	MATHEM	SO EI					
	т́50 SS : Х	STAGI	E - 2	TIME Max. Marks	: 60 n : 50	nin.	
Inst	ructions:						
12 12 12 12	Each question carrie deducted for indicati	ompletely and carefully. as one mark and has only ing incorrect response of contains 50 questions to	feach question.	· · · ·	arks w	vill be	
1.	Number of positive div 1) 108	visors of 163800 is 2) 110	3) 98	4) 112	[]	
2.	If $xy = 2^2 \times 3^4 \times 5^7$ (x 1) 575	+ y), then the number of 2) 675	f integral solutions is 3) 550	4) 450	[]	
3.	The simplest form of 2	$2\log_3 + 3\log_5 - 5\log_2^2$	2 is		[]	
	1) $\log \frac{32}{1125}$	2) $\log \frac{1125}{64}$	3) $\log \frac{1125}{32}$	$4)\log\frac{1025}{32}$			
4.	The H.C.F of 306 and 1) 19	657 is 2) 9	3) 18	4) 27	[]	
5.	1 ¹⁹⁹⁷ + 2 ¹⁹⁹⁷ + 3 ¹⁹⁹⁷ + 1) 1996	+ 1996 ¹⁹⁹⁷ is alwa 2) 1997	ys divisible by 3) 1998	4) 1987	[]	
6.	The largest integer n so 1) 32	uch that 33! is divisible b 2) 33	by 2 ⁿ [! factorial notation 3) 29	n] 4) 31	[]	
7.	If n is positive integer 1) 5	then $n(n^2 - 1)$ is always (2) 7	livisible by 3) 11	4) 6	[]	
8.	If $(2.3)^x = (0.23)^y = 10^{-3}$	000 then the value of $\frac{1}{x}$	$-\frac{1}{y}$ is		[]	
	1) $\frac{1}{4}$	2) $\frac{1}{3}$	3) $\frac{1}{2}$	4) $\frac{1}{5}$			
9.	If zeroes of $2x^4 - 3x^3 - 3x^2 + 6x - 2$ are $\sqrt{2}$ and $-\sqrt{2}$ then the remaining two roots are						
	1) $1, \frac{1}{3}$	2) $\frac{1}{3}, \frac{1}{4}$	3) $\frac{1}{2}, \frac{1}{3}$	4) 1, $\frac{1}{2}$	[]	
10.	If $f(x, y) = 9x^2 - 26xy$ 1) 6	+ $7y^2$ then f(1, 2) – f(2, 2) 9	1) = 3) - 9	4) – 6	[]	
11.	If α, β, γ are the roots	of the equation $4x^4 + 32$	$x^3 + 83x^2 + 76x + 21 =$	0 then the equ	ation w	hose	
	roots are $\alpha + 2, \beta + 2, \gamma$ 1) $4x^4 - 13x^2 + 9 = 0$ 3) $4x^4 - 13x^2 - 9 = 0$	$\gamma + 2, \delta + 2$ is	2) $4x^4 + 13x^2 + 9 = 0$ 4) $4x^4 + 13x^2 - 9 = 0$		[]	

ſ						
12.	If $a + b + c = 1$, $a^2 + b$	$c^{2} + c^{2} = 9$ and $a^{3} + b^{3} + b^{3}$	$c^{3} = 1$ then $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} =$:	[]
	1) 9	2) 81	3) 27	4) 1		
13.	If $x + \frac{3x-5}{4} = 2 + \frac{6x-5}{5}$	$\frac{-8}{5}$ then x =			[]
	1) 2	2) 1	3) 3	4) 4		
14.	If $x = 2$ then $x^9 + x^8 + 1$ 1) 1032	$x^7 + x^6 + x^5 + x^4 + x^3 + 2)$ 1203	$-x^{2} + x + 1 =$ 3) 1023	4) 2032	[]
15.	The 10^{th} term of the ar 1) - 30	ithmetic progression 5, 2) – 28	1, -3, -7, 3) - 34	4) – 31	[]
16.	The number of two di 1) 25	git numbers are divisible 2) 30	e by 3 3) 33	4) 34	[]
17.	In a G.P the 3 rd term is 1) 6144	s 24 and 65 th term is 192 2) 5244	2, then 11 th term is 3) 3072	4) 4072	[]
