speed breaker. Reason : The frequency of natural oscillation of vehicle due to shock absorber may be equal to the natural frequency of oscillations due to series of breakers and may lead to resonance which can produce abrupt bounce of vehicle.
 40. Assertion : In non-uniform circular motion velocity vector and acceleration vector are not perpendicular to each other.

Sam	ple Paper Class X			[9]				
		PART-II:	CHEMISTRY					
	SECTION – A							
	(OBJECTIVE TYPE QUESTIONS)							
41.	The BCI_3 is a plana	r molecule whereas N	Cl_3 is pyramidal becaus	e				
	(A) Nitrogen atom is smaller than boron atom							
	(B) BCl ₃ has no lon	e pair but NCl $_3$ has a lo	one pair of electrons					
	(C) B – Cl bond is m	nore polar than N – CI I	oond					
	(D) N – CI bond is n	nore covalent than B –	Cl bon					
42.	Which of the follwin	g species is paramagr	netic?					
	(A) CO	(B) CN [−]	(C) O ₂ ²⁻	(D) NO				
43.	The molar heat cap supplied to 100 g of	acity of water at consta f water which is free to	ant pressure, C, is 75 Jł expand, the increase in	x^{-1} mol ⁻¹ . When 1.0 kJ of heat is temperature of water is				
	(A) 1.2 K	(B) 2.4 K	(C) 4.8 K	(D) 6.6 K				
44.	$In PO_4^{3-}$ ion, the form	nal charge of each oxy	gen atom and P – O bo	nd order respectively are				
	(A) <i>–</i> 0.75, 1.25	(B) –0.75, 1.0	(C) –0.75, 0.6	(D) –3, 1.25				
45.	Which of the followi	ng has $p\pi - d\pi$ bondir	ig ?					
	(A) NO ₃ ⁻	(B) SO ₃ ²⁻	(C) BO ₃ ^{3–}	(D) CO ₃ ²⁻				
46.	The state of hybridiz	zation of C_2, C_3, C_5 and	d $C_6^{}$ of the hydrocarbor	١,				
	$\begin{array}{ccc} CH_3 & CH_3 \\ & \\ CH_3-C-CH=CH-CH-C\equiv CH \\ 7 & 6 \\ 5 & 4 & 3 & 2 & 1 \\ CH_3 \end{array}$ is in the following seugence							
	(A) sp,sp ² ,sp ³ and	sp ²	(B) sp,sp^3,sp^2 and sp^3					
	(C) sp ³ ,sp ² sp ² an	d sp	(D) sp,sp ² ,sp ² and	(D) sp,sp^2,sp^2 and sp^3				
47.	Which one of the fo	llowing species does n	ot exist under normal co	onditions ?				
	(A) Li ₂	(B) Be ₂ ⁺	(C) Be ₂	(D) B ₂				
48.	The average kinetic	energy of an ideal gas	s, per molecule in S.I. ur	nits, at 25°C will be				
	(A) 6.17×10 ⁻²⁰ J	(B) 7.16×10 ⁻²⁰ J	(C) 61.7×10 ⁻²¹ J	(D) 6.17×10 ⁻²¹ J				
49.	The conjugate base	e of NH ₃ is -						
	(A) NH ₄ OH	(B) NH ₂ ⁻	(C) NH ²⁻	(D) N ₂ H ₂				

