

7.	$If A = \begin{bmatrix} 2 & 4 & 5 \\ 4 & 8 & 10 \\ 4 & 10 & 45 \end{bmatrix}$	then rank of A is equal	13. Three vertices of a parallelogram taken in order are $(-1, -6)$, $(2, -5)$ and $(7, 2)$. The fourth vertex is			
	6 — 12 — 15 _		(A) (1, 4) (B) (4, 1) (C) (1, 1) (C) (4, 4)			
	το (Δ) Ο	(B) 1	(L) (1, 1) (D) (4, 4) (E) None of these			
	(C) 2	(D) 3	14. If the position vectors of P and Q are $(i + 3i - 3i)$			
_	(E) None of these	. ,	7k) and (5j – 2j + 4k), then PQ is			
8.	If $\cos^{-1}\left(\frac{1}{-1}\right) = \theta$, then	$\tan \theta =$	(A) $\sqrt{158}$ (B) $\sqrt{160}$			
	×x/		(C) $\sqrt{161}$ (D) $\sqrt{162}$			
	(A) $\frac{1}{\sqrt{2}}$	(B) $\sqrt{x^2 + 1}$	(E) None of these			
	$\sqrt{x^2 - 1}$	·-/ √X + I	15. If \hat{a} and \hat{b} are unit vectors such that			
	(C) $\sqrt{1-x^2}$ (D) $\sqrt{x^2-1}$ (E) None of these		$\left[\hat{a} \ \hat{b} \ \hat{a} \times \hat{b}\right] = \frac{1}{4}$, then angle between \hat{a} and			
	$(\sqrt{3})$		ĥ is			
9.	The principal value of	$\sin^{-1}\left(-\frac{2}{2}\right)$ is	(A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$			
	(A) $\frac{-2\pi}{3}$	(B) $\frac{-\pi}{3}$	(C) $\frac{\pi}{6}$ (D) $\frac{\pi}{2}$			
	4π	5π	(E) None of these			
	(C) $\frac{1}{3}$	(D) $\frac{1}{3}$	16. The direction cosines of the line			
	(E) None of these		4x - 4 = 1 - 3y = 2z - 1 are			
10.	If $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$, then x =		(A) $\frac{3}{\sqrt{56}}, \frac{-4}{\sqrt{56}}, \frac{6}{\sqrt{56}}$			
	(A) –1	(B) $\frac{1}{6}$	(B) $\frac{3}{\sqrt{29}}, \frac{-4}{\sqrt{29}}, \frac{6}{\sqrt{29}}$			
	(C) -1, $\frac{1}{6}$	(D) $\frac{1}{3}$	(C) $\frac{3}{\sqrt{61}}, \frac{-4}{\sqrt{61}}, \frac{6}{\sqrt{61}}$			
	(E) None of these		(D) $\frac{4}{\sqrt{2}}, \frac{-3}{\sqrt{2}}, \frac{2}{\sqrt{2}}$			
11	$\frac{1}{1 + \tan^{-1} - \frac{1}{2}} = \frac{1}{2}$		(E) None of these			
	2^{+1} 3^{-1}		17 Demendicular dictance of the point (2.4.5)			
	(A) 0	(B) $\frac{\pi}{4}$	from the y-axis, is			
	(C) $\frac{\pi}{-}$	(D) <i>π</i>	(A) $\sqrt{34}$ (B) $\sqrt{41}$			
	$^{\vee}$ 2		(L) 4 (D) 5 (E) None of these			
12	(E) NOTE OF THESE	n the nainte (c. 2) and	18. The angle between the straight lines			
12.	(3,4) be 8, then a =		$\frac{x+1}{x+1} = \frac{y-2}{y-2} = \frac{z+3}{z+3}$ and $\frac{x-1}{z-1} = \frac{y+2}{z-3} = \frac{z-3}{z-3}$			
	(A) 2 + 3 $\sqrt{15}$	(B) $2 - 3\sqrt{15}$	2 5 4 and 1 2 -3 is			
	(C) $2\pm 3\sqrt{15}$	(D) $3 \pm 2\sqrt{15}$	(A) 45° (B) 30°			
