A concentrated load P is applied at the end of a cantilever as shown in Fig. The cross section of the beam is a square of side 'a' with a hole of dia 'a/2'. The deflection at the tip of the cantilever is given by



- (a) (b) (c) (d)  $\frac{3P}{E} \frac{L^3}{a^4} \qquad \frac{1024P}{(256-3\pi)E} \frac{L^3}{a^4} \qquad \frac{1024P}{(256-\frac{\pi}{64})E} \frac{L^3}{a^4} \qquad \frac{256P}{(1024-3\pi)E} \frac{L^3}{a^4}$
- A cantilever beam is subjected to a UDL. The cross section of the beam is a H-Section placed as shown in Fig. The bending stress distribution across the cross section will be





A thick cylinder of inner dia 'D', wall thickness  $t_2$  and length 'L' is sealed at its both ends with caps. The thickness of the cap is  $t_1$ . Allowable tensile yield stress =  $\sigma_y$  and allowable shear stress =  $\tau_y$ . A gas is pumped into this cylinder at pressure 'p'. The cap will yield in shear at circumference of diameter 'D' when the gas pressure applied is more than



 $\frac{4t_1\tau_y}{D}$ 

 $\frac{8t_1\tau_y}{D}$ 

 $\frac{4t_2 \sigma_y}{D}$ 

 $\frac{2t_1\tau_0}{D}$ 

An 'SS' tube is inserted into an 'Al' tube. They are permanently fixed at one end. The other end is attached to a rigid plate. A torque 'T' is applied to the rigid plate. The circumference of the 'Al' tube at dia 'D' at the plate end with respect to the fixed end rotates by a distance ......mm due to torque 'T'. The polar MOI & Rigidity modulus of Al & SS are  $J_{Al}$ ,  $G_{Al}$  and  $J_{ss}$ ,  $G_{ss}$  respectively.



  DLT  $= 2(G_{AI}J_{AI} + G_{SS}J_{SS})$ 

A rod of 20 dia is fixed to the ceiling of a roof on one end. A rotor of 50 kg mass is attached to the free end with bearings. The CG of the rotor is 10 mm away from the shaft axis. The rotor is 5 rotating at 600 rpm. The max tensile stress (in N/Sq.mm) in the rod is nearly equal to 500 rotór 50 kg béaring (d) 400 π  $200 \pi$ (c)  $300 \pi$ (a) (b) 6 An automotive engine having a mass of 135 kg is supported on 4 springs with linear characteristics. Each of the 2 front springs have stiffness of 3 MN/m while the stiffness of each of 2 rear springs is 4.5 MN/m. The engine speed (rpm) at which resonance is likely to occur is (d)  $10^3/(3)$ (c)  $10^4/(\pi)$ (a)  $10^3/(6\pi)$ (b)  $1/(6\pi)$ A weighing m/c consists of a 2 kg pan resting on a spring having linear characteristics. In this 7 condition of resting on the spring, the length of spring is 200mm. When a 20 kg mass is placed on the pan, the length of the spring becomes 100mm. The undeformed length Lin mm and the spring stiffness K in N/m are (b) L = 200, K = 1960 a) L = 220 & K=1862 (d) L = 200, K = 2 (c) L = 210, K = 1960 A circular shaft is subjected to a torque 'T' and a Bending Moment M. The ratio of max. shear stress to max. bending stress is (c) 2T/M (d) M/2T (a) 2M/T (b) T/2M

A solid block 'A' weighing 'Q' kg is resting on a flat floor. A smooth cylinder 'B' weighing 'P' kg. is placed between the solid A and the vertical wall as shown in fig. The friction between the cylinder, wall and the block A is negligible. The co-efficient of friction between the block A and floor is μ. The minimum weight P required to disturb the block A is



 $\begin{array}{c|c}
 & Q & (1-Tan \theta) \\
\hline
 & \mu & Tan \theta
\end{array}$ (b)  $\begin{array}{c|c}
 & \mu & Q & Tan \theta \\
\hline
 & (1-\mu & Tan \theta)
\end{array}$   $\begin{array}{c|c}
 & \mu & Q & Cos \theta
\end{array}$   $\begin{array}{c|c}
 & \mu & Q & Cos \theta
\end{array}$ 

A hydraulic jack is used to compress a spring as shown in fig. Stiffness of spring is  $10^5$  N/m. By applying a pressure 'p' in the hydraulic cylinder, the spring gets compressed by 10mm. The cross sectional area of the piston is 25  $cm^2$ . The applied pressure 'p is