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037

10Sample Paper Class XI50.For preparing 0.1 N solution of a compound from its impure sample of which the percentage purity
is known, the weight of the substance required will be
(A) less than the theoretical weight
(D) none of these51.Ratic of energy of photon of wavelength 3000A and 6000A is
(A) 3 : 1
(B) 2 : 1
(C) 1 : 2
(D) 1 : 352.N₂ and O₂ are converted into monocations, N¹₂ and O¹₂ respectively. Which of the following is wrong ?
(A) In N¹₂, N - N bond weakens
(B) In O²₂, the O - O bond order increases
(C) In O¹₂, paramagnetism decreases
(D) N¹₂ becomes diamagnetic53.X ml of H₂ gas effuse through a hole in a container in 5 seconds. The time taken for the effusion of
the same volme of the gas specified below under identical conditions is
(A) 10 seconds : He
(B) 20 seconds : O₂
(C) 25 seconds : CO
(D) 55 seconds : CO,54.The oxidation number of sulphur in S₈, S₂F₂, H₂S respectively, are
(A) 0, +1 and -2
(B) +2, +1 and -2
(C) 0, +1 and +2
(D) -2, +1 and -255.The following equilibria are given :
N₂ + 3H₂
$$\rightarrow$$
 2NO K₂
H₂, $\frac{1}{2}O_2 \rightarrow$ 2NO K₂
H₂, $\frac{1}{2}O_2 \rightarrow$ 2NO K₂
H₂, $\frac{1}{2}O_2 \rightarrow$ 2NO + 3H₂O in terms of K₁, K₂ and K₃ is
(A) $\frac{K_1K_2}{K_3}$
(B) $\frac{K_1K_3^2}{K_2}$
(C) $\frac{K_1K_3}{K_1}$
(D) K, K, K,
(D) K, K, K,
and K₃ is
(A) $\frac{K_1K_2}{K_3}$
(B) sontains serum pretein which acts as buffer
(B) contains is an as part of the molecule
(C) can be easily coagulated
(D) is body fluid57.AB, A₂ and B₂ are diatomic molecules. If the bond enthalpies of A₂, AB and B₃ are in the ratio 1 : 1:
0.5 and enthalpy of formation of AB from A₃ and B, is -100 kJ mot¹. What is the bond energy of A₂:

Sam	ple Paper Class XI			[11]	
58.	Which of the following condition favours the reduction of a metal oxide to metal?				
	(A) $\Delta H = +ve, T\Delta S =$	+ve at low temperature	(B) $\Delta H = +ve, T\Delta S =$	-ve at any temperature	
	(C) $\Delta H = -ve, T\Delta S =$	-ve at high temperature	e (D) $\Delta H = -ve, T\Delta S =$	+ve at any temperature	
59.	Consider the followir	ng statements			
	I. The radius of an	anion is larger than that	of the parent atom.		
	II. The ionization er	nergy generally increase	s with increasing atom	ic number in a period.	
	III. The electronega	tivity of an element is the	e tendency of an isolate	ed atom to attract an electron.	
	Which of the above	statements is/are correc	t?		
	(A) I alone	(B) II alone	(C) I and II	(D) II and III	
60.	The order of solubilit	y of lithium halides in no	n polar solvents follow	s the order :	
	(A) Lil > LiBr > LiCl >	→ LiF	(B) LiF > LiI > LiBr >	LiCl	
	(C) LiCl > LiF > Lil >	LiBr	(D) LiBr > LiCl > LiF	> Lil	
61.	The following compounds have been arranged in order of their increasing thermal stabilities. Identify the correct order.				
	$K_2CO_3(I)$	$MgCO_{3}(II)$	$CaCO_{3}(III)$	$BeCO_3(IV)$	
	(A) < < < V	(B) _{IV < II < III < I}	(C) V < < <	(D) < V < < I	
62.	BCI ₃ does not exist a	is dimer but BH_3 exists	as dimer (B_2H_6) beca	use	
	(A) Chlorine is more electronegative than hydrogen				
	(B) there is $p\pi - p\pi$ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding				
	(C) large sized hydro	ogen atoms get fitted in t	between boron atoms		
	(D) none of the above	e			
63.	In a hydrocarbon, mass ratio of hydrogen and carbon is 1:3, the empirical formula of hydrocarbon is				
	(A) CH ₄	(B) CH ₂	(C) C ₂ H	(D) CH ₃	
64.	Which of the followir	ng has the smallest size	?		
	(A) _{Al³⁺}	(B) _F -	(C) _{Na⁺}	(D) Mg ²⁺	
65.	Which one of the fol	lowing is correct order o	f the size of iodine spe	ecies ?	
	(A) I ⁺ > I ⁻ > I	(B) $I^- > I > I^+$	(C) _{I > I⁻ > I⁺}	(D) $ > ^+ > ^-$	
66.	The first ionization p	otentials (eV) of Be and	B respectively are		
	(A) 8.29, 8.29	(B) 9.32, 9.32	(C) 8029, 9.32	(D) 9.32, 8.29	
67.	Which statement is	wrong?			
	(A) Bond energy of F	$F_2 > Cl_2$	(B) Electronegativity of F > Cl		
	(C) F_2 is more oxidizing than Cl_2		(D) Electron affinity of Cl > F		

