QUESTION BOOKLET CODE

A

Test Paper Code: BL

Time: 3 Hours Maximum Marks: 100

INSTRUCTIONS

A. General:

- 1. This Booklet is your Question Paper. It contains 20 pages and has 100 questions.
- 2. The Question Booklet Code is printed on the right-hand top corner of this page.
- 3. The Question Booklet contains blank spaces for your rough work. No additional sheets will be provided for rough work.
- 4. Clip board, log tables, slide rule, cellular phone and electronic gadgets in any form are <u>NOT</u> allowed. Non Programmable Calculator is allowed.
- 5. Write your **Name** and **Registration Number** in the space provided at the bottom.
- 6. All answers are to be marked only on the machine gradable Objective Response Sheet (ORS) provided along with this booklet, as per the instructions therein.
- 7. The Question Booklet along with the Objective Response Sheet (**ORS**) must be handed over to the Invigilator before leaving the examination hall.

B. Filling-in the ORS:

- 8. Write your Registration Number in the boxes provided on the **ORS** and darken the appropriate bubble under each digit of your Registration Number using a **black ink ball point pen**.
- 9. Ensure that the **code** on the **Question Booklet** and the **code** on the **ORS** are the same. If the codes do not match, report to the Invigilator immediately.
- 10. On the **ORS**, write your Name, Registration Number, Name of the Test Centre and put your signature in the appropriate box with ball-point pen. Do not write these anywhere else.

C. Marking of Answers on the ORS:

- 11. Each question has **4 choices** for its answer: (A), (B), (C) and (D). Only **ONE** of them is the correct answer.
- 12. On the right-hand-side of **ORS**, for each question number, darken with a **black ink** ball point pen ONLY one bubble corresponding to what you consider to be the most appropriate answer, from among the four choices.
- 13. There will be **negative marking** for wrong answers.

MARKING SCHEME:

- (a) For each correct answer, you will be awarded 1 (One) mark.
- (b) For each wrong answer, you will be awarded -1/3 (Negative 1/3) mark.
- (c) Multiple answers to a question will be treated as a wrong answer.
- (d) For each un-attempted question, you will be awarded **0** (Zero) mark.

Name				
Registration Number				

Q.1		mobranens are			(D)	1			
		jelly fish	1		(B)	bony fish	•11		
	(C)	cartilaginous fi	sh		(D)	cartilaginous g	ilis		
Q.2		nimetics is the so design of Velcro			unctional obj	ects by drawing	inspira	tion from n	ature.
	(A) (B)	interlocking su hairy fruit	tures of	bivalves					
	(C)	hairy feet of liz	ards						
	(D)	interlocking sp	icules c	of sponges					
Q.3		mode and the mo		f the following	g set of numb	ers are respectiv	ely:		
		1, 3		7, 3	(C)	3, 7	(D)	5, 7	
Q.4	yello flow	ver colour in a pow flower allele	is dor	ninant over to 0.09, then the	he white flo	wer allele. If the yellow flow	the free er allel	quency of e is	
	(A)	0.91	(B)	0.7	(C)	81	(D)	0.49	
Q.5	Red The with (A) (B) (C)	body colour is of gene for body colour is of a wild type male all females gree all females reduall females gree all females g	eaused loour in the plant in th	by a recessive son the X channels of the solution of the solut	mutation, wromosome.	hile the wild typ If a homozygou	e body	colour is g	green.
Q.6		rder to test whe		_	er significan	tly between mal	le and	female fish	, one
	(A)	Mantel test	15 ottain	THOU I VOI	(B)	Chi-square test			
	(C)	t-test			(D)	binomial test			v
Q.7	In a	family with 3 ch	ildren,	what is the pro	bability that	2 are boys and 1	is a gir	:1?	
-	(A)	1/8	(B)	3/8	(C)	1/3	(D)	2/3	

