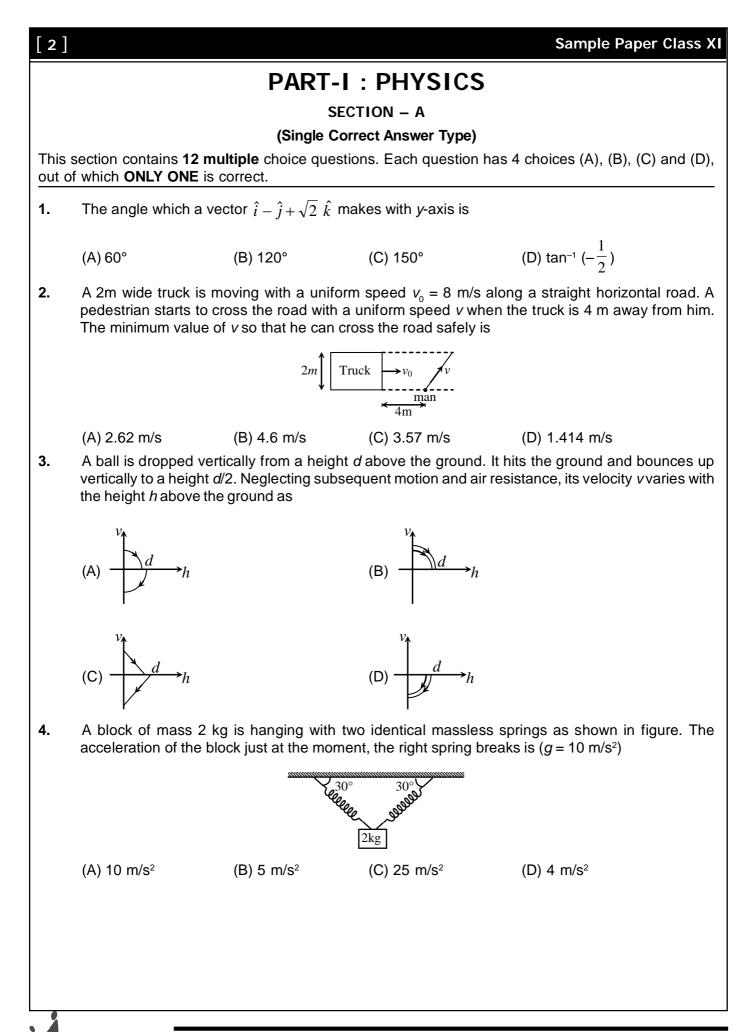


SAMPLE PAPER

MENTORS TALENT SEARCH EXAMINATION

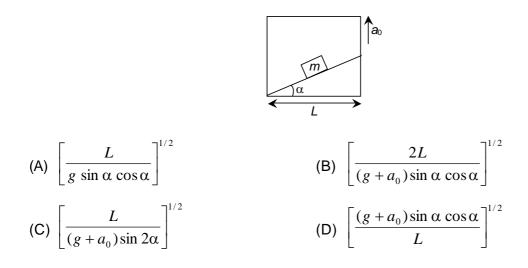
FOR STUDENTS IN CLASS XI AND GOING TO CLASS TO XII

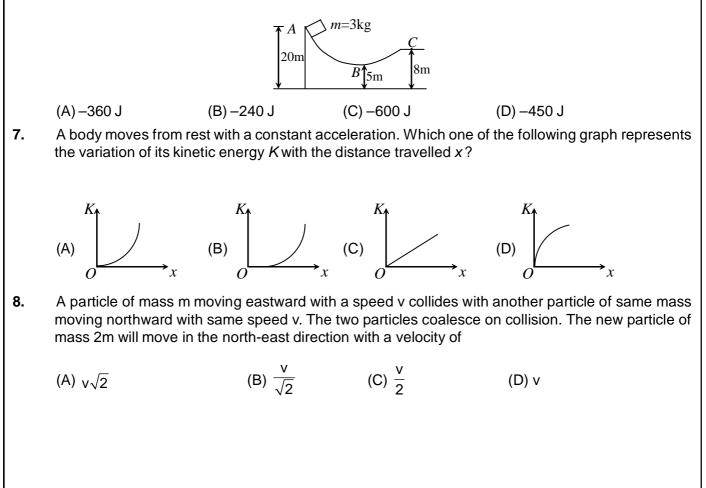

Time : 3 hours

NOTDHOTIONS

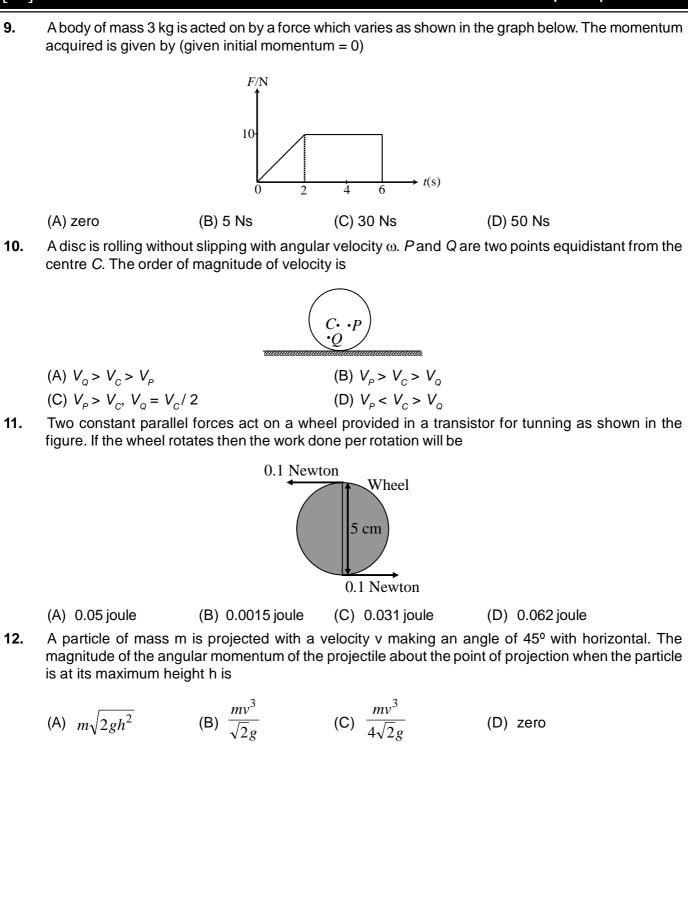
Maximum Marks: 240

(A)	General :	
1.	This Question paper contains THREE parts (Physics, Chemsitry and Mathematics). Each part containing 2 section (Section-A and Section-B).	
2.	This Question Paper contains 12 pages, other than the OMR.	
3.	This Question Paper contains total 60 questions, 20 questions each in Physics, Chemistry and Mathematics .	
4.	The Question Paper has blank spaces at the bottom of each page for rough work.No additional sheets will be provided for rough work.	
5.	Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed.	
6.	This booklet also contains the OMR answer sheet (i.e., A machine gradable Response Sheet).	4
(B)	Answering on the OMR:	Ш
7.	Each question will have 4 choices in both the Sections, out of which only one choice is correct .	S
8.	Fill the bubble with Ball Pen (Blue or Black) ONLY.	
(C)	Filling – Name and Registration No.	
9.	On the OMR sheet , write your Name and Registration No. using ball pen. Also, put your signature in the appropriate box using ball pen.	