10

Spring piston

|     | (a) 4 x 10 <sup>5</sup> Pascals                                                                                                                                                                                                                                         | (b) 40 Pascals            | (c) 250 Pascals              | (d) 25 Pascals                                       |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------------------------------|--|--|--|--|--|
| 11  | A small plastic boat loaded with pieces of steel rods is floating in a bath tub. If the cargo is dumped into the water, allowing the boat to float empty, the water level in the tub will                                                                               |                           |                              |                                                      |  |  |  |  |  |
|     | (a) Rise                                                                                                                                                                                                                                                                | (b) Fall                  | (c) Remains the same         | (d) Rise and then fall                               |  |  |  |  |  |
| 12  | Viscosity of water in comparison to mercury is                                                                                                                                                                                                                          |                           |                              |                                                      |  |  |  |  |  |
|     | (a) higher                                                                                                                                                                                                                                                              | (b) lower                 | (c) same                     | (d) unpredictable                                    |  |  |  |  |  |
| 13  | Froude number is significant in:                                                                                                                                                                                                                                        |                           |                              |                                                      |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                         | h projectile and jet prop |                              |                                                      |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                         |                           | v, as with pipes, air crafts |                                                      |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                         |                           | here there is a surface di   | scontinuity, gravity forces                          |  |  |  |  |  |
|     | and wave making effe                                                                                                                                                                                                                                                    | ct, as with ship's hulls  |                              |                                                      |  |  |  |  |  |
|     | (d) All of these                                                                                                                                                                                                                                                        |                           |                              |                                                      |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                         | soulete enterellmente se  |                              |                                                      |  |  |  |  |  |
| 14  | The purpose of surge                                                                                                                                                                                                                                                    |                           | (b) minimize friction los    | res in nine                                          |  |  |  |  |  |
|     | (a) smoothen the flow (c) prevent occurrence                                                                                                                                                                                                                            |                           | (d) relieve pressure due     |                                                      |  |  |  |  |  |
| 15. | Head loss in turbulent                                                                                                                                                                                                                                                  | flow in a pipe            |                              |                                                      |  |  |  |  |  |
|     | (a) varies directly as ve                                                                                                                                                                                                                                               |                           | (b) varies inversely as s    |                                                      |  |  |  |  |  |
|     | (c) varies approximate                                                                                                                                                                                                                                                  | ly as square of velocity  | (d) varies inversely as v    | elocity                                              |  |  |  |  |  |
| 16. | from the bottom of the                                                                                                                                                                                                                                                  |                           | suddenly opened and          | of diameter 0.1m at 0.3m coefficient of discharge of |  |  |  |  |  |
|     | (a) 69.37 N                                                                                                                                                                                                                                                             | (b) 67.39 N               | (c) 63.79 N                  | (d) 65.39 N                                          |  |  |  |  |  |
| 17. | A model of a hydraulic turbine is tested at a head of 1/4 <sup>th</sup> of that under which the full scale turbine works. The diameter of the model is half of that of the full scale turbine. If N is the RPM of the full scale turbine, then RPM of the model will be |                           |                              |                                                      |  |  |  |  |  |
|     | (a) N/4                                                                                                                                                                                                                                                                 | (b) N/2                   | (c) N                        | (d) 2N                                               |  |  |  |  |  |
| 18  |                                                                                                                                                                                                                                                                         |                           |                              |                                                      |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                     | (a) 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) 0.16                                                                                                                                                                                                                                                      | (c) 0.27                                                                                                                               | (d) 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 9                                                                                                                                                                                                                                                                                                                                   | For the stability of a floating body, under the influence of gravity alone, which of the follo true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                     | (a) Metacentre sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ould be below the centre of                                                                                                                                                                                                                                   | gravity                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                     | (b) Metacentre sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uld be above the centre of                                                                                                                                                                                                                                    | gravity                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | centre of gravity must lie                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |  |  |
| _                                                                                                                                                                                                                                                                                                                                   | (d) Metacentre and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | centre of gravity must lie                                                                                                                                                                                                                                    | on the same vert                                                                                                                       | tical line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          |  |  |
| A smooth pipe of diameter 200mm carries water. The pressure in the pressure (elevation: 10m) is 50 kPa. At section S2 (elevation: 12 m.) the pressure velocity is 2 m/sec. Density of water is 1000 kg/m³ and acceleration due sec. Which of the following is true? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e is 20 kPa anu                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                     | (a) Flow is from<br>0.53m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S1 to S2 and head loss is                                                                                                                                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | head loss is 0.53m                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S1 to S2 and head loss is                                                                                                                                                                                                                                     | (d) Flow is from                                                                                                                       | S2 to S1 and h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ead loss is 1.06m                                                                                                                                                        |  |  |
| 21.                                                                                                                                                                                                                                                                                                                                 | The 2-D flow with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The 2-D flow with velocity $\overline{v} = (x + 2y + 2) I + (4 - y) j$ is                                                                                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                     | (a) compressible a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd irrotational                                                                                                                                                                                                                                               | (b) compressib                                                                                                                         | le and not irre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | otational                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                     | (a) compressible a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                               | (b) compressib                                                                                                                         | ole and not irresible and not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otational<br>irrotational                                                                                                                                                |  |  |
| 22.                                                                                                                                                                                                                                                                                                                                 | A venturimeter of horizontal pipe o sections is found to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and irrotational of 20mm throat diameter of 40mm diameter. If the to be 30 kPa, then, neglective                                                                                                                                                              | (d) incompress<br>is used to mea<br>pressure differen<br>ng frictional losses                                                          | sible and not<br>sure the velo<br>ice between t<br>s, the flow velo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | city of water in a<br>he pipe and throa<br>scity is                                                                                                                      |  |  |
| 22.                                                                                                                                                                                                                                                                                                                                 | A venturimeter of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and irrotational of 20mm throat diameter f 40mm diameter. If the                                                                                                                                                                                              | is used to mea<br>pressure differen                                                                                                    | sible and not<br>sure the velo<br>ice between t<br>s, the flow velo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | city of water in a                                                                                                                                                       |  |  |
| 222.                                                                                                                                                                                                                                                                                                                                | A venturimeter of horizontal pipe of sections is found to (a) 0.2 m/sec  A room contain (the refrigerator electric resistant that the refrigerator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and irrotational of 20mm throat diameter of 40mm diameter. If the to be 30 kPa, then, neglective (b) 1.0 m/sec  s 60 kg of air at 100 kPa or consumes 250 W of ele once heater, and a 50-W orator, the TV, the fan, ut the air temperature in                 | is used to mea pressure difference frictional losses (c) 1.4 m/sec and 15°C. The ectricity when refan. During a coand the electric     | sure the veloce between to the flow veloce between to the flow veloce (d) (d) the flow in | city of water in a<br>he pipe and throa<br>city is<br>2.0 m/sec<br>50-W refrigerato<br>20-W TV, a 1-kV<br>lay, it is observe<br>eater are runnin                         |  |  |
|                                                                                                                                                                                                                                                                                                                                     | A venturimeter of horizontal pipe of sections is found to (a) 0.2 m/sec  A room contain (the refrigerator electric resistant that the refrigerator continuously be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and irrotational of 20mm throat diameter of 40mm diameter. If the to be 30 kPa, then, neglective (b) 1.0 m/sec  s 60 kg of air at 100 kPa or consumes 250 W of ele once heater, and a 50-W orator, the TV, the fan, ut the air temperature in                 | is used to mea pressure difference frictional losses (c) 1.4 m/sec and 15°C. The ectricity when refan. During a coand the electric     | sure the veloce between to the flow veloce between to the flow veloce (d) (d) the flow in | city of water in a<br>the pipe and throa<br>scity is<br>2.0 m/sec<br>50-W refrigerato<br>20-W TV, a 1-kV<br>lay, it is observe<br>eater are runnin<br>t. The rate of hea |  |  |
|                                                                                                                                                                                                                                                                                                                                     | A venturimeter of horizontal pipe of sections is found to a contain (the refrigerator electric resistant that the refrigerator continuously by loss from t | and irrotational of 20mm throat diameter of 40mm diameter. If the to be 30 kPa, then, neglective (b) 1.0 m/sec  s 60 kg of air at 100 kPa or consumes 250 W of ele once heater, and a 50-W erator, the TV, the fan, ut the air temperature in com that day is | is used to mea pressure difference frictional losses (c) 1.4 m/sec and 15°C. The ectricity when refan. During a condition the room rem | sure the veloce between to the flow veloce between to the flow veloce (d) room has a 2 running), a 1 recold winter corresistance hains constant (c) 5112 kJ/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | city of water in a he pipe and throa city is 2.0 m/sec 50-W refrigerato 20-W TV, a 1-kV lay, it is observe eater are running. The rate of heath (d) 2952 kJ/h            |  |  |

