Date: 11 - 12 - 2016

Std.: VIIIth Std.

GANIT PRABHUTWA EXAMINATION SOLUTIONS

Q. 1 (C)

□ *PQRS* is cyclic Quadratic

.: Sum of opposite angles is 180°.

$$\Rightarrow \angle P + \angle R + 180^{\circ}$$

$$\Rightarrow$$
 2x + 50 + x - 30 = 180

$$\Rightarrow 4x = 160$$

$$x = 40^{\circ}$$

$$\angle R = 2x - 30$$

$$=80-30$$

$$=50^{\circ}$$

$$(6.2) \times 10^{12} \div (5 \times 10^{11})$$

$$=\frac{6.2}{5}\times10^{12-11}$$

$$=\frac{62}{5}$$

$$64\%$$
 of $1600 = 80\%$ of x

$$\Rightarrow \frac{64}{100} \times 1600 = \frac{80}{100} \times x$$

$$\Rightarrow x = 1280$$

$$a \cdot b = 1 \cdot 7$$

$$a:b=4:7$$
 $b:c=5:8$

$$\frac{a}{b} = \frac{4}{7}$$

$$\frac{b}{a} = \frac{5}{8}$$

$$a: c = \frac{a}{c} = \frac{a}{b} \times \frac{b}{c} = \frac{4}{7} \times \frac{5}{8}$$

$$=\frac{5}{14}$$

$$a: c = 5:14$$

5. (A)

Purchasing price =
$$20,000 - \frac{15}{100} \times 20,000$$

$$=20,000-3000$$

$$=17000$$

6. (D)

60A18 is divisible by 3.

: By divisibility test of 3, the sum of all the digits of the given number should be divisible by 3 as well

$$\therefore 6+0+A+1+8=15+A$$

15 + A should be divisible by 3.

 \therefore 0 or 3 or 6 or 9 can be the possible value of A.

7. (B)

Numbers are

$$x, x+1, x+2, x+3, x+4$$

Average =
$$\frac{x + x + 1 + x + 2 + x + 3 + x + 4}{5}$$

$$=\frac{5x+10}{5}=x+2$$

8. (B)

$$\sqrt{156816} = 396$$

To find
$$\sqrt{15.6816 \times 10^{-2}}$$

$$= \sqrt{156816 \times 10^{-6}}$$

$$= \sqrt{156816} \times \sqrt{10^{-6}}$$

$$=396\times10^{-3}$$

$$=0.396$$

9. (A)

Sum of all exterior angle of any polygon is 360°

10. (D)

Diameter of such a

Circle = side of the square

$$= 42$$

$$radius = \frac{42}{2} = 21$$

Area of circle = πr^2

$$=\frac{22}{7}\times21\times21$$

$$=1386cm^{2}$$

(B)

1. Sides of triangel are 4, 4, $\sqrt{32}$

Clearly as
$$\sqrt{4^2+4^2} = \sqrt{32}$$

the given \triangle is right angle thus $BC = \sqrt{32}$ is the

diameter of circumcircle

$$\therefore r = \frac{\sqrt{32}}{\alpha} = 2\sqrt{2}$$

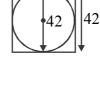
2.
$$27 \div 9 \times (3-5) + 2 = -4$$

3. Angles of Quadrilateral are:

$$72^{\circ}, 72^{\circ}, 108^{\circ}, 108^{\circ}$$

Sum of opposite angles = $72 + 108 = 180^{\circ}$

It is a cyclic quadrilateral


4. let the distance be d

and time taken by three runners be 3x, 5x, and 4x

$$S_1 = \frac{d}{3x} S_2 = \frac{d}{5x} S_3 = \frac{d}{4x}$$

$$S_1: S_2: S_3 = \frac{d}{3x}: \frac{d}{5x}: \frac{d}{4x}$$

$$=20:12:15$$

5. Let the principal be P

Instrest =
$$\frac{prt}{100}$$

$$\frac{9}{16} \cdot p = \frac{p \times r^2}{100}$$
 as $r = t$

$$\Rightarrow r = \sqrt{\frac{900}{16}} = \frac{30}{4} = 7.5$$

Q. 2

1.
$$6p^2 + 4p - 17 + 4p^2 - 7p + 10$$

$$=10p^2-3p-7$$

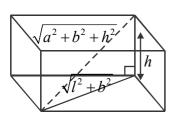
Required expansion = $10p^2 - p + 11 - (10p^2 - 3p - 7)$

