III Semester M.Sc. in Mathematics Examination, May 2015 TOPOLOGY

Time: 3 Hours Max. Marks: 80 Instructions: i) Answer any five questions. ii) All questions carry equal marks. 1. a) Define a topology on a non-empty set. Prove the following hold in (X, \mathcal{I}) i) $d(\emptyset) = \emptyset$ ii) $A \subseteq B \Rightarrow d(A) \subseteq d(B)$ iii) $d(A \cup B) = d(A) \cup d(B)$ 8 b) Prove that a set is closed iff it contains all its limit points. c) Prove that a point x belongs to the closure of a set A iff every open set G which containing x has a non-empty intersection with A. 4 2. a) Given a mapping $f:(X,\mathcal{I})\to (Y,\mathcal{U})$, prove that the following are equivalent i) f is continuous ii) B closed in $Y \Rightarrow f^{-1}(B)$ closed in X. iii) $f(\overline{A}) \subseteq \overline{f(A)}$. $\forall A \subseteq X$. 12 b) Let X be a metric space with metric d. Define $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then show that \overline{d} is a metric that induces the topology of X. 4 8. a) If C is a connected subset of (X, \mathcal{I}) and $C \subseteq Y \subseteq \overline{C}$, then prove Y is connected. 5 b) If $\{A_i\}$, is the family of connected subsets of X such that $\bigcap A_i \neq \emptyset$, then prove that $\bigcup_{i} A_{i}$ is connected. 15 c) Prove that a closed subset of a compact space is compact. 6

4.	a) Prove that a continuous image of compact space is compact.	4	
	b) Prove that (X,\mathcal{I}) is compact iff every family of closed sets having finite intersection property has a non-empty intersection.	8	
	c) Show that every compact space is countably compact.	4	
5.	a) Prove that second countability is a topological property.	4	
	b) Prove that every second axiom space is a Lindel of space.	4	
	c) Prove that a countably compact metric space is totally bounded.	8	
6.	a) Prove that a compact subset of a Hausdorff space is closed.	8	
	b) Show that a metric space is normal and hence T_4 .	8	
7.	State and prove Tychonoff theorem.	16	
8.	Let X be a regular space with a basis on that is countably locally finite, then		
	prove that X is metrizable.	16	

8

6

P.T.O.

III Semester M.Sc. (Mathematics) Examination, May 2015 MEASURE AND INTEGRATION

Time: 3 Hours Max. Marks: 80

- Note: 1) Answer any five questions.
 - 2) All questions carry equal marks.
- 1. a) Let A be an algebra of X and {Ai } a sequence of sets in A. Then prove that there is a sequence {Bi } of sets in A such that $B_n \cap B_m = \emptyset$ for

$$n \neq m$$
 and $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$.

- b) Prove that the interval (a, ∞) is Lebesgue measurable.
- 2. a) Let $\{E_n\}$ be an infinite decreasing sequence of Lebesgue measurable sets, that is a sequence with E_{n+1} CE_n , n=1,2,3,... Let mE_1 be finite. Then prove that

$$m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} mEn$$

b) If C is a constant and the functions f and g are measurable real-valued functions defined on the same domain, then show that the functions

$$f + c$$
, cf , $f + g$ and $g - f$ are measurable.

3. a) If ϕ and ψ are simple functions which vanish outside a set of finite measure, then prove that, $\int (a\phi + b\psi) = a \int \phi + b \int \psi$ and if

$$\phi \ge \psi$$
 a.c., then $\int \phi \ge \int \psi$.

- b) State and prove Bounded convergence theorem.
- 4. a) If f and g are non-negative measurable functions defined on a measurable set E then show that

i)
$$\int_{E} cf = c \int_{E} f, c > 0$$

ii) $\int_{E} (f+g) = \int_{E} f + \int_{E} g$
iii) If $f \le g$ a.e., then $\int_{E} f \le \int_{E} g$

b) State and prove Lebesgue convergence Theorem for integrable functions. 6

5. State and prove Vitali Lemma.

16

6. a) If f is a function of bounded variation on [a, b] then prove the following:

8

- i) P N = f(b) f(a)
- ii) P + N = T, where, P, N, T are the positive, negative and total variation of f over [a, b].
- b) If f is bounded and measurable on [a, b] and $F(x) = \int_{a}^{x} f(t) dt + F(a)$, then prove that F'(x) = f(x) almost every where in [a, b].
- 7. a) A function F is an indefinite integral if and only if it is absolutely continuous.