| 25. | An adiabatic heat exchanger is used to heat cold water at 15°C entering at a rate of 5 kg/s by hot air at 90°C entering also at rate of 5 kg/s. If the exit temperature of hot air is 20°C, the exit temperature of cold water is                                                                                                                                                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (a) 27°C (b) 32°C (c) 52°C (d) 85°C                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26. | For given combined radiative and convective heat transfer coefficient 'ht' and given thermal conductivity k,*Critical thickness of insulation for cylinder and sphere is given as                                                                                                                                                                                                                                                                      |
|     | (a) $\frac{k}{h_t}$ and $\frac{k}{h_t^2}$ (b) $\frac{k}{h_t}$ and $\frac{2k}{h_t}$ (c) $\frac{2k}{h_t}$ and $\frac{k}{h_t^2}$ (d) $\frac{2k}{h_t}$ and $\frac{k}{h_t}$                                                                                                                                                                                                                                                                                 |
| 27. | Match the following                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 27. | P:Compressible flow U: Reynolds number                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Q: Free surface flow V: Nusselt number                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | R: Boundary layer flow W: Weber number                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | S: Pipe flow X: Froude number                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | T: Heat convection Y: Mach number                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Z: Skin friction coefficient                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | (a) P-U; Q-X; R-V; S-Z; T-W (b) P-W; Q-X; R-Z; S-U; T-V                                                                                                                                                                                                                                                                                                                                                                                                |
|     | (c) P-Y; Q-W; R-Z; S-U; T-X (d) P-Y; Q-W; R-Z; S-U; T-V                                                                                                                                                                                                                                                                                                                                                                                                |
| 28. | A spherical thermocouple junction of diameter 0.706 mm is to be used for the measurement of temperature of a gas stream. The convective heat transfer co-efficient on the bead surface is 400 $\text{W/m}^2\text{K}$ . Thermo-physical properties of thermocouple material are $k=20$ W/mK, $C=400$ J/kg K and $r=8500$ kg/m³. If the thermocouple initially at 30°C is placed in a hot stream of 300°C, the time taken by the bead to reach 298°C, is |
|     | a) 2.35 s b) 4.9 s c) 14.7 s d) 29.4 s                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 29. | Two insulating materials of thermal conductivity K and 2K are available for lagging a pipe carrying a hot fluid. If the radial thickness of each material is the same.                                                                                                                                                                                                                                                                                 |
|     | (a) material with higher thermal conductivity should be used for the inner layer and one with lower thermal conductivity for the outer.                                                                                                                                                                                                                                                                                                                |
|     | (b) material with lower thermal conductivity should be used for the inner layer and one with higher thermal conductivity for the outer.                                                                                                                                                                                                                                                                                                                |
|     | (c) it is immaterial in which sequence the insulating materials are used                                                                                                                                                                                                                                                                                                                                                                               |
|     | (d) it is not possible to judge unless numerical values of dimensions are given.                                                                                                                                                                                                                                                                                                                                                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 30. | The definition of 1 K as per the internationally accepted temperature scale is                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | (a) 1/100th the difference between normal boiling point and normal freezing point of water.                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | (b) 1/273.15th the normal freezing point of water (c) 100 times the difference between the triple point of water and the normal freezing                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | point of water.                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | (d) 1/273.16th of the triple point of water.                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | For a perfect gas match list I with list II:                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 1.  | List I                                                                                                                                                                                                                                                                                                                                                       | List II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|     | (A) Isobaric thermal expansion                                                                                                                                                                                                                                                                                                                               | $\overline{(1) 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|     | coefficient                                                                                                                                                                                                                                                                                                                                                  | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|     | (B) Isothermal compressibility                                                                                                                                                                                                                                                                                                                               | (2) ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | (C) Isentropic compressibility                                                                                                                                                                                                                                                                                                                               | (3) 1/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|     | (D) Joule – Thomson coefficient                                                                                                                                                                                                                                                                                                                              | (4) 1/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                              | (5) 1/p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                              | (6) $1/\gamma p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                              | () + (D = G < D +   (D + 2D + G < D =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 32. | (a) A-4,B-3,C-2, D-1 (b) A-1,B-2,C-4, D-6  For a given heat flow and for the same thick                                                                                                                                                                                                                                                                      | (c) A-4,B-5,C-6, D-1 (d) A-3,B-4,C-6, D-5 kness, the temperature drop across the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 32. | For a given heat flow and for the same thick material will be maximum for                                                                                                                                                                                                                                                                                    | kness, the temperature drop across the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 32. | For a given heat flow and for the same thick material will be maximum for                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl                                                                                                                                                                                                                                                       | ass-wool (d) refractory brick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the                                                                                                                                                                                                          | ass-wool (d) refractory brick  processes in List I. Enter your answer as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t                                                                                                                                                          | ass-wool (d) refractory brick  processes in List I. Enter your answer as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t List I                                                                                                                                                   | ass-wool (d) refractory brick  processes in List I. Enter your answer as hat for (2) is (B)  List II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface                                                                                                                  | ass-wool (d) refractory brick  processes in List I. Enter your answer as hat for (2) is (B)  List II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface (B) Weber number (2) Forced                                                                                      | ass-wool  (d) refractory brick  processes in List I. Enter your answer as hat for (2) is (B)  List II e tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface (B) Weber number (2) Forced                                                                                      | ass-wool (d) refractory brick  processes in List I. Enter your answer as hat for (2) is (B)  List II e tension convection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiation                      | ass-wool (d) refractory brick  processes in List I. Enter your answer as hat for (2) is (B)  List II e tension convection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiation                      | ass-wool  (d) refractory brick  processes in List I. Enter your answer as hat for (2) is (B)  List II tension convection  |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiati (5) Transic (6) Mass d | ass-wool  (d) refractory brick  processes in List I. Enter your answer as hat for (2) is (B)  List II e tension convection convection ion ent heat conduction liffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiati (5) Transic (6) Mass d | ass-wool  (d) refractory brick  processes in List I. Enter your answer as hat for (2) is (B)  List II tension convection  |  |  |  |  |  |
|     | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiati (5) Transic (6) Mass d | convection al convection liffusion  (d) refractory brick  (d) refractory brick  (e) refractory brick  (f) refractory brick  (h) refr |  |  |  |  |  |
| 33. | For a given heat flow and for the same thick material will be maximum for  (a) copper (b) steel (c) gl  Select statements from List II matching the A, B if the correct choice for (1) is (A) and t  List I  (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiati (5) Transie (6) Mass d | convection al convection liffusion  (d) refractory brick  (d) refractory brick  (e) refractory brick  (f) refractory brick  (h) refr |  |  |  |  |  |