$$=2p+18$$

2. Factorize: $27y^3 + 8x^3$

$$= \left(3y\right)^3 + \left(2x\right)^3$$

$$= (3y + 2x)(9y^2 + 4x^2 - 6xy)$$


3. $x^2 - 4x + 1 = 0$

$$x + \frac{1}{x} = 4$$

$$x^2 + \frac{1}{x^2} + 2 = 16$$

$$x^2 + \frac{1}{x^2} = 14$$

4.

Diagonal of box = $\sqrt{12^2 + 9^2 + 8^2}$

$$= \sqrt{144 + 81 + 64}$$

$$=\sqrt{289}$$

$$-17$$

5. $CE \perp AB$

$$BD \perp AC$$

To prove $\triangle ABD \sim \triangle ACE$

Consider $\triangle ABD$ and $\triangle ACE$

$$\angle ADB = \angle AEC = 90^{\circ}$$

$$\angle BAD = \angle CAE$$
 (common angle)

Since the two angles are equal. The third angle has to be equal

$$\therefore \triangle ABD \sim \triangle ACE$$

Q. 3

Given

$$a = b^{2x}$$

$$b = c^{2y}$$

$$c = a^{2z}$$

Now as,

$$c = 2^{2z}$$

$$= \left(b^{2x}\right)^{2z}$$

$$-b^{4x^2}$$

$$C^1 = C^{8xyz}$$

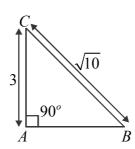
$$\Rightarrow 8xyz = 1$$

$$\Rightarrow xyz = \frac{1}{8}$$

2. Work done by *B* in one day = $\frac{1}{18}$

Work done by *A* in one day = $2 \times \frac{1}{18}$

$$=\frac{1}{9}$$


Work done by A and B together in one day

$$=\frac{1}{18}+\frac{1}{9}=\frac{3}{18}=\frac{1}{6}$$

No. of days required by both to complete the work = 6 days

3. Let's constract a right angle triangle with base 1 unit, height 3 units

Then hypotenuse =
$$\sqrt{base^2 + height^2}$$

= $\sqrt{1^2 + 3^2}$
= $\sqrt{1+9}$

Thus by making a line segment AB of 1 unit and another orthogonal to it with a common point 3 unit AC.

If are join BC. Then BC has to be of length $\sqrt{10}$ unit. Now measure BC with a compass and mark on number line

4.
$$2\pi r - 2r = 45$$

$$\Rightarrow 2r(\pi-1)=45$$

$$\Rightarrow 2 \times r \times \left(\frac{22}{7} - 1\right) = 45$$

$$\Rightarrow 2 \times r \times \frac{15}{7} = 45$$

$$r = \frac{21}{2} = 10.5$$

5. Discount % =
$$\frac{1900 - 1805}{1900} \times 100$$

= $\frac{95}{19}$ % = 5%

Q. 4

1. Let the number be x, y and z we know that Product of two numbers = product of their G.C.D and L.C.M

$$\Rightarrow xy = 25 \times 150$$

$$vz = 15 \times 525$$

$$zx = 5 \times 1050$$

Multiplying the three equation we get

$$x^2y^2z^2 = 25 \times 150 \times 15 \times 525 \times 5 \times 1050$$

$$\Rightarrow xyz = 25 \times 25 \times 21 \times 3 \times 10$$

Now,
$$z = \frac{xyz}{xy}$$
$$z = \frac{25 \times 25 \times 21 \times 10 \times 3}{25 \times 150}$$
$$= 21 \times 5 = 105$$

$$y = \frac{25 \times 25 \times 21 \times 10 \times 3}{5 \times 1050}$$
$$= 75$$
$$x = \frac{25 \times 25 \times 21 \times 10 \times 3}{5 \times 525}$$

x = 50

: Three number are 50, 75, 105

2.
$$n(C) = 58\%$$

$$n(F) = 38\%$$

$$n \left[\left(C \cup F \right)^{C} \right] = 17\% \implies n \left(C \cup F \right)$$

$$=100-17$$

$$=83\%$$

$$n(C \cap F)$$
?