(D) 10.	 Marking Scheme: (a) For each question, you will be awarded 4 marks if you have darkened only one bubble corresponding to the right answer. (b) In case you have not darkened any bubble, you will be awarded 0 mark for that question. (c) In all other cases, you will be awarded –1 mark. 	
	Name :	
Reg	gistration No.:	
	1. 2. 3. 4. 5. 6. (B) 7. 8. (C) 9. (D) 10.	 This Question paper contains THREE parts (Physics, Chemsitry and Mathematics). Each part containing 2 section (Section-A and Section-B). This Question Paper contains 12 pages, other than the OMR. This Question Paper contains total 60 questions, 20 questions each in Physics, Chemistry and Mathematics. The Question Paper has blank spaces at the bottom of each page for rough work.No additional sheets will be provided for rough work. Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed. This booklet also contains the OMR answer sheet (i.e., A machine gradable Response Sheet). Answering on the OMR: Each question will have 4 choices in both the Sections, out of which only one choice is correct. Fill the bubble with Ball Pen (Blue or Black) ONLY. Filling – Name and Registration No. On the OMR sheet, write your Name and Registration No. using ball pen. Also, put your signature in the appropriate box using ball pen. (a) For each question, you will be awarded 4 marks if you have darkened only one bubble corresponding to the right answer. (b) In case you have not darkened any bubble, you will be awarded 0 mark for that question. (c) In all other cases, you will be awarded -1 mark.