| 35.                                                                                                                                                    | A system undergoes a state change from 1 to 2. According the second law of thermodynamics for the process to be feasible, the entropy change, S2 – S1 of the system                           |                  |            |                            |          |                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|----------------------------|----------|-----------------------|--|--|
|                                                                                                                                                        | (a) is positive or zer                                                                                                                                                                        | .0               | (b) is no  | egative or zero            |          |                       |  |  |
|                                                                                                                                                        | (c) is zero                                                                                                                                                                                   |                  |            | be positive, nega          | tive or  | zero                  |  |  |
| 36. In descending order of magnitude, the thermal conductivity of (a) pure iron, water, (c) saturated water vapour and (d) aluminum can be arranged as |                                                                                                                                                                                               |                  |            |                            |          | pure iron, (b) liquid |  |  |
|                                                                                                                                                        | (a) a b c d                                                                                                                                                                                   | (b) b c a d      |            | (c) dabc                   |          | (d) d c b a           |  |  |
| 37.                                                                                                                                                    | For the same inlet a<br>Temperature Differ                                                                                                                                                    | and outlet temp  |            |                            | fluids,  | the Log Mean          |  |  |
|                                                                                                                                                        | (a) greater for para                                                                                                                                                                          |                  |            |                            |          |                       |  |  |
|                                                                                                                                                        | (b) greater for cour                                                                                                                                                                          | nter flow heat o | exchang    | er than for paral          | lel flow | heat exchanger.       |  |  |
|                                                                                                                                                        | (c) same for both p                                                                                                                                                                           | arallel and cou  | nter flo   | w heat exchange            | rs.      |                       |  |  |
|                                                                                                                                                        | (d) dependent on th                                                                                                                                                                           | ne properties o  | f the flui | ds.                        |          |                       |  |  |
| 38.                                                                                                                                                    | A positive value of                                                                                                                                                                           | Joule-Thomso     | n coeffic  | ient of a fluid m          | eans     |                       |  |  |
|                                                                                                                                                        | (a) temperature dr                                                                                                                                                                            | ops during thr   | ottling    | (b) temperature threttling | e remai  | ns constant during    |  |  |
|                                                                                                                                                        | (c) temperature ris                                                                                                                                                                           | es during thro   | ttling     | (d) none of thes           | e        |                       |  |  |
| 39.                                                                                                                                                    | A Carnot engine.re the heat source is                                                                                                                                                         | ejects 30% of    | absorbe    | d heat to a sink           | at 30°C  | . The temperature of  |  |  |
|                                                                                                                                                        | (a) 100 °C                                                                                                                                                                                    | (b) 433 °C       |            | (c) 737 °C                 |          | (d) 1010 °C           |  |  |
| 40.                                                                                                                                                    |                                                                                                                                                                                               | s between temp   |            | limits of 900 K a          | and T a  | nd T and 400 K. For   |  |  |
|                                                                                                                                                        | (a) 700 K                                                                                                                                                                                     | (b) 600 K        |            | (c) 750 K                  |          | (d) 650 K             |  |  |
| 41                                                                                                                                                     | In a heat exchanger, the hot liquid enters with a temperature of 180°C and leaves at 160°C. The cooling fluid enters at 30°C and leaves at 110°C. The capacity ratio of the heat exchanger is |                  |            |                            |          |                       |  |  |
|                                                                                                                                                        | (2) 0.25                                                                                                                                                                                      | (b) 0.40         |            | (a) 0.50                   |          | (d) 0.55              |  |  |
|                                                                                                                                                        | (a) 0.25                                                                                                                                                                                      | (b) 0.40         |            | (c) 0.50                   |          | (d) 0.55              |  |  |
|                                                                                                                                                        |                                                                                                                                                                                               |                  |            |                            |          |                       |  |  |