Q.8	Whi	ch of the following	g has th	e longest cell cycle	?			
	(A)	Human liver cells	S		(B)	Human fibroblas	its	
	(C)	Yeast cells			(D)	Escherichia coli		
Q.9	A lir	ne is described by t	he equ	ation $3y = 5x$. The s	lope o	f this line is		
	(A)	5	(B)	3	(C)	1.67	(D)	0.6
Q.10	Mye	lination results in						
	(A)	an increase in con	nductio	on of synaptic poten	tials			
	(B)	a decrease in con	duction	n of action potential	S			
	(C)	an increase in con	nductio	on of action potentia	ls			
	(D)	a decrease in con	duction	n of synaptic potenti	als			
Q.11	The	phenomenon in wh	nich on	e gene affects the tr	ait det	termined by a nor	ı-allel	ic gene is called
	(A)	dominance			(B)	linkage		
	(C)	epistasis			(D)	pleiotropy		
Q.12	The	'eyes' of a potato t	uber ar	re				
	(A)	shoot meristems			(B)	root meristems		
	(C)	floral buds			(D)	leaf primordia		
Q.13			were pr	resent during the Me	esozoi	c era.		
	(A)	Pangolins	-	_	(B)	Sabre-toothed tig	gers	
	(C)	Woolly mammot	hs		(D)	Dinosaurs		
Q.14		_		he <u>most</u> likely sequ environmental cha		· ·		al reproduction;
	(A)	I, II, III, IV			(B)	III, II, I, IV		-
	(C)	II, I, III, IV			(D)	III, IV, II, I		
Q.15		mosquito populati will be a straight		size N shows expo	nentia	al growth, then w	hich o	of the following
	(A)	N over log(time)			(B)	N over time		
	(C)	Log(N) over log(time)	-	(D)	Log(N) over time	3	

Q.10	(A)	cts nave never o the feeding rat		is large as ele	pnants. 1	: ms 1;	s most likely	because of	a constraint in	
	(B)	the mutation ra								
	(C)	strength of the		leton						
	(D)	oxygen diffusi		Clon						
	(D)	oxygen unitusi	Oli							
Q.17		metaphase to ar h and only 0.59	-						l cycle duration se is	
	(A)	60 min	(B)	24 min		(C)	36 min	(D)	48 min	
Q.18		Which of the following processes is the <u>least</u> likely to have an impact on the evolution of body size of frogs in a large population?								
	(A)	Immigration								
	(B)									
	(C)	(C) Random genetic drift								
	(D)	Environmenta	l change	1						
Q.19	Which of the following plant species would be <u>least</u> vulnerable to extinction over long periods of evolutionary time?									
	(A)	Outcrossing pl	ant with	specialist po	ollinator					
	(B)	Self-pollinatin		_		tor				
	(C)	Outcrossing pl	ant with	generalist po	ollinator					
	(D)	Self-pollinatin	g plant v	with specialis	t pollinat	or				
Q.20 _.	Whi	ch classification	is corre	ect?						
Q.2 5,	(A)	Mollusca-Gast								
	(B)	Arthropoda-M	_	•						
	(C)	Mollusca-Cepl	-	-						
	` '	Arthropoda-Di	•	-						
Q.21		have optimized nenter, with addi	_		-	-	-	_	36 hours in a	
	(A)	fed batch ferm	entation	l					•	
	(B)	fed continuous	fermen	tation						
	(C)	batch fermenta	ition						•	
	(D)	(D) continuous fermentation								

Q.22	the I	ologist collected Rajasthan desert. owing would she/	If she/	he analyzes the			-		
	(A)	Both species h membrane	ave eqı	ual proportions o	of saturated	d and unsat	urated fatty	acids in the ce	11
	(B)	The Himalayan	specie	s would have me	ore unsatur	ated fatty ac	cids than the	desert species	
	(C)	The desert spec	ies wo	uld have more u	nsaturated	fatty acids t	han the Him	alayan species	
	(D)	There are no ur	ısaturat	ed fatty acids in	either spec	eies			
Q.23	the ean or of the	enzyme is active enzyme can form rganism which is te protein would	tetram hetero be activ	ers, but shows r zygous for the g ve?	no enzyme gene coding	activity. If	the enzyme	is purified fror er, what fractio	n
	(A)	100 %	(B)	50 %	(C)	23 %	(D)	20 %	
Q.24		the complete absert the maximum in the maximum in the maximum in the maximum in	=23), th n huma n <i>Drose</i> n <i>Arab</i> ;	ne amount of var ins ophila idopsis			-		S
Q.25		nans have 23 pass, A and B, would				probability	that two ra	andomly chose	n
		23 ²	(B)	53		$(1/2)^{23}$	(D)	$(1/23)^2$	
Q.26	mair	square field of ntained at not le ted is					-	=	
	(A)	9,900			(B)	10,000			
	(C)	10,100			(D)	10,201			
Q.27	An a	tom contains 6 p	rotons,	6 electrons and	6 neutrons	. What is it	s atomic we	ight?	
	(A)	6	(B)	12	(C)	24	(D)	18	