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037 entors

[12]		Sample Paper Class XI			
68.	Correct orde (A) B < Be < (C) Be < B <	er of 1st ionization poter < C < O < N < C < O < N	ential among following elements Be,B,C,N,O is (B) B < Be < C < N < O (D) Be < B < C < O < N			
69.	An atom has periodic tabl	s electronic configuratio	ion $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$, you will place in the which group of			
	(A) Fifth	(B) Fifteenti	th (C) Second (D) Third			
/0.	I he ions O ²	$^{-}$,F ⁻ ,Na ⁺ ,Mg ²⁺ and Al ³⁺	are isoelectronic. Their ionic radii show			
	(A) A signifi	cant increases from O ²	^{2–} to Al ³⁺			
	(B) A signific	cant decrease from O ²⁻	⁻ to Al ³⁺			
	(C) An incre	ase from O^{2-} to F^{-} and	d then decrease from Na $^+$ to Al $^{3+}$			
	(D) An incre	ase from O^{2-} to F^{-} and	d then increases from Na ⁺ to Al^{3+}			
			SECTION – B			
		(ASSERTION &	& REASON TYPE QUESTIONS)			
In th resp	e questions giv onse as:	en below, two statemer	nts-an Assertion and a Reason are given. Give the appropriate			
(A)	If both Assertion	If both Assertion and Reason are true and Reason is the correct explanation of Assertion.				
(B)	If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.					
(C)	;) If Assertion is true but Reason is false.					
(D)	If both Assertion	on and Reason are false	e.			
71.	Assertion :	A tube light emits white	te light.			
	Reason :	Emission of light in a to	tube takes place at a very high tempreature.			
72.	Assertion :	For Balmer series of h	hydrogen spectrum, the value of $n_1 = 2$ and $n_2 = 3, 4, 5$.			
	Reason :	The value of n for a Ba length is 4 and 6.	almer series line of hydrogen spectrum having the highest wave			
73.	Assertion :	Ionisation potential of	Be (atomic no. 4) is less than that of B (atomic no. 5).			
	Reason :	The first electron relea	ased from Be is of p-orbital but that from B is of s-orbital.			
74.	Assertion :	Diamond is a bad con	nductor.			
	Reason :	Graphite is a good cor	nductor.			
75.	Assertion :	B ₂ molecule is diama	ignetic.			
	Reason :	The highest occupied	I molecular orbital is of σ -type.			
76.	Assertion :	For an ideal gas, at co and volume is a const	onstant temperature and no. of mole the product of the pressure tant.			
	Reason :	The mean square velo	ocity of the molecules is inversely proportional to molecular mass.			
	Į.) 1				

Alims - NEET - AFMC - State Level PMT Get Ig wited...

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037

77. Assertion : Angular momentum of an electron in any orbit is given by $mvr = \frac{n.h}{2\pi}$, where n is the principal quantum number.

Reason : The principal quantum number, n, can have any integral value.

78. Assertion : LiCl is predominantly a covalent compound.

Reason : Electronegativity difference between Li and Cl is too small.

- **79. Assertion** : Many endothermic reactions that are not spontaneous at room temperature become spontaneous at high temperature.
 - **Reason** : Entropy of the system increases with increase in temperature at constant volume.
- **80.** Assertion : A spectral line will be seen for a $2p_x \rightarrow 2p_y$ transition.

Reason : Energy is released in the form of waves of light when the electron drops form $2p_x$ to $2p_y$ transition.