| 42 | A system of masses rotating in different parallel planes is in dynamic balance if -                                   |                                              |                      |                                     |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|-------------------------------------|--|--|--|--|
|    | (a) Resultant force is zero                                                                                           | (b) resultant cou                            | ole is zero          |                                     |  |  |  |  |
|    | (c) resultant force is numerically                                                                                    | (d) resultant force                          | e and the result     | ant couple,                         |  |  |  |  |
|    | equal to resultant couple                                                                                             | both are equal to                            | zero.                |                                     |  |  |  |  |
| 43 | A torsion bar with a spring constant `k' is cut into `n' equal lengths. The spring constant for each portion would be |                                              |                      |                                     |  |  |  |  |
|    | (a) nk                                                                                                                |                                              | (b) k <sup>n</sup>   |                                     |  |  |  |  |
|    | (c) k/n                                                                                                               |                                              | (d) k <sup>1/n</sup> |                                     |  |  |  |  |
| 44 | Logarithmic decrement of a dampe<br>of the spring is doubled and mass is<br>system will be equal to                   | d single degree of fr<br>made half, then log | arithmic decrer      | s & If stiffness<br>ment of the new |  |  |  |  |
|    | (a) 1/2δ                                                                                                              | ·····                                        | (b) δ                |                                     |  |  |  |  |
|    | (c) 2δ                                                                                                                |                                              | (d) ¼ δ              |                                     |  |  |  |  |
| 45 | To ensure self locking in a screw jac<br>(a) larger than friction angle                                               | ck it is essential that (b) smaller than fri |                      |                                     |  |  |  |  |
|    | (c) equal to friction angle                                                                                           | (d) such as to give i                        |                      | ency in lifting                     |  |  |  |  |
| 46 | For a particular load distribution a bending moment at any section `x' and B are constants. The shear for             | (O < x < L) is given 1                       | be zero at 'x' eq    | x <sup>2</sup> , where A<br>ual to  |  |  |  |  |
|    | (a) A/2B (b) A/B                                                                                                      |                                              | (c) 2A/B             | $(d) A^2/B$                         |  |  |  |  |
| 47 | If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $A^{121} - A^{120}$                                       | is                                           |                      |                                     |  |  |  |  |
|    | (a) 0 (b) 1                                                                                                           |                                              | (c) 120              | (d) 121                             |  |  |  |  |
| 48 | If A is Square Matrix of order 3, t                                                                                   | hen product of A an                          | d its transpose      | is                                  |  |  |  |  |
|    | (a) Unit Matrix                                                                                                       |                                              | (b) Zero Matr        | ix                                  |  |  |  |  |
|    | (c) Identity Matrix                                                                                                   |                                              | (d) Symmetric        |                                     |  |  |  |  |
| 49 | The Matrix A= $\begin{bmatrix} 0 & -4 & 1 \\ 4 & 0 & -5 \\ -1 & 5 & 0 \end{bmatrix}$                                  | is                                           |                      |                                     |  |  |  |  |

