IV Semester M.Sc. in Mathematics Examination, January 2016

NUMBER THEORY

Time: 3 Hours

Max. Marks: 80

Note: Answer any FIVE Full Questions.

All Questions Carry Equal Marks.

- 1. a) Show that the square of any integer is of the form 3k or 3k + 1.
 - b) Let a and b be any two integers, not both zero. Then prove that a and b are relatively prime if and only if there exist integers x and y such that ax + by = 1.
 - c) Prove that there is no polynomial f(n) with integer coefficients that will produce primes for all integers n.

(3+5+8)

- a) Prove that $ax \equiv b \pmod{n}$ has a solution if and only if d|b, where $d = \gcd(a,n)$. If d|b, then it has d mutually incongruent solutions mod n.
 - b) State and prove Chinese Remainder Theorem.

(8+8)

- a) State and Prove Wilson's theorem. What about the converse? Justify.
 - b) If the integer n > 1 has the prime factorization $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$, then prove that $\varphi(n) = (p_1^{k_1} p_1^{k_1-1}) (p_2^{k_2} p_2^{k_2-1}) \dots (p_r^{k_r} p_r^{k_r-1})$.
 - c) Prove that for n > 2, $\varphi(n)$ is an even integer.

(7+5+4)

- 4. a) If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$, is the prime factorization of n > l, then prove that the positive divisors of n are precisely those integers d of the form $d = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$, where $0 \leq \alpha_i \leq k_i, (i = 1, 2, ..., r).$
 - b) If F is a multiplicative function and $f(n) = \sum_{d/n} F(d)$, then prove that f is also multiplicative.
 - c) Let f and F be number theoretic functions such that $F(n) = \sum_{d/n} f(d)$. Then prove that for any positive integer N, $\sum_{n=1}^{N} F(n) = \sum_{k=1}^{N} f(k) \left[\frac{N}{k} \right]$.

(6+4+6)

- 5. a) For n > 1, prove that the sum of the integers less than n and relatively prime to n is $\frac{n\varphi(n)}{2}$
 - b) Using the Ceaser cipher, encipher the following: "ALL IS WELL THAT ENDS WELL".
 - c) Let f and g be arithmetic functions. If g and $f \cdot g$ are multiplicative then prove that f is also multiplicative.

(4+6+6)

- 6. a) Show that every odd prime divisor of $n^2 + 1$ is of the form 4k + 1 for some $k \in \mathbb{Z}$.
 - b) If a is a primitive root modulo m then prove that $\{l, a, a^2, ..., a^{\varphi(m)-1}\}$ is a reduced residue system modulo m.
 - c) If p is a prime number and d|(p-1), then prove that the congruence $x^d - 1 \equiv 0 \pmod{p}$ has exactly d incongruent solutions mod p.

(3+6+7)

- 7. a) Prove that 2^n has no primitive root for $n \ge 3$.
 - b) State and prove the quadratic reciprocity law.

(8+8)

- 8. a) Prove that an odd prime p is expressible as a sum of two squares if and only if $p \equiv l \pmod{4}$
 - b) Prove that $F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$.
 - c) Express $\sqrt{15}$ as infinite simple continued fraction.

(6+5+5)

IV Semester M.Sc., in Mathematics Examination, January 2016

GRAPH THEORY AND ALGORITHMS

Time: 3 Hours

Max. Marks: 80

Note:

i. Answer any five full questions.

ii. All questions carry equal marks.

- 1. a) Prove that the sum of the degree of the vertices of a graph G is twice the number of edges. Further prove that every cubic graph has even number of vertices.
 - b) Prove with usual notation $\delta(G) \leq \frac{2m}{n} \leq \Delta(G)$.
 - c) Define spanning and induced subgraphs. Distinguish between edge-disjoint and vertex disjoint subgraphs.

(6+6+4)

- 2. a) If B(G) is an incidence matrix of a connected graph G with n vertices, then prove that rank of B(G) is (n-1).
 - b) Prove that a simple graph G with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
 - c) Let G be a labeled graph with adjacency matrix A. Then show that the $(i, j)^{th}$ entry of Aⁿ is the number of walks of length n from vertex v_i to v_j .

(6+5+5)

- 3. a) Explain complementary and self-complementary graphs using suitable examples. If a simple graph G of order n is self-complementary, then show that either n or (n-1) must be a multiple of 4.
 - b) Find the cut-set matrix of the graph given below.

c) Define a bipartite graph. Show that a graph is bipartite if and only if all its cycles are even.