$$n(C)+n(F)-n(C \cup F) = n(C \cap F)$$

$$\Rightarrow$$
 58 + 38 - 83 = $n(C \cap F)$

$$\Rightarrow$$
 13% = $n(C \cap F)$

$$13\%$$
 of $x = 104$

$$x = \frac{104 \times 100}{13} = 800$$

3.
$$2(l+b) = 230 \Rightarrow l+b = 115$$

$$l' = l - 10\%$$
 of l

$$=\frac{9l}{10}$$

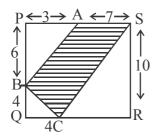
$$b^1 = \frac{11b}{10}$$

New perimeter = 2(l'+b')

$$=2\left(\frac{9l}{10} + \frac{11b}{10}\right)$$
$$=\frac{9l + 11b}{5}$$

$$\frac{9l+11b}{5} = 224$$

$$9l + 11b = 1120$$


.....(2)

solving (1) and (2), we have

$$l = \frac{145}{2}$$

$$b = \frac{85}{2}$$

4.

Area of shaded region = area of sq. PQRS $-(ar(\Delta PBA) + ar(\Delta BQC) + ar(\Delta SCR))$

$$= 10^{2} - \left(\frac{1}{2} \times 6 \times 3 + \frac{1}{2} \times 4 \times 4 + \frac{1}{2} \times 10 \times 6\right)$$

$$= 100 - (9 + 8 + 30)$$

$$= 53 \text{ sq. unit}$$

5. Let time taken in walking and running be t_1 and t_2 respectively

$$t_1 + t_2 = 3$$

$$also, t_1 = \frac{d}{3}, t_2 = \frac{15 - d}{9}$$

$$3 = t_1 + t_2$$

$$\Rightarrow 3 = \frac{d}{3} + \frac{15 - d}{9}$$

$$\Rightarrow d = 6$$

Distance covered by running =15-d

$$=15-6=9$$

Q. 5

1.
$$\frac{9^n \times 3^5 \times 27^3}{3 \times 81^4} = 27, n = ?$$

$$\Rightarrow \frac{3^{2n} \times 3^5 \times 3^9}{3 \times (3^4)^4} = 3^3$$

$$\Rightarrow 3^{2n+14-17} = 3^3$$

$$\Rightarrow 3^{2n-3} = 3^3$$

$$\Rightarrow 2n-3=3$$

$$n=3$$

2. Number of worker after 2 years

$$= 6400 \left(\frac{25}{100}\right)^2$$
$$= 6400 \times \frac{9}{16}$$
$$= 3600$$

3.

$$281216 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 2 \times \underline{13 \times 13 \times 13}$$

: The number should be divided by 2 to become a perfect cube.

4.

$$\frac{x^6 - y^6}{x^4 - y^4} = \frac{\left(x^2\right)^3 - \left(y^2\right)^3}{\left(x^2\right)^2 - \left(y^2\right)^2}$$

$$= \frac{(x^2 - y^2)(x^4 + y^4 + x^2y^2)}{(x^2 - y^2)(x^2 + y^2)}$$

$$=\frac{x^4+y^4+x^2y^2}{x^2+y^2}$$

5.

Let the integer be x

$$x + \frac{x-1}{3} \le \frac{x+1}{2}$$

$$\Rightarrow \frac{12+x-1}{3} \le \frac{x+1}{2}$$

$$\Rightarrow 2x + 22 \le 3x + 3$$

$$\Rightarrow 3x - 2x \le 2z - 3$$

$$\Rightarrow x \ge 19$$

Least value of such integer is 19