Head Office : Jugeshwar Bhawan, Plot # 4, Main Boring Road, Patna - 800001


entors

Sample Paper Class XI


5. A particle slides down a smooth inclined plane of elevation α fixed in the elevator going up with an acceleration a_0 as shown in figure. The base of the incline has a length *L*. The time taken by the particle to reach the bottom is

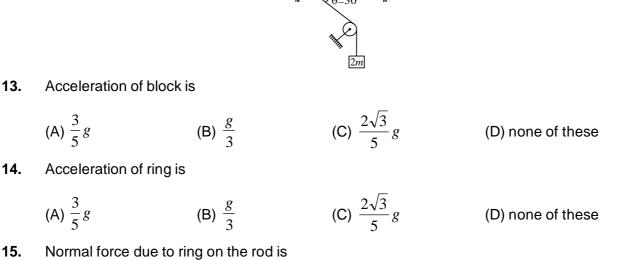
6. A block of mass 3 kg slides down a rough curved path from point *A* as shown. If it stops at *C*, the work done by friction is $(g = 10 \text{ ms}^{-2})$

entors

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037

Sample Paper Class XI

entors


SECTION – B

(Comprehension Type)

This section contains 3 paragraphs. Based upon the first and second paragraph 3 multiple choice questions and based upon the third paragraph 2 multiple choice questions have to be answered. Each of these questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Passage-1

A smooth ring of mass m can slide on a fixed horizontal rod. A massless string tied to the ring passes over a fixed smooth pulley of mass m and carries a block of mass 2m as shown in figure. At an instant the string between ring and pulley makes an angle $\theta = 30^{\circ}$ with the horizontal.

15.

(A) $\frac{4mg}{5}$	(B) <i>mg</i>	(C) $\frac{2mg}{5}$	(D) none of these
---------------------	---------------	---------------------	-------------------

Paragraph-2

Two spheres A and B are moving on a smooth horizontal surface with same velocity v having some separation between them. A third sphere C is moving in opposite direction on same surface with same speed. All the spheres are of equal mass. The collisions are elastic. Let v_{cm} represents the centre of mass velocity of all the three spheres.

16. If A and B are connected to each other by a massless rigid rod, then the value of v_m after all the possible collisions have occurred will be

(A)
$$\frac{v}{3}$$
 (B) $\frac{2v}{3}$ (C) v (D) $\frac{3v}{3}$

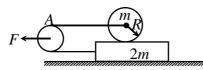
17. If A and B are connected to each other by a massless rigid rod, then during all the possible collisions

(A) momentum of A and B is conserved (B) momentum of B and C is conserved

- (C) momentum of B and C is not conserved(D) momentum of A will remain constant
- 18. After all collision are completed, the total number of collisions will be

(B) 2

(A) 1


(C) 3

(D) 4

Paragraph-3

A solid cylinder of mass m and radius R is kept at rest on a plank of mass 2m lying on a smooth horizontal surface. Massless and inextensible string connecting cylinder to the plank is passing over a massless pulley. The friction between the cylinder and the plank is sufficient to prevent slipping. Pulley A is pulled with a constant horizontal force F.