(6+4+6)

P.T.O

- 4. a) Prove that a connected graph G has an Euler circuit if and only if all vertices of G are of even degree.
 - b) Prove that if G is a simple (n, m) graph with at least three vertices and $\delta(G) \ge \frac{n}{2}$ then G is Hamiltonian.

(8+8)

- 5. a) Prove that for a sequence $d_1, d_2, ..., d_n$ $(n \ge 2)$ of positive integers is the degree sequence of a tree of order n if and only if $\sum_{i=1}^n d_i = 2n 2$.
 - b) If T is a tree of order k, $(k \ge 1)$ and if G is a non-trivial graph with $\delta(G) \ge k$. Then prove that T is a subgraph of G.
 - c) Prove that G is connected if and only if it has a spanning tree.

(7+5+4)

- 6. a) Explain Breadth First Search algorithm with an example.
 - b) Using Prim's algorithm, find a minimal spanning tree for the weighted graph.

(10+6)

- 7. a) Define planar graph. Verify whether the complete bipartite graph $K_{3,3}$ is planar.
 - b) Prove that a graph can be embedded in the surface of a sphere if and only if it can be embedded in a plane.

(8+8)

8. a) Draw the geometric dual of the graph.

b) State and prove Havel-Hakimi theorem.

(6+10)

IV Semester M.Sc. in Mathematics Examination, January 2016

FLUID MECHANICS

Time: 3 Hours Max. Marks: 80

Note: Answer any FIVE Full Questions.
All Questions Carry Equal Marks.

1. (a). Define the terms;

- (i) Compressible and incompressible fluids
- (ii) Viscous fluid and shearing stress
- (iii) Laminar and turbulent flow
- (iv) Steady and unsteady flow.
- (b). Derive the relation between stress and rate of strain Component.

(8+8)

- 2. (a) Write short note on thermal conductivity and generalized law of heat Conduction.
 - (b) The velocity components of a flow in cylindrical polar Co-ordinates are $(r^2z\cos\theta, rz\sin\theta, z^2t)$ determine the components of acceleration of a fluid particle.

(8+8)

3. (a) Derive the Navier-stoke's equation for a viscous incompressible fluid in the form:

$$\rho\left(\frac{\partial q}{\partial t} + q \nabla q\right) = -\nabla P + \rho \vec{g} + \mu \nabla^2 q.$$
 Explain the meaning of each term.

(b) A mass of a fluid moves in such a way that each particle describes a circle in one plane about a fixed axis, show that the equation of continuity is $\frac{\partial f}{\partial t} + \frac{\partial (\rho w)}{\partial \theta} = 0$ where W is the angular velocity of a particle whose azimuthal angle is θ at time t.

(8+8)

4. With usual notation prove $\frac{D\vec{\Omega}}{Dt} = \gamma \nabla^2 \vec{\Omega}$ and derive the expression for circulation in a viscous incompressible fluid motion. (16)

- 5. (a) Explain the application of Buckingham π -theorem to viscous compressible fluid motion.
 - (b) Define and give the physical importance of the following non-dimensional parameters.
 - (i) Reynolds number
 - (ii) Froude number
 - (iii) Mach number
 - (iv) Prandtl number
 - (v) Grashoff number

(6+10)

- 6. (a) An oil of specific gravity 0.85 is flowing through a pipe of 5cm diameter at the rate of 3 litres/sec. Find the type of flow, if the visocity for the oil is 3.8 poise.
 - (b) Obtain the velocity distribution for a generalized plane Coutte flow in the form $u = \frac{y}{h} + p \frac{y}{h} \left(1 \frac{y}{h} \right). \tag{6+10}$
- 7. (a) Write a short note on Karman flow.
 - (b) Define Poiseuille flow. For such a flow obtain the velocity distribution, average velocity mass flow rate and skin friction. (6+10)
- (a) Prove that for a plane Coutte flow Solution for heat conduction equation can be obtained in the form,

 $\frac{T - T_0}{T_1 - T_0} = \frac{Y}{h} + \frac{E_c}{2} P_r \frac{Y}{h} \left(1 - \frac{Y}{h} \right).$

- (b) In a plane poiseuille flow water at 20°c flows between two large plates at a distance 1.5mm apart. If the average velocity is 0.15m/sec. Evaluate
 - (i) The maximum velocity
 - (ii) The pressure drop
 - (iii) The wall shearing stress
 - (iv) The frictional coefficient.