8

8

b) Let (X, B, μ) be a measure space. If $E_i \in B$ for $i = 1, 2, 3, \ldots$,

$$\mu E_1 < \infty$$
 and $E_i \supset E_{i+1}$ $i = 1, 2, 3, ...,$ then prove that $\mu \left[\bigcap_{i=1}^{\infty} E_i \right] = \lim_{n \to \infty} \mu E_n$.

8. a) State and prove Hahn Decomposition theorem.

10

b) If A is an algebra and $A \in \mathcal{A}$, then prove that $\mu A = \mu^* A$.

6

P.T.O.

Third Semester M.Sc. (Mathematics) Examination, May 2015 FUNCTIONAL ANALYSIS

Tim	ne:	3 Hours	80
		Note: 1) Answerany five questions. 2) All questions carry equal marks.	
1.	a)	Define a closed set in a metric space. Show that a set F is a closed set in a metric space if and only if the complement of F is open.	6
	b)	If \overline{A} denotes the closure of a subset A of a metric space (X, d), then show that $\overline{A} = \{x \in X : d(x, A) = 0\}.$	4
	c)	Let (X, d) be a complete metric space and (Y, d) be a subspace of (X, d). Then prove that Y is closed if and only if Y is complete.	6
2.	a)	Define a contraction mapping. Let (X, d) be a complete metric space and $T: X \to X$ be a contraction mapping. Then prove that T has a fixed point.	6
	b)	Let $f: D \to \mathbb{R}$ be a continuous function of open domain $D \subseteq \mathbb{R}^2$, satisfies Lipschitz's condition: $ f(x, y_1) - f(x, y_2) \le M y_1 - y_2 $ for all (x, y_1) , $(x, y_2) \in D$. If X is the space of all solutions of the initial value problem	
		$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$, then show that X is a complete metric space.	6
	c)	Define a everywhere dense subset and nowhere dense subset of a metric space (X, d). Give examples for each.	4
3.	a)	State Cantor's intersection theorem and Baire's Category theorem. Making use of Cantor's intersection theorem prove Baire's Category theorem.	8
	b)	Prove that every sequentially compact metric space is both complete and totally bounded.	8
4.	a)	 Let T: N → N' be linear operator from a normed linear space N into a normed linear space N'. Then prove that the following are equivalent: 1) T is a continuous linear operator 2) T is continuous at x = 0 3) T is a bounded linear operator. 	8
	b)	State Weierstrass theorem and Stone-Weierstrass theorem in real case. Deduce Weierstrass theorem as a simple corollary to Stone-Weierstrass theorem.	8

a) Let X be a normed linear space. If the closed unit ball $B = \{x \in X : ||x|| \le 1\}$ in X is compact, then prove that X is finite dimensional. 6 b) State Hahn-Banach theorem for a normed linear space. Prove the theorem by making use of Hahn-Banach theorem for a complex linear space. 10 12 a) State and prove open mapping theorem. b) If $T: X \rightarrow Y$ is one to one continuous linear operator from a Banach space X onto Banach space Y, then show that $T^{-1}: Y \to X$ is also a continuous linear 4 operator. 8 a) State and prove closed graph theorem. 8 b) State and prove uniform bounded principle. a) Prove the following two properties of a Hilbert space H: i) $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$ ii) If $x_n \to x$, $y_n \to y$ as $n \to \infty$, then $(x_n, y_n) \to (x, y)$ as $n \to \infty$. 4 b) Let M be a closed linear subspace of a Hilbert space H. Then prove that 8 $H = M \oplus M^{\perp}$. c) If T is an operator on a Hilbert space H, then prove that T is self adjoint if and only if (T(x), x) is real for all $x \in H$. 4