	(E) None of these		(C) 60° (D) 90° (E) None of these			

19.	If two planes intersect, then the shortest distance between the planes is		25.	25. If f(x) = cos (log x), then				
	(A) $\cos \theta$	(B) cos 90°		$f(x) f(y) - \frac{1}{2} [f(x/y) + f(xy)] =$				
	(C) sin 90° (E) None of these	(D) tan 90°		-	1			
				(A) –1	(B) $\frac{1}{2}$			
20.	The line $\frac{x-2}{3} = \frac{y-3}{4}$	$=\frac{2-4}{5}$ is parallel to		(C) –2	(D) 0			
	the plane	0		(E) None of these				
	(A) $3x + 4y + 5z = 7$	(B) $2x + y - 2z = 0$	26.	If $f(x) = \frac{x}{1} = \frac{1}{1}$, the	en f(y)=			
	(C) $X + y - Z = 2$ (F) None of these	(D) $2x + 3y + 4z = 0$		$\mathbf{x} - \mathbf{i} \mathbf{y}$	(D) v . 1			
				(A) $x = 1$	(D) $1 - x$			
21 .	$\frac{d}{dx}\sqrt{\frac{1-\sin 2x}{1+\sin 2x}} =$			(E) None of these				
				sin 2x				
	(A) sec ² x	(B) $-\sec^2\left(\frac{\pi}{4}-x\right)$	27.	If $f(x) = \begin{cases} \frac{5x}{5x}, & \text{when } x \neq 0 \\ k, & \text{when } x = 0 \end{cases}$ is continuous at				
	(C) $\sec^2(\pi)$	$(D) \cos^2(\pi x)$		x = 0, then the value of k will be				
	(c) $\operatorname{sec}\left(\frac{-+x}{4}\right)$	(D) Sec $\left(\frac{-x}{4}\right)$		(Δ) 1	(B) $\frac{2}{-}$			
	(E) None of these				5			
22.	$\frac{d}{dx}\left(\frac{\sec x + \tan x}{\sec x + \tan x}\right) =$			(C) $-\frac{2}{5}$	(D) All of these			
	$\mathbf{x} \setminus \mathbf{sec} \mathbf{x} - \mathbf{tan} \mathbf{x}$			(E) None of these				
	(A) $\frac{2\cos x}{(1-\sin x)^2}$	(B) $\frac{\cos x}{(1-\sin x)^2}$	28.	If $f(x) = \frac{x}{1+ x }$ for $x \in \mathbb{R}$	R, then f'(0) =			
	(C) $\frac{2\cos x}{1-\sin x}$	(D) $\frac{2\cos x}{(1+\sin x)^2}$		(A) 0 (C) 2	(B) 1 (D) 3			
	(F) None of these			(E) None of these	(0) 3			
	$\frac{1+e^{x}}{1+e^{x}}$ dy			$\int \frac{dx}{\tan x + \cot x} =$				
23.	$1 y^{-} \sqrt{1-e^x}$	tx =		(A) $\frac{\cos 2x}{\cos 2x}$ + C	(P) $\frac{\sin 2x}{\cos 2x}$ + C			
	e ^x	e ^x		(A) + C 4	(b) 4			
	(A) $\frac{1-e^x}{\sqrt{1-e^{2x}}}$	(B) $\frac{1-e^{x}}{\sqrt{1-e^{x}}}$		$(C) - \frac{\sin 2x}{4} + c$	$(D) - \frac{\cos 2x}{4} + c$			
	(C) $\frac{e^{-2x}}{e^{-2x}}$	(D) $\frac{e^{-1}}{e^{-1}}$		(E) None of these				
	(1 – e^x) $\sqrt{1 + e^{2x}}$ (E) None of these	$(1 - e^{*})\sqrt{1 + e^{*}}$	30.	30. The value of $\int \frac{1}{(x-5)^2} dx$ is				
24.	If $f(x) = \sin \log x$,	then the value of		1	1			
	$f(xy) + f\left(\frac{x}{y}\right) - f(x) . co$	s log y is equal to		(A) $\frac{1}{x-5} + c$	(B) $-\frac{1}{x-5}+c$			