|    | (a) Orthogonal N                                                                         | <b>Jatrix</b>                                                                                                                                  | (b) Skew Symmetric                                                       |                                                                   |  |  |  |  |
|----|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
|    | (c) Symmetric                                                                            |                                                                                                                                                | (d) Idem                                                                 | ootent                                                            |  |  |  |  |
| 50 | Vector $a=3i+2j-6k$ , vector $b=4i-3j+k$ , angle between above vectors is                |                                                                                                                                                |                                                                          |                                                                   |  |  |  |  |
|    | (a) 90°                                                                                  | (b) 0°                                                                                                                                         | (c) 45°                                                                  | (d) 60°                                                           |  |  |  |  |
| 51 |                                                                                          | for A to fail an examination either A of B fail is                                                                                             | n is 0.2 and that for I                                                  | 3 is 0.3, then                                                    |  |  |  |  |
|    | (a) 0.5                                                                                  | (b) 0.06                                                                                                                                       | (c) 0.44                                                                 | (d) 0.1                                                           |  |  |  |  |
| 52 | Area bounded by                                                                          | the parabola 2y= x² and th                                                                                                                     | ne line x = y-4 is equa                                                  | l to                                                              |  |  |  |  |
|    | (a) 4.5                                                                                  | (b) 9                                                                                                                                          | (c) 18                                                                   | (d) 36                                                            |  |  |  |  |
| 53 | Chance that a lea                                                                        | ap year selected at random                                                                                                                     | will contain 53 Sunda                                                    | ys is                                                             |  |  |  |  |
|    | (a) 3/7                                                                                  | (b) 7/2                                                                                                                                        | (c) 7/3                                                                  | (d) 2/7                                                           |  |  |  |  |
| 54 | $ \begin{array}{c c} \text{Lim} & \underline{x^2 + x - S} \\ x \to 0 & x^2 \end{array} $ | $ \begin{array}{ll} \text{Lim} & \underline{x^2 + x - \sin x} \\ x \to 0 & x^2 \end{array} $                                                   |                                                                          |                                                                   |  |  |  |  |
|    | (a) 0                                                                                    | (b) ∞                                                                                                                                          | (c) 1                                                                    | (d) None of these                                                 |  |  |  |  |
| 55 | left to right. The<br>kg and 5 kg. l<br>Q after impact a                                 | Q are traveling horizontall by are separated by a distant the coefficient of restitution d when (seconds) and when ing of Q. The corresponding | ce of 15 m. The mass<br>n is 0.7 what is the ve<br>re (metres) will they | s of the objects are 3 clocity (m/s) of P and impact with respect |  |  |  |  |
|    | a) 7.6, 5.4,                                                                             | 2.1, 15 b) 8, 6, 2.5, 7.5                                                                                                                      | c) 7.6, 6.2, 7.5, 45                                                     | d) None of these                                                  |  |  |  |  |
| 56 |                                                                                          | n of a compound bar 1 m lo<br>aised by 80° C determine th                                                                                      |                                                                          |                                                                   |  |  |  |  |
|    | steel                                                                                    | coppe                                                                                                                                          | 5 10 5                                                                   |                                                                   |  |  |  |  |