Q.28	Arrange the following processes in increasing order of their energy content, from the smallest to largest:										
	i.	ATP hydrolysis	in cell	S							
	ii. average thermal motions										
	iii.	complete oxidat	ion of	glucose							
	iv.	non-covalent bo	nd in v	water							
	(A)	ii, iv, i, iii	(B)	iii, ii, i, iv	(C)	i, ii, iii, iv	(D)	iv, ii, i	, iii		
Q.29	beha (A)	ch of the follow vior (i.e., a maxing The enzyme doe	num ra es not c	ate insensitive to change the over	o increasing	g substrate con ium constant fo	centration or the read	1s)?	aturation		
	(B) The enzyme lowers the activation energy of the chemical reaction(C) The enzyme has a fixed number of active sites to which the substrate binds										
	(D)	The product of t					strate oin	as			
Q.30	Constreact	sider an uncataly tions are k _f = 10 ⁻⁴ / 0	sec and	action $A \leftrightarrow E$ d $k_r = 10^{-7}/\text{sec}$. 1000	3. The rate What is the (C)	e overall reacti	the forw on rate at (D)	equilibr	reverse ium?		
Q.31		enzyme follows entration increase 4 . 8 16 Factor cannot be	to cha	inge the rate of	the reaction	n from 20 % to		i the s	substrate		
Q.32	An e i. ii. iii. iv.	eukaryotic organis is haploid for me can show the ph can occur both a has no flagella	ost of i enome	non of locomo		rms					
	Sele	ct the organism.				,					
	(A)	Plasmodium viv	ax								
	(B)	Dictyostelium di		um				•			
	(C)	Physarum polyc									
	(D)	Chlamydomona:									
	(-)	>									

		$oxed{\mathbf{A}}$
Q.33		giant spherical cell of 80 μm radius undergoes 4 rounds of symmetrical division without net increase in volume, the total surface area would approximately
	(A)	decrease 2.5 times
	(B)	increase 2.5 times
	(C)	increase 16 times
	(D)	remain unchanged

- Q.34 In the shoot meristem of an actively growing plant, cell division is
 - (A) equal all over the meristem
 - more at the centre and less in the periphery
 - less at the centre and more at the periphery
 - (D) absent
- Q.35 Papaya, a dioecious species, has the XY genotype for male and XX for female plants. Following double fertilization, what would be the genotypes of the endosperm and the embryo?
 - (A) All seeds would have XXX endosperm and XX embryo
 - All seeds would have XXX endosperm and XY embryo
 - All seeds would have XXX endosperm and 50% would have XX embryo and 50% would have XY embryos
 - (D) 50% of the seeds would have XXX endosperm and XX embryo. The other 50% would have XXY endosperm and XY embryo
- If the total red blood cell (RBC) count of a person is 3×10^{13} , and the average longevity of a Q.36 red blood cell is 120 days, then how many new RBCs are produced per day in the bone marrow?
 - (A) 2.5×10^{11}

(B) 3×10^{13}

(C) 3.6×10^{15}

(D) $(3 \times 10^{13}) - 120$

- If arginine (R), glycine (G), isoleucine (I), phenylalanine (F) and tryptophan (W) are coded by Q.37 6, 4, 3, 2, and 1 codons respectively, then how many unique DNA sequences can code for the following peptide: I-R-R-G-W-F-G-I?
 - (A) 24