19. Acceleration of cylinder with respect to earth is

(A)
$$\frac{5F}{21m}$$
 (B) $\frac{F}{7m}$ (C) $\frac{3F}{7m}$ (D) $\frac{2F}{7m}$

20. Acceleration of plank with respect to earth is

(A)
$$\frac{5F}{21m}$$
 (B) $\frac{F}{7m}$ (C) $\frac{3F}{7m}$ (D) $\frac{2F}{7m}$

Sample Paper Class XI

PART-II: CHEMISTRY

SECTION – A

(Single Correct Answer Type)

This section contains 12 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

21. Statement-1 : The dipole moment of C_3O_2 and CO_2 are zero.

Statement-2: Two more electronegative ends are in diametrically opposite direction in both cases.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

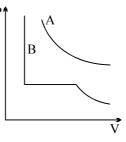
(D) Statement-1 is false, statement-2 is true

An electron, a proton and an alpha particle have K.E. of 16E, 4E and E respectively. What is the 22. gualitative order of their de-Broglie wavelengths :

(A) $\lambda_{e} > \lambda_{p} = \lambda_{\alpha}$ (B) $\lambda_{p} = \lambda_{\alpha} > \lambda_{e}$ (C) $\lambda_{p} < \lambda_{e} < \lambda_{\alpha}$ (D) $\lambda_{\alpha} < \lambda_{e} = \lambda_{p}$

Which of the following represents kinetic energy of an an electron in Bohr's orbit of H-atom. 23.

(A)
$$\frac{-Rhc}{n^2}$$
 (B) $\frac{Rhc}{n^2}$ (C) $\frac{-2Rhc}{n^2}$ (D) $\frac{2Rhc}{n^2}$


Bond distance C–F in (CF₄) & Si–F in (SiF₄) are respective 1.33Å & 1.54 Å. C–Si bond is 1.87 Å. 24. Calculate the covalent radius of F atom ignoring the electronegativity differences.

(D) $\frac{1.54}{2}$ Å (B) $\frac{1.33+1.54+1.8}{3}$ Å (C) 0.5 Å (A) 0.64 Å

25. pH of a mixture of 0.75 M CH₃COOH and 0.25 M (CH₃COO)₃AI

 $[pK_a (CH_3COOH) = 4.74; log_{10}3 = 0.477]$

26. For two gases A and B, P v/s V isotherms are drawn at T K as shown. T_A & T_B are critical temperatures of A & B respectively.

Which of following is true?

(A) $T_A < T < T_B$ (B) $T_A > T > T_B$ (C) $T_A > T_B > T$

(D) None of above

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037

[8]

Sample Paper Class XI

27. A container fitted with frictionless massless piston consist of five valves-I, II, III, IV and V. These valves open automatically if pressure exceed over 1.5, 2.2, 2.5, 4.4 and 4.8 atm respectively. Under the given initial conditions (mentioned in given diagram) system is in state of equilibrium. Piston is now pressed in downward direction very slowly. [Note: Consider the diameter of valve tube negligible and temperature remain constant.] Which of the following is correct : (I) Valve – II will be opened first (II) As the piston crosses the valve which will be opened first, the remaining number of moles in container are $\frac{3}{2}$. (III) Valve-V will be the second valve which open (IV) Number of moles will zero as piston crosses Valve-V (C) (I) & (IV) (A) (I) & (II) (B) (II) & (III) (D) (III) & (IV) One mole mixture of CH₄ & air (containing 80% N₂ 20% O₂ by volume) of a composition such that 28. when underwent combustion gave maximum heat (assume combustion of only CH₄). Then which of the statement is correct, regarding composition of initial mixture. (X presents mole fraction) (A) $X_{CH_4} = \frac{1}{11}, X_{O_2} = \frac{2}{11}, X_{N_2} = \frac{8}{11}$ (B) $X_{CH_4} = \frac{3}{8}, X_{O_2} = \frac{1}{8}, X_{N_2} = \frac{1}{2}$ (C) $X_{CH_4} = \frac{1}{6}, X_{O_2} = \frac{1}{6}, X_{N_2} = \frac{2}{3}$ (D) Data insufficient According to hybridisation theory maximum s-character is found in bond formed by (*) atom. 29. (C) ${\stackrel{*}{\rm X}}{\rm eO}_6^{4-}$ (D) ${\stackrel{*}{\rm S}}{\rm F}_4$ (A) $\dot{C}H_4$ (B) $\dot{S}F_6$ **30.** $C_6H_5OH(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(h)$ Magnitude of volume change if 30 ml of C_6H_5OH (g) is burnt with excess amount of oxygen, is (A) 30 ml (B) 60 ml (C) 20 ml (D) 10 ml Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, ntors Patna-1, Ph. No. : 0612-6567315, 310, 2540037