|    | $E_{ss} = 2 \times 10^5 \text{ N/mm}^2$ , $E_c = 1 \times 10^5 \text{ N/mm}^2$ ,                                                    | $A_{ss} = 6$ | $600 \text{ mm}^2, \text{ A}_c = 200 \text{ mm}^2$ |
|----|-------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------|
|    | (a) $\sigma_{c} = 20$ (Compressive),                                                                                                | <b>b</b> )   | $\sigma_{c} = 30$ (Compressive),                   |
|    | $\sigma_{ss} = 30 \text{ (Tensile)}$                                                                                                |              | $\sigma_{ss} = 20$ (Tensile)                       |
|    | c) $\sigma_{c} = 30$ (Tensile),                                                                                                     | <b>d</b> )   | $\sigma_{\rm c} = 30$ (Tensile),                   |
|    | $\sigma_{ss} = 20$ (Compressive)                                                                                                    |              | $\sigma_{\rm SS} = 20$ (Tensile)                   |
| 57 | A short column of external diameter D an compressive load P acting with an eccentricity extreme fibre is zero then the eccentricity | ricity 'e'   | '. If the stresses at one of the                   |
|    |                                                                                                                                     | P →          |                                                    |
|    | (a) $\frac{D^2 + d^2}{8\pi D}$ b) $\frac{D^2 + d^2}{8D}$                                                                            | c) <u>D</u>  | $\frac{d^2 - d^2}{8D}$ $\frac{d}{8D^2}$            |
| 58 | The number of degrees of freedom in the                                                                                             | 3 link       |                                                    |

(d) 0 (c) 3 (b) 2 (a) 1 The equation of motion for a damped vibration is given by  $6\ddot{x} + 9\dot{x} + 27x = 0$ . The 59 damping factor will be (d) 0.75 (a) 0.25 (b) 0.5 (c) 0.35 A block brake with 400 mm diameter is used to brake a torque of 100 Nm as shown in the figure. If the coefficient friction is 0.25 at the brake surface what is the value of 60 force F to be applied at the end of the lever. F 50 225 200 (d) 1000 N (c) 439.4 N (a) 559.4 N (b) 579.4 N In the gear train of 1:10 as shown in the figure the pinion transmits 250 kw at 1800 61 rpm. What is the tangential load on the gear tooth Gear2  $N_2 = 140$  teeth  $N_1 = 14$  teeth 660 (b) 22.1 kN (c) 25.1 kN (d) 251 kN (a) 221 kN

|    | r                                         |                             |                                                   |                                                                       |                               |                       |                                    |
|----|-------------------------------------------|-----------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|-----------------------|------------------------------------|
| 62 | Spring back in metal forming depends on   |                             |                                                   |                                                                       |                               |                       |                                    |
|    | (a) Modulus of Elasticity                 |                             |                                                   | (b) Load Ap                                                           | plied                         |                       |                                    |
|    | (c) Strain Rate                           |                             |                                                   | (d) None of                                                           | these                         |                       |                                    |
| 63 | Which of the following processes induce m |                             |                                                   | ce more stress in                                                     | the metal ?                   |                       |                                    |
|    | (a) Hot rolling                           | (b) Fo                      | rging                                             | (c) Swaging                                                           |                               |                       | (d) Turning                        |
| 64 | The essential in                          | ngredient                   | of any harden                                     | ned steel is                                                          |                               |                       |                                    |
|    | (a) Austenite                             | (b) Pe                      | arlite                                            | (c) Martens                                                           | ite                           |                       | (d)<br>Cementite                   |
| 65 | Following is a                            | process us                  | sed to form po                                    | wder metal to sh                                                      | ape                           |                       |                                    |
|    | (a) Sintering                             | (b) Explo                   | sive Compact                                      | ing (c) Isostatic                                                     | Molding                       | ( <b>d</b> ) <i>A</i> | All of these                       |
| 66 | diameter. A uni                           | form spark<br>on. If the fe | k gap of 0.5 mm<br>ed rate of the w               | ut by wire-cut EDN<br>n on both sides of the<br>vire into the sheet i | he wire is ma                 | aintai                | ned during                         |
|    | (a) 150                                   | (b                          | ) 200                                             |                                                                       | (c) 300                       |                       | (d) 400                            |
| 67 | Diamond cuttin                            | g tools are                 | not recommen                                      | ded for machining                                                     | of ferrous n                  | ietals                | due to                             |
|    | (a) high tool<br>hardness                 |                             | ical affinity<br>aterial with                     | (c) Poor tool toughness                                               |                               |                       |                                    |
| 68 | During the exectool motion will           |                             | CNC part prog                                     | gram block N020 G                                                     | 02 X45.0 Y2                   | 5.0 R                 | 5.0 the type of                    |
|    | (a) circular Inte                         | -                           | (b) Circular Interpolation –<br>Counter clockwise |                                                                       | (c) Linear<br>Interpolation   |                       | (d) Rapid<br>Feed                  |
| 69 |                                           |                             |                                                   |                                                                       |                               |                       |                                    |
|    | (a) Continuou<br>Welding Proc             |                             | (b) multi-spe<br>process                          | ot welding                                                            | (c) Arc<br>Welding<br>Process | for                   | Process used<br>joining round<br>s |
| 70 |                                           |                             |                                                   |                                                                       |                               |                       |                                    |