(B) 10,368

(C) 16

(D) 432

- Q.38 While comparing sequences of two homologous proteins
 - (A) sequence identity is always equal to sequence similarity
 - (B) sequence identity is always more than sequence similarity
 - (C) sequence identity is always equal to or less than sequence similarity
 - (D) sequence identity is never equal to sequence similarity
- Q.39 β-oxidation of fatty acids in eukaryotic cells leading to the formation of acyl CoA takes place in the ______ followed by the _____.
 - (A) cytoplasm, mitochondrial cisternae
 - (B) cytoplasm, mitochondrial matrix
 - (C) mitochondrial matrix, mitochondrial cristae
 - (D) cytoplasm, mitochondrial membrane
- Q.40 Your friend has measured the absorbance (y) of a double stranded DNA sample at 260 nm as a function of temperature (x), between 25 and 100 °C. If you now plot $\frac{dy}{dx}$ as a function of x, the plot would resemble

- Q.41 The feature distinguishing DNA polymerase I from RNA polymerase in E. coli is the
 - (A) direction of chain elongation
 - (B) need for a primer
 - (C) need for a template
 - (D) bidirectional activity

Q.42 Two pure-bred parents P1 and P2 are crossed to generate the hybrid F₁, which is then back-crossed to P1 for several generations. If the fraction of the P1 genome is measured after each back-cross and plotted as a function of the number of back-crosses, it would resemble

Q.43 Allosteric enzymes are distinguished by their response to substrate concentration, in addition to their susceptibility to regulation by other molecules. Which of the following curves represents an allosteric enzyme?

Q.44 Consider the following equations

$$\Delta H = \Delta G + T \Delta S$$

$$\Delta G = -RT lnK$$

The intercept of the plot lnK versus $\frac{1}{\tau}$ will be

- (A) $\frac{-\Delta H}{R}$
- (B) $\frac{\Delta H}{R}$
- (C) $\frac{\Delta S}{R}$
- (D) $\frac{-\Delta S}{R}$
- Q.45 SNPs are substitutions of one base at a precise location within the genome. What are cSNPs?
 - (A) Complementary SNPs
 - (B) SNPs that occur in coding regions
 - (C) SNPs that occur in circular DNA
 - (D) Group of common SNPs
- Q.46 For a single-substrate enzyme-catalyzed reaction, the double reciprocal plot at three different enzyme concentrations would look like

- Q.47 During DNA replication, the lagging strand is produced in relatively short stretches of Okazaki fragments in the 5' to 3' direction, using RNA primers. The RNA primers are removed by
 - (A) 5' to 3' exonuclease activity of DNA polymerase I
 - (B) proof reading activity of DNA polymerase I
 - (C) RNase H
 - (D) 5' to 3' exonuclease activity of DNA polymerase III

Q.48 Base pairing between the Shine-Dalgarno sequence and the complementary sequence within the 16S rRNA of the 30S subunit in the ribosome, ensures translation of the correct reading frame by

- (A) positioning of the ribosome at the 5' end of the mRNA
- (B) establishing the correct starting point (i.e., AUG) for movement of the ribosome along the mRNA
- (C) positioning the mRNA with the incoming elongator tRNA to establish codon-anticodon complementarity
- (D) prevent interaction of the 60S subunit with the complex during initiation
- Q.49 The size of the DNA in a mutant microorganism is 15 µm in length, while the non-mutant organism has a DNA length of 18.4 µm. How many base pairs are missing in the DNA of the mutant strain?
 - (A) 100
- (B) 1000
- (C) 10,000
- (D) 100,000
- Q.50 Histones are by far the most abundant proteins associated with eukaryotic DNA. The assembly of nucleosomes involves the ordered association of the 'core histones'. Which of the following comprise the core histones?
 - (A) H2A, H2B, H3, H4

