IV Semester M.Sc. in Mathematics Examination, June 2014 GRAPH THEORY AND ALGORITHMS

Time: 3 Hours Max. Marks: 80

Note: 1) Answer any five questions.

- 2) All questions carry equal marks.
- 1. a) State and prove Handshaking property. Hence prove that there is no graph with odd number of odd degree vertices.
 - b) Show that every u.v. walk in graph contains a u-v path.
 - c) Define a bipartite graph. Show that a graph is bipartite if and only if all its cycler are even. (6+4+6)
- 2. a) Define the following with an example:
 - i) composition product
 - ii) normal produt
 - iii) tensor product
 - b) Let G be a labeled graph with adjacency matrix A. Then show that the $(i, j)^{th}$ entry A^n is the number of walks of length n from v_i to v_i .
 - c) If X is a cut-set matrix of a connected graph G with e edges and n-vertices, then show that the rank of X = n 1. (6+5+5)
- 3. a) If G has a Hamiltonian cycle, then show that for each non-empty set $S \subseteq V(G)$, the graph G S has atmost |S| components.
 - b) Explain the following:
 - i) Seating problem
- ii) Travelling salesman problem
- c) Show that a connected graph is a tree if and only if it is minimally connected.

(6+4+6)

- 4. a) Show that any graph G is connected if and only if it has a spanning tree.
 - b) Show that every cut-set in a connected graph G must contain at least one branch of every spanning tree of G.
 - c) Define the following with an example:
 - i) Block graph
 - ii) Cut-vertex graph (6+6+4)

Math 4.2

5. a) Show that for any graph G,

$$C(G) \le \lambda(G) \le \delta(G)$$

- b) Show that a graph with atleast 2n-vertices is n-connected if and only if for any two disjoint sets V₁ and V₂ of n vertices each, there exist n disjoint paths joining these two sets of vertices.
- 6. a) Explain the Breadth First Search algorithm with an example.
 - b) Apply Dijkstra's algorithm to the weighted digraph shown in the following figure in order to find the shortest distance from the vertex a to z.

- 7. a) Explain the minimal spanning tree with an example.
 - b) Write an prims algorithm with an example
 - c) Using Kruskal's algorithm, find minimal spanning tree of the weighted graph shown below.

- 8. a) Show that a connected planar graph with n-vertices and e-edges has (e-n+2) regions.
 - b) Show that a graph has a dual if and only if it is planar.
 - c) State and illustrate an algorithm to find a given partition $P=(d_1,d_2,\ldots,d_p)$ with $d_1\geq d_2\geq\ldots\geq d_p, p\geq 2, d_1\geq 1$, is graphical or not. **(5+6+5)**