18.		n A.P is even, the sum of irst term by 16.5, Then the 2) 12	f odd terms is 63 and tha he number of terms is 3) 9	t even terms is 4) 10	72 and [l the]
19.	If x, y, z are in G.P and 1) $\log_b^a = \log_c^b$		3) $\log_c^b = \log_a^c$	4) None	[]
20.	The sum of first 100 na 1) 505	atural numbers is 2) 5050	3) 5060	4) 6050	[]
21.	Number of terms of the 1) 20	ne A.P 1, 4, 7, neede 2) 22	d to give the sum 925 3) 24	4) 25	[]
22.	If D, E, F are the mi	id points of sides BC,	CA, AB of $\triangle ABC$, the	en the ratio of	f area	s of
	ΔDEF and ΔABC is 1) 1 : 2	2)2:1 INT	3)1:4	4) 4 : 1	[]
23.			ing 20m above the groun	nd then the dista	ince of	f the
	foot of the ladder from 1) 22 m	2) 10 m	3) 35 m	4) 15m	L	1
24.	In the given figure AB 3AC ² + 5AD ² = 1) 5AE ² 2) 8AE ² 3) 6AE ² 4) 7AE ²	C is triangle rightangled A B D E C	l at B and D and E are po	oints on BC tris	ect it f	then]
25.	In given figure PAB $\angle PDB = 100^{\circ}$ then \angle 1) 100° 2) 80° 3) 90° 4) 70°		nt lines to a circle from	n an external I	ooint I [P. If]

	The even of the second	2) 30°	3) 45°	4) 90°		L
	$\angle AOB = 120^{\circ}$ 1) 272 cm ² 2) 271.047 cm ² 3) 371 cm ² 4) 371.047cm ²	t AYB showing in the	adjascent figure if radiu y A $21cm$ y $21cm$ $21cm$ B	is of circle is 2	21 cm [and]
	The name of the polygon 1) pentagon	n with 6 sides is called 2) heptagon	3) hexagon	4) octagon	[]
	The name of the figure f 1) parallelogram	formed by the internal a 2) Rectangle	ngular bisectors of a par 3) Rhombus	allogram is 4) square	[]
	If $3 + 4i$ is a root of the (1) $p = 6, q = 25$	equation $x^2 + px + q = 0$ 2) $p = 6, q = 1$	0 then 3) $p = -6, q = -7$	4) p = -6, q =	[= 25]
31. '	The solution of the inequ	uality $(x + 3)(3x - 2)^5(7)$	$(7-x)^3(5x+8)^2 \ge 0$ is		[]
	1) $\left(-\infty, -3\right] \cup \left[\frac{2}{3}, 7\right] \cup \left[\frac{2}{3}, 7\right]$	$\left[\frac{-8}{5}\right]$	2) $\left(-\infty,3\right] \cup \left[\frac{-2}{3},7\right] \cup \left[\frac{-2}{3}\right]$	$ \int \left[\frac{8}{5}\right] $		
	$_{3)}\left(-\infty,-3\right)\cup\left[\frac{-2}{3},7\right]$		4) $\left(-\infty, -3\right) \cup \left[\frac{-2}{3}, 7\right]$			
	The number of zeroes of 1) $n - 1$	f a polynomial of degree 2) n + 1	e 'n' is 3) n	4) n ²	[]
	The sum of the present a 8 then the present age of 1) 28 years	-	is 60 years. If the ratio3) 30 years	of their present 4) 24 years	ages i [s 7 :]
	If $ax^3 + bx^2y + cxy^2 + dx^2$ 1) $a = b$ and $c = d$	ly^3 is a symmetric expr 2) a = c and b = d		4) $a \neq d$ and	$[c \neq d$]
	If a > 1, the roots of the 1) one positive and one r 3) both positive		 x - 1 = 0 are 2) both negative 4) both non real completion 	ex	[]