(B) H1, H2, H3, H4

(C) H1, H2A, H2B

- (D) H1, H2A, H3
- Q.51 Which of the following mutational changes would you predict to be the most deleterious to gene function?
 - (A) Insertion of a single nucleotide near the end of the coding sequence
 - (B) Removal of a single nucleotide near the beginning of the coding sequence
 - (C) Deletion of 3 consecutive nucleotides in the middle of the coding sequence
 - (D) Deletion of 4 consecutive nucleotides in the middle of the coding sequence
- Q.52 M13 virions produce turbid plaques because
 - (A) virions are released without killing the infected cells
 - (B) virions lyse the host cells
 - (C) M13-infected host cells grow faster than uninfected cells
 - (D) virions do not replicate inside the host cell
- Q.53 Which of the following viral genomes do not contain a positive-stranded RNA?
 - (A) Poliovirus
 - (B) Rhinovirus
 - (C) Severe Acute Respiratory Syndrome (SARS) virus
 - (D) Influenza virus (H1N1)

				BL-11	1/20				
Q.6U	(A) I		(B) IgG	s uie ili	ignesi avidi (C)		(D)	IgE	
Q.60		of the following	z antibodies bas	s the hi	, ,	•			
Q.59	comple (A) the	wborn and very etely replaced by hymus appendix	-		-	spleen pancreas	involutio	n and is a	ılmost
Q.58	(A) c	ules produced by opsonins nterleukin I	/ macrophages	that pl	(B)		ie inducti	on of fever	are
	• •	-a, 2-c, 3-b, 4-d -c, 2-a, 3-d, 4-b				1-d, 2-a, 3-b, 1-d, 2-b, 3-a,			
	 an in T 	olumn A ntibody nate immunity cell receptor rtokine		a. b. c. d.	the entity a substance	B fic defense that interacts be secreted by igen receptor			IHC
Q.57	Select	the correctly ma	tched options b	etwee	n items of o	column A and	column I	3	
Q.56	infects (A) H	irus is the larges Bacillus subtilis Paramecium	st known virus	in tern	ns of its ph (B) (D)	ysical size and Amoeba Green algae	d genome	size. It no	rmally
	(B) ti	eassorted he neuraminidas he haemagglutin nutations in the	in proteins on	the sur	face of the	influenza viru			
Q.55	Antige (A) t	enic shift is the enic shift is a phe he RNA genome eassorted	enomenon whe	re			_		
	` ′	RNA-dependent			(D)	host-encoded			
		asm. This is bec DNA-dependent			-	oy the action o RNA-depend		A polvmera	se

While host cell RNAs are synthesized in the nucleus, poliovirus RNAs are synthesized in the

Q.54

Q.61	Myas playe	thenia gravis is	a clas	sical autoimmu	ne disease	where a major	role in	tissue injury	/ is
	(A)	T-cells			(B)	antibodies			
	(C)	macrophages			(D)	interleukins			
Q.62	β2 m	icroglobulin is in	volved	l in the final ass	sembly of				
	(A)	T cell receptors			(B)	MHC-II			
	(C)	MHC-I			(D)	B cell receptors			
Q.63	All in	nmunoglobulin m	olecu	les in the imma	ture B cell 1	belong to the		_ class.	
	(A)	IgD	(B)	IgA	(C)	IgM	(D)	IgG	
Q.64	(A) (B) (C)	use of HAT medic positive selection neutral selection negative selectio sequential negati	n n			nal antibodies is a	an exan	aple of	
Q.65		nolar absorption d allow 1% of the					ı. Wh	at concentrati	ion
	(A)	0.02 M	(B)	0.002 M	(C)	0.2 M	(D)	0.01 M	
Q.66	using (A) (B) (C)	red spectroscopy (IR are based on ground state to exibrational level rotational spin le both vibrational a	xcited transi vel tra	state electronic tions within the ansitions in the	transitions ground elec	ctronic state	0 ⁵ nm.	Measureme	nts
Q.67	dihyd 25°C	nlate the standa roacetone phospl at pH 7.0 is 0.04 0.9 kcal/mol	ate (I	OHAP) to glyce	raldehyde 3	-phosphate (GAI	P) give		
	(C)	3.6 kcal/mol			(D)	18 kcal/mol			