[14]				Sample Paper Class XI			
	PART-III: BIOLOGY						
	SECTION – A						
		(OBJECTIVE TY	PE QUESTIONS	5)			
81.	Mark the odd one out	according to symmetry	/				
	(A) Pea	(B) Cassia	(C) Gulmohar	(D) Datura			
82.	Which of the following	g flower is asymmetrica	al ?				
	(A) Bean	(B) Cassia	(C) Canna	(D) Pea			
83.	Mark the odd one out	according to position of	fovary				
	(A) Mustard	(B) Brinjal	(C) Chaina rose	(D) Peach			
84.	When sepals are unit	ed the condition is calle	ed				
	(A) Gamosepalous	(B) Polysepalous	(C) Trimerous	(D) Tetramerous			
85.	Mark the incorrect acc	cording to aestivation					
	(A) Valvate	- Calotropis	(B) Twisted	- Glumohar			
	(C) Vexillary	- Bean	(D) Imbricate	- China rose			
86.	Ovary is one chambe	ered but becomes two c	hambered due to form	nation of false septum is seen in			
	(A) Argemone	(B) Mustard	(C) Dainthus	(D) Both (A) and (B)			
87.	Five sepals and five p	etals are featue of					
	(A) Fabaceae	(B) Solanaecae	(C) Liliaceae	(D) Both (A) and (B)			
88.	Tomato, brinjal, chilly	plants belong to a fami	ly with				
	(A) Five stamens with	epipetalous condition	(B) Six stamen (3 +	3)			
	(C) Bicarpellary sync	arpus ovary	(D) Both (A) and (C)				
89.	Mark the incorrect sta	atements					
	(A) Fall in GFR activa	te Jga cells to release r	enin				
	(B) JGA is a special n	nodification of cells in E	DCT				
	(C) Reabsorption of v	vater occurs passively i	in last sgement of Ner	bhron			
	(D) All of these						
90.	If a diploid cell is treat	ted with colchicine then	it becomes				
	(A) Triploid	(B) Tetraploid	(C) Diploid	(D) Monoploid			
91.	Syngenesious condition	ion is found in					
	(A) Asteraceae	(B) Labiate	(C) Solanaceae	(D) Fabaceae			
92.	During the conduction	n of an impulse, electric	al potential on inside	axolemma changes from			
	(A) Negative to positiv	ve and remains positive	(B) Positive to negati	ive and again positive			
	(C) Negative to positiv	ve and again negative	(D) Positive to negat	ive and remains negative			

Sam	ole Paper Class XI			[15]	
93.	Ectophloic siphonost	ele is found in			
	(A) Osmunda and Ed	quisetum	(B) Marsilea and Botrychium		
	(C) Adiantum and Cu	ıcurbitaceae	(D) <i>Dicksonia</i> and <i>M</i>	laiden hair fern	
94.	If a cell A with DPD 4 10 and 5 and 7 and 3	bars is connected to c bars, the flow of water	ell B, C, D whose OP a r will be	and TP are respectively 4 and 4,	
	(A) A and D to B and	IC	(B) A to B, C and D		
	(C) B to A/D to C		(D) C to A, B and D		
95.	The size of chlorophy	yll molecule is			
	(A) Head 15 × 15 Å, t	ail 25 Å	(B) Head 20 × 20 Å, t	tail 25 Å	
	(C) Head 15 × 15 Å, t	tail 20 Å	(D) Head 10 × 12 Å,	tail 25 Å	
96.	Terminal ctyochrome	of respiratory chain wh	nich donates electrone	s to oxygen is	
	(A) Cyt. b	(B) Cyt. c	(C) Cyt. a ₁	(D) Cyt. a ₃	
97.	An ovule which becor is	mes curved so that the	nucellus and embryo sa	ac lie at right angels to the funicle	
	(A) Hemitropous	(B) Campylotropous	(C) Anatropous	(D) Orthotropous	
98.	Which of the followin	g movement is not rela	ted to auxin level		
	(A) Bending of shoot	towards light	(B) Movement of roo	(B) Movement of root towards soil	
	(C) Nyctinastic leaf n	novements	(D) Movement of sur	flower head tracking the sun	
99.	An interesting modification of flower shape for insect pollination occurs in some orchids in which a male insect mistakes the pattern on the orchid flower for the female of his species and tries to copulate with it, thereby pollinating the flower. This phenomenon is called				
	(A) Mimicry		(B) Pseudopollination	า	
	(C) Pseudocopulation	n	(D) Pseudopartheno	carpy	
100.	The most common in	ndicator organisms that	represents polluted w	rater is	
	(A) E.coli	(B) P. typhi	(C) C.vibrio	(D) Entamoeba	
101.	In order to obtain viru	is-free plants through t	issue culture the best r	nethod is	
	(A) Embryo rescue	(B) Anther culture	(C) Meristem culture	(D) Protoplast culture	
102.	Which one among th	e following chemicals i	s used for causing defe	oliation of forest trees?	
	(A) Phosphon-D		(B) Malic hydrazide		
	(C) 2,4 Dicholorophe	noxy acetic acid	(D) Amo- 1618		
103.	Which of the followin	ig is not true for a spec	ies?		
	(A) Members of a spe	ecies can interbreed			
	(B) Gene flow does r	not occur between the p	oopulations of a speice	S	
	(C) Each species is r	eproductively isolated	from every other speic	es	
	(D) Variations occur	among members of a s	species		