(8+8)

Fourth Semester M.Sc. (Mathematics) Examination, Jope - 2016 MATHEMATICAL STATISTICS

ſ	lime	: 3 hours Max Mark	ks: 80
		Note: 1) Answer any five questions. 2) All questions carry equal marks. 3) Use of Scientific calculator is permitted.	
1	a	Define a σ -field and a Borel σ -field on \mathbb{R}_1 . Prove that a Borel σ -field on \mathbb{R}_1 includes Single point set $\{a\}$, $a \in \mathbb{R}$ and the set of all rational numbers.	(6
	b	A pair of two fair dice is rolled. Write the sample space. Find the probability that the sum	(0)
		of the two faces shown is 9 or more.	(4)
	c)	problem.	=
		In a factory, machines A, B, C produce respectively 25%, 35% and 40% of the total	
		production. Of which 5%, 4% and 2% are defective. An item is drawn at random was found to be defective. Find the probability that	
		i) it was manufactured by A. ii) it was manufactured by B or C.	(6)
2.	a)	Define a random variable and elementary random variable. If the selection for a job is based on the pooled percentage of marks in the entrance test and viva, there is a weightage of 0 if the score is in [0, 35); 1 if it is in [35, 50); 3 if it is in [50, 60) and 6 if it is in [60, 100]. Write the sample space and give the associated random variable.	(5)
	b)	Prove that, any arbitrary random variable can be obtained as a limit of a sequence of	
		elementary random variables.	(5)
	c)	Prove that, every distribution function F has at most a countable set of discontinuity points. Moreover, show that $F = F_c + F_d$, where F_c is a continuous function and F_d is a	=
		pure step function.	(6)
3.	a)	Define expectation (EX) of a random variable X . Let X be a random variable with p.d.f.	(-)
		$f(x) = \begin{cases} \frac{1}{2 x ^2} & \text{if } x \ge 1\\ 0 & \text{if } x < 1 \end{cases}$. Then, show that EX fails to exist.	(6)
	b)	Define k^{th} moment of a random variable X . Find first and second moments of a Binomial random variable.	(6)
	c)	State and prove Jensen's inequality.	(4)

- 4. a) The probability that a pen manufacture by a company will be defective is 1/10. If 12 such pens are manufactured, find the probability that; a) exactly two will be defective b) at least two will be defective c) none will be defective.
 - b) Let X be a Normal random variable with probability density function $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}, \text{ Show that the mean of the distribution is } \mu \text{ and the variance}$ is σ^2 .

(6)

(6)

- 5. a) Let X, Y, Z be independent random variables with unit exponential distribution. Find the distributions of the random variables U = X + Y + Z, $V = \frac{X + Y}{X + Y + Z}$ and $W = \frac{X}{X + Y}$. (8)
 - b) If $\{X_n, n \ge 1\}$ is a sequence of independent and identically distributed random variables, then prove that, the random variable $\frac{S_n}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$ converges in probability to $E(X_1)$ provided $E(X_1^2) < \infty$.
- 6. a) State and prove Neyman factorization theorem. (6)
 - b) Write a brief note about Maximum Likelihood Estimation (M.L.E.). (6)
 - c) Define UMP test and state Neyman-Pearson lemma. (4)
- 7. a) Describe two sample T-test. (10)
 - b) What is the test statistic of Mann-Whitney-Wilcoxon rank sum test? (6)
- 8. a) Explain confidence interval for difference of two means for large sample test. (6)
 - b) State and prove any two properties of regression coefficients. (4)
 - c) The quantity of oxygen dissolved in water is used as a measure of water pollution. Samples are taken at four locations in a lake and the quantity of dissolved oxygen is recorded as follows (lower reading corresponds to greater pollution)

Location	Quantity of dissolved Oxygen
-MA	7, 8, 6, 4, 8, 2, 6, 9
В	6, 7, 6, 8, 7, 1, 6, 9, 7, 3
С	7, 2, 7, 4, 6, 9, 6, 4, 6, 5
D	6, 0, 7, 4, 6, 5, 6, 9, 7, 2, 6, 8

Do the data indicate a significant difference in the average amount of dissolved oxygen for the four locations?