Q.68 Nerve impulse transmission through an axon occurs in the form of action poter initiated by							otential, which is	
	(A) (B)	simultaneous ef		FK ⁺ and efflux of I FNa ⁺ and K ⁺	Na ⁺			
	(C)	K ⁺ influx						
	(D)	Na ⁺ influx						
Q.69	In ar	nimal cells, the nu	clear e	envelope breaks do	own duri:	ng		
	(A)	the onset of mito	osis		(B)	telophase		
	(C)	S phase			(D)	anaphase		
Q.70	Cell	s replicate DNA d	uring	the				
	(A)	G ₁ phase	(B)	S phase	(C)	G ₂ phase	(D)	M phase
Q.71	The	contractile ring in	anima	al cells is made of				
	(A)	microtubules			(B)	intermediate	filaments	
	(C)	actin filaments			(D)	FtsZ filamen	ts	
Q.72	Whi	ch of the followin	g orga	nelles is thought t	o have o	riginated from	bacteria?	
	(A)	Endoplasmic ret	iculun	1	(B)	Golgi appara	tus	
	(C)	Mitochondria			(D)	Lysosomes		
Q.73		double stranded D ld be	NA n	nolecule contains	15% thyr	midine then the	e percenta	age of guanosine
	(A)	35	(B)	15	(C)	40	(D)	85
Q.74	Whi	ch of the followin	g state	ments is correct for	or the 'pl	us' end of a m	icrotubul	e?
		It grows faster th	-		-	It grows slow		
	(C)	It is positively cl	narged		(D)	It binds to the	centroso	ome
Q.75	_	oteins are import bunit?	ant foi	cell signaling. W	/hich sta	tement is true	for the a	ctive form of its
	(A)	It is complexed	with G	TP	(B)	It is complexe	ed with G	DP
	(C)	It is phosphoryla			(D)	It is complexe		
Q.76	Whi	ch of the followin	g is in	the correct order,	based on	ı cell membran	e permea	bility?
~	(A)	DNA > glucose			(B)	N ₂ > glucose		=
	(C)	N_2 > ethanol > g			(D)	Ethanol > glu		
		٥			` '	•	•	

Q.77	Erytl (A) (C)	nrocytes, when pla swell maintain the sam			aCl so	lution	, will (B) (D)	shrink	y	
Q.78	micr	transformation of oorganisms in so lved in the loss of	oil. V	Which on	e of	the fo				
	(A)	Agrobacterium		_			(B)	Pseudomona	'S	
	(C)	Bacillus					(D)	Rhizobium		
Q.79	Sym	biotic associations	s betw	een fungi	and g	green a	ılgae :	are called		
	(A)	mycorrhizae					(B)	lichens		
	(C)	haustoria					(D)	pycnidia		
Q.80	Regu	lation of the lacto	se op	eron in <i>E</i> .	<i>coli</i> is	an ex	ampl	e of		
	(A)	positive control	of trar	scription			(B)	negative con	trol of tra	nscription
	(C)	dual control of tr	anscr	iption			(D)	a two compo	nent regu	latory system
Q.81	The generation time of <i>E.coli</i> is 20 min. After an initial phase of exponential growth 2 hours, the number of cells in the culture was found to be 64×10^6 . The number of cells the beginning of the experiment was									
			_	1×10^5			(C)	1×10^6	(D)	2×10^6
Q.82	Selec	et the correct mate	hes b	etween the	e item	s in co	olumr	ı A and colum	n B	
-		Column A				Colu	mn B			
	i.	Thiamine			a.		yzme			
	ii.	Vitamin A			b.	berib	-			
	iii.	Pantothenic Acid	1		c.	horm				
	iv.	Catecholamine			d.			dness		
	(A)	i-a; ii-b; iii-c; iv-	·d				(B)	i-b; ii-d; iii-a	: iv-c	
	(C)	i-d; ii-c; iii-b; iv-					(D)	i-b; ii-a; iii-d		
Q.83		pKa value of aceum acetate and 0.2				at will	be t	he pH of a so	olution co	ontaining 0.4 M
	(A)	4.8	(B)	5.1			(C)	4.5	(D)	5.5
Q.84	9 μλ	nd 'L' binds to h M. If 10 μM of entration of the pr	huma	n serum	album	in is	mixe			
	(A)	5 μM	(B)	-	uhica	. **111 ((C)	8 μΜ	(D)	3 μΜ