|     | (a) half (b) sixteen times                                                                                                                                                       | (c) Two                                               | Times (d) Eight                                                                               | times                                |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|
|     | (a) that (b) stateen times                                                                                                                                                       | (c) 1 ((0                                             | Times (u) Light                                                                               |                                      |  |  |  |
| 71  | An oxidising process used for aluminium and magnesium articles is called                                                                                                         |                                                       |                                                                                               |                                      |  |  |  |
|     | (a) galvanising (b) Anodis                                                                                                                                                       | sing (c)                                              | Parkerising (d) Sh                                                                            | eradising                            |  |  |  |
| 72. | One of the characteristics of Polym                                                                                                                                              | er is                                                 |                                                                                               |                                      |  |  |  |
|     | (a) high Temperature Stability (b) High Market Strengt                                                                                                                           | Mechanical<br>th                                      | (c)High Elongation                                                                            | (d) Low<br>Hardness                  |  |  |  |
| 73  | Usually Materials with the followin                                                                                                                                              | ıg crystal strı                                       | acture fail in ductile n                                                                      | iode                                 |  |  |  |
|     | (a) FCC (b) BCC                                                                                                                                                                  | (c) F                                                 | ICP (e                                                                                        | l) None of these                     |  |  |  |
| 74  | Work hardening strengthens an all                                                                                                                                                |                                                       |                                                                                               |                                      |  |  |  |
|     | (a) Removing Internal defects in the structure                                                                                                                                   |                                                       | (b) increasing the d                                                                          |                                      |  |  |  |
|     | (c) Decreasing the grain size of the                                                                                                                                             | alloy                                                 | (d) Increasing the la                                                                         |                                      |  |  |  |
| 75  | An Aluminium object is made of a solid solid cylinder of diameter D and height vertical wall at point 'A' and hinged at position without going to vertical position  Wall  Hinge | t 'h/2' as show<br>point B on the<br>ition (axis perp | n in figure. It is kept incli<br>floor. The object stays i                                    | ned touching to a<br>n this inclined |  |  |  |
|     |                                                                                                                                                                                  |                                                       |                                                                                               |                                      |  |  |  |
|     | a) Tan <sup>-1</sup> (10 D/9h)<br>c) π/2 - Tan <sup>-1</sup> (10 D/9h)                                                                                                           |                                                       | <ul> <li>b) π/2 - Sin<sup>-1</sup> (10 D/h)</li> <li>d) Tan<sup>-1</sup> (20 D/9h)</li> </ul> |                                      |  |  |  |
| I.  | - C π//- (an (10 D/9n)                                                                                                                                                           | ì                                                     | u, ian (400/30)                                                                               |                                      |  |  |  |

A hollow MS pipe is kept on a smooth straight edge with the pipe mid point sitting on it. A load 'W' Newtons is applied at the ends which is keeping the pipe balanced in the horizontal 76 condition, what is the safe maximum load 'W' that can be applied without yielding the tube. Consider the self weight of the tube as 'p' N/m. Diameter of the pipe is 'd', Youngs modulus of pipe is E, Allowable yield stress is  $\boldsymbol{\sigma}$ 2<sub>m</sub> 2<sub>m</sub> **MS Pipe** W W  $(\sigma \pi d^4 - 64 p)/(64 E)$ b)  $(\sigma \pi d^4 - 32 p)/(32 E)$ d)  $(\sigma \pi d^3 - 64 p)/64$  $(\sigma \pi d^3 + 64 p)/64$ A car crashes against a wall. The initial velocity at collision is 15m/sec and the velocity after 77 collision is 2.6m/sec in the opposite direction. The mass of the car is 1500kg. what is the average force exerted on the automobile bumper if collision lasts for 0.15 seconds. a) 1.76 x 10<sup>5</sup> N b) 2.1 x 10<sup>5</sup> N c) 2.76 x 10<sup>5</sup> N d) None of these Differential equation for the variation of amount of salt 'x' in a tank is given by : 78 (dx/dt) + (x/20) = 10. where x is in kg and t is in minutes. Assuming that at time zero there is no salt in the tank, find the time at which the amount of salt increases to 100kg d) 10 ln 2 c) 20 ln 2 b) 50 ln 2 79 A 5 mm diameter aluminium alloy test bar is subjected to a load of 500 N. if the diameter of the bar at this load is 4 mm, the true strain is c) 0.25 (d) 0.45 a) 0.56 (b) 0.22 A material is dimensionally stable at room temperature if its glass transition temperature  $(T_g)$  is 80 (b) Just Above room (c) Equal to room (d) Well above room a) Below room temperature temperature temperature temperature