[16]				Sample Paper Class XI	
104.	The catalytic efficience	y of two different enz	ymes can be compared	d by the	
	(A) formation of the pr	oduct	(B) pH optimum valu	le	
	(C) K _m value		(D) molecular size c	of the enzyme	
105.	Fire bellied toad is				
	(A) Amphiuma	(B) Discoglossus	(C) Necturus	(D) Salamandra	
106.	American water plant	that has become a ti	oublesome water weed	l in India is	
	(A) Cyperus rotundus		(B) Eichhornia cras	sipes	
	(C) Trapa iatifolia		(D) Trapa bispinosa		
107.	Characteristics of sm	ooth muscle fibres a	re		
	(A) Spindle-shaped, u	nbranched, unstriate	d, uninucleate and invol	untary	
	(B) Spindle shaped, u	nbranched, unstriped	l, multinucleate and invo	oluntary	
	(C) Cylindrical, unbrar	nched, unstriped, mu	tinucleate and involunt	ary	
	(D) Cylindrical, unbrar	nched, striated, multi	nucleate and voluntary		
108.	An adolescent humar	below 17 years of a	ge normally has dental	formula as	
	(A) $\frac{2,1,3,2}{2,1,3,2}$	(B) <u>2,2,3,2</u> <u>2,2,3,2</u>	(C) $\frac{2,1,2,0}{2,1,2,0}$	(D) $\frac{2,1,2,2}{2,1,2,2}$	
109.	In alveeoli of the lung	s, the air at the site of	gas exchange, is spea	rated from the blood by	
	(A) alveolar epithelium only				
	(B) alveolar epitheliur	n and capillary endot	helium		
	(C) alveolar epitheliur	n, capillary endotheli	um and tunica adventitia	a	
	(D) alveolar epithelium, capillary endothelium, a thin layer of tunica media and tunica adventitia				
110.	Splenic artery arises f	rom			
	(A) Anterior mesente	ric artery	(B) Coeliac artery		
	(C) Posterior mesent	eric artery	(D) Intestinal artery		
		SEC	TION – B		
	(ASS	ERTION & REA	SON TYPE QUES	TIONS)	
In the respo	questions given below onse as:	, two statements–an	Assertion and a Reaso	n are given. Give the appropriate	
(A)	If both Assertion and Re	eason are true and R	eason is the correct exp	planation of Assertion.	
(B)	If both Assertion and Re	eason are true but Re	eason is not the correct	explanation of Assertion.	
(C)	If Assertion is true but F	Reason is false.			
(D)	If both Assertion and Re	eason are false.			
111.	Assertion : Viruse	s are not considered	organisms.		
	Reason : Viruse	s are nucleoproteins	and lack cell organelle	, etc.	

Samp	ole Paper (Cla	iss XI	[17]
112.	Assertion	:	TMV is a virus which causes tobacco mosaic disease.	
	Reason	:	TMV has RNA as genetic material.	
113.	Assertion	:	Yeasts such as Saccharomyces cerevisiae are used in baking industry.	
	Reason	:	Carbon dioxide produced during fermentation causes bread dough to rise by the expansion.	rmal
114.	Assertion	:	Blood and lymph are fibrous connective tissues of the body.	
	Reason	:	Lymph has more WBC than blood.	
115.	Assertion	:	12 - 16 gm of haemoglobin is present in every 100 ml of blood.	
	Reason	:	Haemoglobin is present in Erythrocytes.	
116.	Assertion	:	Neutrophils and monocytes are phagocytic.	
	Reason	:	Both cells destroys foreign cells entering in body.	
117.	Assertion	:	Mango Dipped in concentrated sodium chloride solution will contract.	
	Reason	:	Water goes out due to exosmosis in hypertonic solution.	
118.	Assertion	:	Nissl Granules that are basophilic are present in the Cyton.	
	Reason	:	They are composed of RNA	
119.	Assertion	:	Phycobilins are destroyed by heat.	
	Reason	:	The are protein linked and proteins are denatured due to heat.	
120.	Assertion	:	The inner serosa coat has innumerable finger like projections.	
	Reason	:	Absorption decreases due to infolds.	