Q.85 A peptide of 23 amino acid residues folds into a double stranded antiparallel β-structure with 3-residue hairpin turn. What could be the maximum length of this folded peptide?								
	(A)	35 Å	(B)	40 Å	(C)	30 Å	(D)	45 Å
Q.86	Bone (A) (C)	e is made by cells fibroblasts chondrocytes	called		(B) (D)	osteoblasts epithelial cells		
Q.87	For a		elix th (B)	ne rise per residue is 1.5 Å	(C)	3.6 Å	(D)	1.8 Å
Q.88	Whie (i) (ii) (iii) (iv)	The crystal struc Haemoglobin is	ture o a hom	ent in haemoglobin	s signi	•	from i	ts deoxy form
	(A)	iv	(B) _.	ii	(C)	ii and iii	(D)	i and iii
Q.89	The (A)		tivity (B)	remaining in a samp	ole afte (C)	er 10 half-lives is a 1/100	approx (D)	ximately 1/1000
Q.90	an in (A) (C)	is present nportant role to pla Phosphatidylcho Phosphatidylinos	ay in o line	w quantities in the potential signaling.	lasma (B) (D)	membrane of ma Phosphatidyletha Phosphatidylseri	nolan	
Q.91	 In the 1860s Louis Pasteur noticed that when he added oxygen to a culture of yeast growing anaerobically on glucose, the rate of glucose consumption declined dramatically. This can be explained on the basis of (A) more ATP generation per glucose molecule in the presence of oxygen. (B) less ATP generation per glucose molecule in the presence of oxygen. (C) utilization of other metabolites as the carbon source in the presence of oxygen. (D) the yeast cell membrane becomes more impermeable and rigid, thereby reducing glucose intake. 							
Q.92	In ce (A) (C)	ells, the enzyme the topoisomerase I DNA gyrase	at unv	vinds DNA during re	eplicati (B) (D)	on is helicase DNA polymerase	e	

Q.93	The transition of vertebrates from an aquatic to terrestrial life style was helped mostly by			
	(A) (C)	the presence of jointed legs thick heat-resistant scales	(B) (D)	the evolution of the amniote egg fully terrestrial respiration
	(-)		(-)	
Q.94	The structure which has shown a disproportionate increase in size during the evolution of humans from hominid ancestors is the			
	(A)	corpus callosum	(B)	corpora allata
	(C)	cerebral cortex	(D)	cerebellum
Q.95	Melatonin does NOT			
	(A)	influence circadian rhythms	(B)	protect against sunlight
	(C)	act as an antioxidant	(D)	regulate breeding
Q.96	Which of the following is true about plants with the crassulacean acid metabolism (CAM) pathway?			
	(A) They are mostly found in areas of high rainfall			
	(B) Their stomata open during the night			
	(C)	They fix carbon during the day		
	(D)	The Calvin cycle occurs in their bundle sho	eath ce	ells
Q.97	In 1973 Konrad Lorenz was a recipient of the Nobel Prize for research in animal behavior. He was well known for his work on			
	(A)	the dance language of the honey bees	(B)	imprinting
	(C)	conditioning	(D)	habituation
Q.98	The loop of Henle is likely to be large in animals which are found in			
	(A)	deserts	(B)	rain forests
	(C)	temperate meadows	(D)	woodlands
Q.99	Homeotic genes are primarily responsible for			
	(A)	body size	(B)	location and identity of body parts
	(C)	olfaction	(D)	vision
Q.100	The lens, retina and cornea of the vertebrate eye originate from			
	(A)	ectoderm and mesoderm	(B)	ectoderm, mesoderm and endoderm
	(C)	ectoderm	` '	ectoderm and endoderm

A

A

A