Sample Paper Class XI 9 31. When pure water is saturated with CaCO₃ and CaC₂O₄, the concentration of calcium ion in the solution under equilibrium is 8.426 × 10⁻⁵ M. If the ratio of the solubility product of CaCO₃ to that of CaC₂O₄ is 2.087, what is the solubility product of CaCO₃ in pure water? (C) 9.60×10^{-8} (A) 4.80 × 10⁻⁸ (B) 9.60×10^{-9} (D) 4.80 × 10⁻⁹ 32. 'y' ml of 'y' volume H_2O_2 solution completely reacts with 'x' ml of 'y' M KMnO₄ solution in acidic medium. The value of x/y is (A) 0.036 (B) 28 (C) 0.057 (D) cannot be calculated SECTION - B (Comprehension Type) This section contains 2 paragraphs. Based upon the first & second paragraph 3 multiple choice questions and based upon the third paragraph 2 multiple choice questions have to be answered. Each of these questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Paragraph-1 Nature of bond can be predicted on the basis of electronegativity of bonded atoms, greater difference in electronegativity (X), more will be the polarity of bond, and polar bond are easily broken in polar solvent like water. For hydroxy acids $X_0 - X_A$ difference predict the nature of oxide formed by the element A. $|X_{O} - X_{A}| > |X_{O} - X_{H}|$ then A–O–H show basic nature (NaOH) $|X_{O} - X_{A}| < |X_{O} - X_{H}|$ then A–O–H show acidic nature (H–O–CI) With the help of EN values [EN_A = 1.8, EN_B = 2.6, EN_C = 1.6, EN_D = 2.8, EN_O = 3.44, EN_H = 2.26] answer the following questions for the compounds HAO, HBO, HCO, HDO. **33.** Compounds whose aqueous solution is acidic and order of their acidic strength (A) AOH, COH ; AOH < COH (B) HDO, HBO ; HDO > HBO (C) AOH, COH ; AOH > COH(D) HDO, HBO ; HDO < HBO 34. Compounds whose aqueous solution is basic and order of their basic strength (A) AOH, COH ; AOH < COH(B) HDO, HBO ; HDO > HBO (C) AOH, COH ; AOH > COH(D) HDO, HBO ; HDO < HBO **35.** Which of the following bond is most polar (A) AB (B) BC (C) CD (D) AD

Paragraph-2

Equilibrium constants are given (in atm) for the following reactions at 0° C:

$SrCl_2 \cdot 6H_2O(s) \implies SrCl_2 \cdot 2H_2O(s) + 4H_2O(g)$	$K_p = 5 \times 10^{-12}$
$Na_2HPO_4 \cdot 12 H_2O(s) \implies Na_2HPO_4 \cdot 7 H_2O(s) + 5H_2O(g)$	$K_p = 2.43 \times 10^{-13}$
$Na_2SO_4 \cdot 10 H_2O(s) \implies Na_2SO_4(s) + 10 H_2O(g)$	$K_p = 1.024 \times 10^{-27}$

The vapor pressure of water at 0°C is 4.56 torr.