36.	If $\sec\theta + \tan\theta = \frac{1}{5}$ then	the value of $\sin \theta$ is			[]
	1) $\frac{-13}{12}$	2) $\frac{-12}{13}$	3) $\frac{12}{13}$	4) $\frac{13}{12}$		
	If $3\sin\theta + 4\cos\theta = 5$ th 1) 3		? 3) 5	4) 0	[]
38. '	The value of $\sin^2 \frac{\pi}{10} + s$	$\sin^2\frac{4\pi}{10} + \sin^2\frac{6\pi}{10} + \sin^2$	$\frac{9\pi}{10} =$		[]
	1) 0	2) 1	3) 2	4) 4		
	The value of 3(sinx – co 1) 15	$(2)^{4} + 6(\sin x + \cos x)^{2}$ (2) 10	$+ 4(\sin^6 x + \cos^6 x) =$ 3) 13	4) 0	[]

www.intso.co.in ____

40.	$\cos^2 9^\circ + \cos^2 18^\circ + \cos^2 27^\circ + \dots + \cos^2 81^\circ = $ []							
	1) 4	2) $\frac{9}{2}$	3) 5	4) $\frac{11}{2}$				
41.	In $\Delta^{le}ABC$ 5 cosA + 3 1) 15x ² + 32x + 16 = 0 3) 15x ² - 18x - 16 = 0)	equation whose roots ar 2) $15x^2 + 8x - 16 = 0$ 4) $15x^2 - 8x - 16 = 0$	e sinA and tanA	A is []		
42.	If $a = x \sec \theta + y \tan \theta$ 1) $a^2 - b^2$	b, b = x $\tan \theta$ + y $\sec \theta$ t 2) $a^2 + b^2$	hen $x^2 - y^2 =$ 3) $b^2 - a^2$	4) a^2b^2	[]		
43.	Let the vertices of a Δ 1) scalene triangle 3) Equilateral triangle	<i>ABC</i> be (4, 3), (7, -1), ((9, 3) then the triangle is2) isosceles triangle4) Rightangled triangle		[]		
44.	The co - ordinates of the ratio $5:3$ is 1) (5, 6)	he points which divides 2) (12, 14)	the join of the points (2, 3) (3, 8)	4) and (6, 8) ex4) (2, 7)	ternal [ly in]		
45.	If (3, 2), (6, 3), (x, y) a 1) (5, 6)	nd (6, 5) are the vertices 2) (6, 5)	s of a parallelogram in or 3) (9, 6)	rder then (x, y) 4) (9, 5)	= []		
46.	The distance between	the two parallel lines 5x	+12y - 30 = 0 and $5x - 30 = 0$	+12y - 4 = 0 is	[]		
	1) 3	2) 7	3) $\frac{5}{2}$	4) 2				
47.	The equation of the line which passes through the point of intersection of the lines $2x - y + 5 = 0$ and $5x + 3y - 4 = 0$ and is perpendicular to the line $x - 3y + 21 = 0$ is [] 1) $2x + y + 8 - 0$ 2) $3x + 4y - 7 = 0$ 3) $3x + y = 0$ 4) $3x + y + 5 = 0$							
48.	The area of the triangle is 5 units, two of its vertices are $(2, 1)$ and $(3, -2)$ then third vertex lies on $y = x + 3$, then the third vertex is []							
	$1)\left(\frac{2}{7},\frac{13}{5}\right)$	$2)\left(\frac{7}{2},\frac{13}{2}\right)$	$3)\left(\frac{9}{2},\frac{13}{2}\right)$	$4)\left(\frac{7}{2},\frac{13}{2}\right) o$	$r\left(\frac{-3}{2}\right)$	$,\frac{3}{2}$		
49.	The equation of the line passing through the point $(2, -3)$ and having slope $\frac{5}{4}$ is []							
	1) $4x - 5y = 20$	2) $3x - 2y = 5$	3) $5x - 4y = 22$	4) $3x + 2y = 3$	5			
50.	The intercepts made b 1) 2 and 3	y the line 3x + 4y - 12 = 2) 4 and 3	= 0 on the axes 3) 3 and 5	(4) - 2 and - 3	[}]		