	(A) 1			(C) $\frac{2}{(x-5)^3} + c$	(D) $-2(x-5)^3 + c$			
	(B) 0			(E) None of these				
	(D) sin log x. cos log y (E) None of these	,		•••				
			-					

			1	nrohability	that the au	oction will	I ha calvad
31.	If $\int x \sin x dx = -x \cos x + A$, then A =			is	y that the que		i be solveu
	(A) sin x + constant(C) Constant(E) None of these	(B) cos x + constant (D) All of these		(A) $\frac{2}{3}$		(B) $\frac{3}{4}$	
32.	$\int_{0}^{\pi/2} e^x \sin x dx =$			(C) $\frac{4}{5}$ (E) None	of these	(D) $\frac{3}{5}$	
	(A) $\frac{1}{2}(e^{\pi/2}-1)$	(B) $\frac{1}{2}(e^{\pi/2}+1)$	37.	The proba	bility that A	speaks t	ruth is $\frac{4}{5}$,
	(C) $\frac{1}{2}(1-e^{\pi/2})$	(D) 2(e ^{π/2} + 1)		while this	s probabilit	y for B i	s $\frac{3}{4}$. The
	(E) None of these			probability when aske	y that they co d to speak or	ontradict (n a fact is	each other
33.	The order and degree	e of the differential		лл		1	
	equation $\sqrt{\frac{dy}{dx}} - 4\frac{dy}{dx}$	– 7x = 0 are		(A) $\frac{4}{5}$		(B) $\frac{1}{5}$	
	(A) 1 and $\frac{1}{2}$	(B) 2 and 1		(C) $\frac{7}{20}$		(D) $\frac{3}{20}$	
	(C) 1 and 1	(D) 1 and 2	<u> </u>	(E) None	of these		
	(E) None of these		38.	Let A and 0.3 and P	B be two everation $(A \cup B) = 0$	nts such t	that P(A) = and B are
34.	The differential equation of all straight lines			independe	ent events, th	nen P(B) =	
				$(\Lambda) = \frac{5}{2}$		$(\mathbf{D}) = \frac{5}{2}$	
	(A) $y = \sqrt{x \frac{dy}{dy}}$			^(A) 6		^(B) 7	
	- y ax			$(C) \frac{3}{2}$		$(D) = \frac{2}{2}$	
	(B) $\frac{dy}{dx} = y + x$			(C) 5	C 11	5	
	dv v			(E) None	of these		
	(C) $\frac{dy}{dx} = \frac{y}{x}$		39.	that the su	re thrown. w um of the nu	mbers ap	probability pearing on
	(D) All of these			the two di	ce is 11, if 5 a	ppears or	h the first?
	(E) None of these			$(\Lambda) = \frac{1}{1}$		$(P) = \frac{1}{2}$	
35.	Solution of different	ial equation $2xy \frac{dy}{dt} =$		^(A) 36		^(B) 6	
	x ² + 3v ² is	dx		$(C) = \frac{5}{-}$		(D) All of	these
	(A) $x^3 + y^2 = px^2$			(⁰) 6			litese
	(P) $x^2 + y^3 + y^2 + D$		10	(E) None		multono	augly The
	(b) $\frac{1}{2} + \frac{1}{x} = y^2 + P$		40.	probability	y of getting a	t least 6 h	eads is
	(C) $x^2 + y^3 = px^2$			57		229	
	(E) None of these			(A) ${64}$		(B) <u>256</u>	
36.	A problem of mathem students whose cha	natics is given to three Inces of solving the		(C) $\frac{7}{64}$		(D) $\frac{37}{256}$	
	1 1	1		(E) None	of these	200	
	problem are $\frac{-}{3}$, $\frac{-}{4}$ and	a — respectively. The 5		()			