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037

[10]			Sample Paper Class XI
36.		effective drying agent at	0°C?	
	(A) SrCl₂ · 2H₂O	(B) Na ₂ HPO ₄ ·7 H ₂ O	(C) Na ₂ SO ₄	(D) all equally
37.	At what relative hur	midities will $Na_2SO_4 \cdot 10H_2$	O be efflorescent (releas	e moisture) when exposed to air
	at 0°C ? $[10^{0.3} \approx 2]$			
	(A) above 33.33%	(B) below 33.33 %	(C) above 66.66%	(D) below 66.66%
38.	At what relative hui air at 0°C?	midities will Na ₂ SO ₄ be d	leliquescent (i.e. absorb	moisture) when exposed to the
	(A) above 33.33%	(B) below 33.33 %	(C) above 66.66%	(D) below 66.66%
Para	agraph-3			
	•	cture from the initial con		calculate the concentrations in only the initial concentration of
39.	In a study of equilib	prium		
	$H_2(g) + I_2(g) \rightleftharpoons$	=== 2HI (g)		
	1 mol of H_2 and 3 m	nol of I ₂ gave rise at equi	librium to x mol of HI.	
	Addition of a furthe	r 2 mol of H ₂ gave an ado	ditional x mol of HI. What	is x?
	(A) 0.5	(B) 1	(C) 1.5	(D) None of these
40.	In above problem, v	what is K _p at the tempera	ture of the experiment.	
	(A) 1	(B) 2	(C) 4	(D) None of these
76	entors		4 Jugeshwar Bhawan, 3 -1, Ph. No. : 0612-65673	rd Floor, S.K. Puri Boring Road, 15, 310, 2540037
1				

Samp	le Paper Class XI						[11]
		PART-	III : M	АТН	EMATIC	CS	
			SECTI	0N – <i>I</i>	A		
		(Si	ngle Correc	t Answ	ver Type)		
		-	e questions.	Each q	uestion has 4 o	choice	es (A), (B), (C) and (D), out
	ch ONLY ONE is co						
41.	The circumcentre of	of the triangle	e formed by th			+ 4 = (0 and x + y + 2 = 0 is
	(A) (0, 0)			. ,	(-2, -2)		
	(C) $(-1, -1)$. ,	(-1, -2)		
42.	A point P(x, y) mov The area of the reg				nces from the I	ines >	x + y = 0 and $y - x = 0$ is 3.
	(A) 18	(B) 19		(C) 20	0	(D)	30
43.	The locus of the 5x + 2y = 16 is	centre of the	e circles such	n that t	the point (2, 3	3) is t	he midpoint of the chord
	(A) 2x - 5y + 11 =	0		(B)	2x + 5y - 11 =	= 0	
	(C) 2x + 5y + 11 =	: 0		(D)	none of these		
44.	If the lines (y – b) =	= m ₁ (x + a) a	nd y – b = m_2	(x + a)	are the tanger	nts to	$y^2 = 4ax$, then
	(A) $m_1 + m_2 = 0$	(B) m ₁ m	₂ = 1	(C)	$m_1 + m_2 = 1$		(D) $m_1 m_2 = -1$
45.	If $(x-2)^2 + (y-2)^2$	$e^{2} = 1$, then the	e maximum va	alue of a	x + y, is		
	(A) $4 + \sqrt{2}$	(B) 9+2	I√2	(C) √	2	(D)	$4 - \sqrt{2}$
46.	If $\phi_1(x) = x^2 + (k - 2)$ p(x) with leading co					he fao	ctors of a cubic polynomial
	(A) 75	(B) –15	0	(C) –	75	(D)	none of these
47.	Number of integral	values of x f	or which the ir	nequali	ty $\log_{10}\left(\frac{2x-2}{x-2}\right)$	2007 ⊦1	$\Big) \le 0$ holds true, is
	(A) 1004	(B) 1005	5	(C) 20	012	(D)	2014
48.	The point of interse	ection of corr	imon tangent	s of y² =	= 4ax (a > 0) a	nd x ²	$+ y^2 - 6ax + a^2 = 0$ is
	(A) (a, 0)				- a, – a)		
49.	constants a and b a	are real numb ab plane. Let	ers. Each suc S be the set o	ch pair ò of all su	of the constant uch points (a, b	ts a ai	ere the variable x and the nd b may be considered as which the graphs of $y = f(x)$
	(A) 1	(B) π		(C) 4		(D)	4π
50.	-	-				-	at two distinct points.two points in the ratio 1 :
	(A) An ellipse	(B) Ahy	perbola	(C) A	circle	(D)	A parabola