Third Semester M.Sc. (Mathematics) Examination, May 2015 MATHEMATICAL MODELING

Tim	e:	3 Hours Max. Marks : 8	30
		Note: 1) Answer any five questions. 2) All questions carry equal marks.	
1.	a)	Explain any four characteristics of Mathematical modeling.	8
	b)	What are the limitation of Mathematical modeling?	4
	c)	A particle of mass m is stationary at time $t = 0$ and subject to a force $F(t) = F_0 \sin^2 wt$. Set up a differential equation to describe the motion.	4
		dx o and o the first	
2.	a)	Consider the below differential equation $\frac{dx}{dt} = 2 \cos(\pi x)$. Find all equilibra	
		and determine the stability of those equilibria.	8
	b)	Construct a model for rectilinear motion of string.	8
3.	a)	Explain the construction of spring and dashpot system.	8
	b)	Describe a model for the detection of diabetes.	8
4.	a)	Draw some trajectories for the completion model	
		$\frac{dx}{dt} = x(1-0.1y); \frac{dy}{dt} = -y(1-0.1x)$. Also discuss its stability of equilibrium points.	8
	b)	Show that the force required to make a particle of mass 'm' move in a circular	
		orbit of radius with velocity 'v' is $\frac{mv^2}{a}$ directed towards the centre.	8
5.	a)	Describe a model for glacier flow.	8
	b)	Describe a partial differential equation model for birth-death-immigration process.	8

6. a) Solve initial value problem for Burger's equation $u_t + vu_x = vu_{xx}$, $x \in \mathbb{R}$, t > 08 and u(x, 0) = F(x). DALLER DATA THORAGON TO MICHIGANIA

b) Show that in cylindrical polar co-ordinates $\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\partial^2 \psi}{\partial z^2}$.

7. a) What are the composition of nitrogen, oxygen, carbon-di-oxide and Arganinter gas pollution?

b) Distinguish between primary and secondary air pollutants.

6

4

c) Identify the various pollution sources of the following air contaminants.

6

- i) Hydrocarbons
- in them to some at the way in the second to some at the second to
- iii) Sulphur dioxide.
- 8. Using gradient diffusion model, derive an expression for air pollution and hence derive conservation of mass equation.

or his formation contilling full toping a fourteepold co.

16

III Semester M.Sc. Examination, May 2015 MATHEMATICS Computer Programming

Time: 3 Hours

Max. Marks: 80

Instructions: Answer any five full questions. All questions carry equal marks.

- 1. a) What is microprocessor? Explain briefly.
 - b) What are the differences between analog and digital computer?
 - c) Explain the following operating systems.
 - i) File
- ii) Program
 - iii) Directory
 - iv) Multilevel directories.

(4+4+8)

- 2. a) Write an algorithm and flow chart to compute the circumference of a circle.
 - b) Define decision table and explain its different types.
 - c) Describe the sequences of steps involved in problem solving of computer programming. (4+4+8)
- 3. a) Define and explain the different types of C operators.
 - b) Define storage class and explain the different storage class and its specifications.
 - c) Explain the four types of integer constants in C.

(6+6+4)

- 4. a) Explain the following along with example.
 - i) Loop
 - ii) For loop
 - iii) While loop
 - iv) Do while loop
 - b) What is special operator? Explain briefly.
 - c) What is the difference between break and continue statements? Explain with an example. (8+4+4)

- 5. a) Explain the types of arrays with example.
 - b) Write a program to find the largest and smallest number in array.
 - c) Write an algorithm for binary searching.

(6+6+4)

- 6. a) Explain the categories of functions with an example.
 - b) Explain the pointer declaration along with examples.
 - c) Explain the following:
 - i) Dynamic memory allocation
 - ii) Allocating a block of memory
 - iii) Allocating multiple blocks of memory. (4+6+6)

- 7. a) Write an algorithm and C-Program for the sum and product of two matrices.
 - b) Explain briefly bisection method.
 - c) Write an algorithm and C program for Newton-Raphson method. (6+4+6)

- 8. a) Write an algorithm and C program for Weddle's rule.
 - b) Write an algorithm and C program for Runge-Kutta 2nd order. a). Write an algorithm abut flow chair recommute and eventure or