Mentors

Mentors Eduserv: Plot No.-4 Jugeshwar Bhawan, 3rd Floor, S.K. Puri Boring Road, Patna-1, Ph. No. : 0612-6567315, 310, 2540037

51.	The length of the	major axis of the	ellipse (5x–10	$(0)^2 + (5y + 15)^2$	$=\frac{(3x - 1)^{-1}}{(3x - 1)^{-1}}$	$\frac{-4y+7}{4}$ is
	(A) 10	(B) $\frac{20}{3}$	(C	$) \frac{20}{7}$		(D) 4
52.	A(1, x), B(x, 2) ar	nd C(1, x²) are the	e vertex of a tria	ngle, then mini	mum ai	rea of the triangle A, B, C
	(A) 2 √5	(B) 4√5	(C)	5√5	(D)	none of these
			SECTION	- B		
		(0	Comprehensio	n Type)		
and I	•	rd paragraph 2 n	nultiple choice	questions have	e to be	3 multiple choice question answered. Each of the prrect.
Para	graph-1					
	If both the equati	on $bx^2 - ax + 1 =$	0, ax ² – bx + 1 =	= 0 have rationa	al roots	
53.	If given equation					
	(A) 1	(B) 1/2	(C)		. ,	none of these
54.	If both equation h					
	(A) 6	(B) 10	(C)		(D)	
55.	If both the equati	on have atleast o	ne root commoi	h and $a, b \in \mathbb{N}$,	then a	+ b is
	(A) 6	(B) 10	(C)	8	(D)	1
Dara	araph_2					
	and a rhombus F	A P'B is complete	ed.	om P(– 4, 0), w	hich to	uches the circle at A and
	To the circle x^2 +	A P'B is complete	ed. s at		hich to	uches the circle at A and
56.	To the circle x ² + and a rhombus F Circumcentre of (A) (– 2, 0)	A P'B is complete the triangle PAB i (B) (2, 0)	ed. s at (C)	form P(-4, 0), w $\left(\frac{\sqrt{3}}{2}, 0\right)$		uches the circle at A and none of these
56.	To the circle x ² + and a rhombus F Circumcentre of	A P'B is complete the triangle PAB i (B) (2, 0)	ed. s at (C)			
56.	To the circle x ² + and a rhombus F Circumcentre of (A) (– 2, 0)	A P'B is complete the triangle PAB i (B) (2, 0)	ed. is at (C) o that of P'AB is		(D)	
56. 57.	To the circle x ² + and a rhombus F Circumcentre of (A) (– 2, 0) Ratio of the area	A P'B is complete the triangle PAB i (B) (2, 0) of triangle PAP' te (B) 1 : 2	ed. is at (C) o that of P'AB is (C)	$\left(\frac{\sqrt{3}}{2},0\right)$ $\sqrt{3}:2$	(D) (D)	none of these
56. 57.	To the circle x^2 + and a rhombus F Circumcentre of (A) (-2, 0) Ratio of the area (A) 2:1	A P'B is complete the triangle PAB i (B) (2, 0) of triangle PAP' to (B) 1 : 2 e at (h, 0) such that	ed. is at (C) o that of P'AB is (C)	$\left(\frac{\sqrt{3}}{2},0\right)$ $\sqrt{3}:2$ circle, the area	(D) (D) a of the	none of these
56. 57. 58.	To the circle x^2 + and a rhombus F Circumcentre of (A) (- 2, 0) Ratio of the area (A) 2:1 If P is taken to be	A P'B is complete the triangle PAB i (B) (2, 0) of triangle PAP' to (B) 1 : 2 e at (h, 0) such that	ed. is at (C) o that of P'AB is (C) at P' lies on the	$\left(\frac{\sqrt{3}}{2},0\right)$ $\sqrt{3}:2$ circle, the area	(D) (D) a of the	none of these none of these rhombus is
56. 57. 58.	To the circle x^2 + and a rhombus F Circumcentre of (A) (-2, 0) Ratio of the area (A) 2:1 If P is taken to be (A) $6\sqrt{3}$ graph-3 Consider an isos	A P'B is complete the triangle PAB i (B) (2, 0) of triangle PAP' to (B) 1 : 2 e at (h, 0) such the (B) $2\sqrt{3}$ sceles triangle AE	ed. is at (C) o that of P'AB is (C) at P' lies on the (C) 3C with base B0	$\left(\frac{\sqrt{3}}{2},0\right)$ $\sqrt{3}:2$ circle, the area $3\sqrt{3}$ $C = 8 \text{ units and}$	(D) (D) a of the (D) $d \ \angle B =$	none of these none of these rhombus is
56. 57. 58. Para	To the circle x^2 + and a rhombus F Circumcentre of (A) (-2, 0) Ratio of the area (A) 2:1 If P is taken to be (A) $6\sqrt{3}$ graph-3 Consider an isos externally at D su	A P'B is complete the triangle PAB i (B) (2, 0) of triangle PAP' to (B) 1 : 2 e at (h, 0) such tha (B) $2\sqrt{3}$ sceles triangle AE uch that it make a	ed. is at (C) o that of P'AB is (C) at P' lies on the (C) BC with base B0 ingle θ with bas	$\left(\frac{\sqrt{3}}{2},0\right)$ $\sqrt{3}:2$ circle, the area $3\sqrt{3}$ C = 8 units and se and bisects for the second	(D) (D) a of the (D) d $\angle B =$ the side	none of these none of these rhombus is none of these ∠C . A lines cuts the bas
56. 57. 58. Para	To the circle x^2 + and a rhombus F Circumcentre of (A) (-2, 0) Ratio of the area (A) 2:1 If P is taken to be (A) $6\sqrt{3}$ graph-3 Consider an isos externally at D su	A P'B is complete the triangle PAB i (B) (2, 0) of triangle PAP' to (B) 1 : 2 e at (h, 0) such tha (B) $2\sqrt{3}$ sceles triangle AE uch that it make a the area of quad	ed. is at (C) o that of P'AB is (C) at P' lies on the (C) BC with base B0 ingle θ with bas	$\left(\frac{\sqrt{3}}{2},0\right)$ $\sqrt{3}:2$ circle, the area $3\sqrt{3}$ C = 8 units and bisects the striaght line	(D) (D) a of the (D) d $\angle B =$ the side cuts from	none of these none of these rhombus is none of these ∠C. A lines cuts the bas which is nearer to D. om the given triangle is
56. 57. 58.	To the circle x^2 + and a rhombus F Circumcentre of t (A) (-2, 0) Ratio of the area (A) 2:1 If P is taken to be (A) $6\sqrt{3}$ graph-3 Consider an isos externally at D sulf $\angle B = 45^\circ$, then	A P'B is complete the triangle PAB i (B) (2, 0) of triangle PAP' to (B) 1 : 2 e at (h, 0) such tha (B) $2\sqrt{3}$ sceles triangle AE uch that it make a the area of quad (B) $\frac{3+5}{1+tar}$	ed. is at (C) to that of P'AB is (C) at P' lies on the (C) BC with base BC angle θ with base lrilateral which the $\frac{an\theta}{n\theta}$ (C)	$\left(\frac{\sqrt{3}}{2},0\right)$ $\sqrt{3}:2$ circle, the area $3\sqrt{3}$ C = 8 units and bisects the striaght line $\frac{2(3+5\tan\theta)}{1+\tan\theta}$	(D) (D) a of the (D) $d \ \angle B =$ the side cuts from (D)	none of these none of these rhombus is none of these $\angle C$. A lines cuts the base which is nearer to D. om the given triangle is $\frac{4(3+5\tan\theta)}{1+\tan\theta}$