ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013. M.Sc. (BIOCHEMISTRY AND MOLECULAR BIOLOGY) COURSE CODE: 368

Register Number :			
		· ·	Signature of the Invigilator (with date)

COURSE CODE: 368

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1. Pernicious anemia is developed due to deficiency of:			of:	
	(A)	Erythropoetin	(B)	Vitamin B12
	(C)	Iron	(D)	Vitamin B6
2.	Choo	ose the drug which is a H2-receptor ant	agoni	st:
	(A)	Omeprazole	(B)	Pirenzepine
	(C)	Carbenoxolone	(D)	Ranitidine
3.	Vaso	pressin possesses the following:		
	(A)	Antidiuretic property		
	(B)	Vasodilatation property		
	(C)	Release of a thyroid hormone into the	plasn	na ·
	(D)	Diuretic property		
4.	Loos	ening of teeth, gingivitis and hemorrha	ige oc	cur in the deficiency of:
	(A)	VitaminK	(B)	VitaminB1
	(C)	Vitamin B6	(D)	Vitamin C
5.	Mecl	hanism of Rifampin action is:		
	(A)	Inhibition of mycolic acids synthesis		
	(B)	Inhibition of DNA dependent RNA pol	lymer	ase
	(C)	Inhibition of topoisomerase II		
	(D)	Inhibition of cAMP synthesis		
6.	Half	life (t $\frac{1}{2}$) is the time required to:		
	(A)	Change the amount of a drug in plasm	na by	half during elimination
	(B)	Metabolize a half of an introduced dru	ıg into	the active metabolite
· .	(C)	Absorb a half of an introduced drug	-	
	(D)	Bind a half of an introduced drug to p	lasma	proteins
7.	Wha	at is the preferred specimen for analysis	of gl	ucose (sugar) in blood?
	(A)	Heparinised plasma	(B)	Fluoride oxalate plasma
•	(C)	Serum	(D)	EDTA plasma

о.	ras	nig piasilia ti de git	ucose level is.				
	(A)	70-110 mg/100ml		(B)	80-120 mg/10	0ml	
	(C)	100-140 mg/100m	1	(D)	150-250 mg/1	00ml	
9.	Dial	oetes mellitus can b	e detected by w	hich test ı	ısing urine spe	ecimen?	
	(A)	Rothera's test		(B)	Benedict's tes	st .	
	(C)	Hay's test		(D)	Benzidine tes	st	
10.	Bloc	d cholesterol is elev	vated in which	of the follo	wing condition	?	
	(A)	Hypothyroidism		(B)	Hyperthyroid	lism	
	(C)	Hypoinsulinism		(D)	None of the a	bove	
11.	Esti	mation of serum tri	iglycerides is of	diagnostic	importance in	ı;	
	(<u>A</u>)	Multiple myeloma	ı ,	(B)	Hyperlipiden	nias	
•	(C)	Nephrotic syndron	me	(D)	Jaundice		
12.	Ben	ce jones proteins m	ay be excreted i	n urine of	patients suffer	ring from:	
	(A)	Diabetic mellitus		(B)	Multiple mye	loma	
	(C)	Diabetes insipidus	s	(D)	Hematuria		
13.	A co	mpetitive inhibitor	of an enzyme				
	(A)	†ses K _m without a	ffecting V_{max}	(B)	↓ses K _m with	out affecti	$_{ m ng} m V_{ m max}$
	(C)	\uparrow ses V_{max} without	affecting K _m	(D)	$\downarrow\!$	hout affec	ting K_m
14.	Insu	ılin does all of the f	ollowing except	:			
	(A)	Enhance glucose t	transport into n	nuscle			
	(B)	Enhance glycogen	formation by l	iver			
	(C)	Enhance amino ac	cid transport in	to muscle	·		
	(D)	Enhance gluconeo	ogenesis in liver	•			
15.	Trig	lycerides are digest	ted in the intest	ine by the	enzyme`		
	(A)	Amylase (1	B) Protease	(C)	Cellulose	(D) 1	Lipase

16.	RNA	A molecules that	exhib:	it catalytic activi	ity are	called		
	(A)	mRNAs	(B)	ribonucleases	(C)	ribosomes	(D)	ribozymes
17.	In addition to proteins, major components of very low density lipoproteins (VLDI circulating in the blood of a normally fed mammal include							roteins (VLDL
	(A)	Triacylglycerol	, chole	esterol, and phos	pholip	oid	•	
	(B)	Triacylglycerol	, squa	lene and phosph	olipida	5		
	(C)	Triacylglycerol	, squa	lene and sphinge	osi n e	•		
	(D)	Monoacylglyce	rol, ch	olesterol, and ph	ospho	lipids		
18.	The	rate limiting ste	p of fa	atty acid synthes	is is c	atalyzed by		
	(A)	Acetyl CoA car	boxyla	ıse	(B)	ATP - citrate	lyase	
	(C)	Malic enzyme	٠		(D)	Pyruvate deh	ydroger	nase
19.	The	depletion in the	Ozone	e layer is caused	by:			
	(A)	Nitrous oxide.			(B)	Carbon dioxi	de.	
	(C)	Chlorofluoroca	rbons	•	(D)	All of the abo	ove.	
20.	Acid	l rain is formed o	lue to	contribution from	m the	following pair	of gases	:
	(A)	Methane and	zone	•	(B)	Oxygen and	nitrous	oxide
	(C)	Methane and	sulfur	dioxide	(D)	Carbon dioxi	de and	sulfur dioxide
21.	How	many joules are	e in 1 l	kWh?		. *		
	(A)	3.6×10^{6}			(B)	2.6×10^6		
	(C)	1.6×10^6			(D)	None of the a	bove	
22.	Who	is known as the	fathe	er of India's "Gre	en rev	olution"?		
	(A)	Dr. M.S. Swam	inath	an	(B)	Dr. Norman I	Borlang	
	(C)	Dr. K.V. Kurie	n		(D)	None of the a	bove	
23.	Car	boxyhemoglobin	is forn	ned in the blood	due to	the exposure (to .	
	(A)	CO	(B)	CO_2	(C)	O_2	(D)	O ₃
24.	Wha	at is 'Minamata'	diseas	se?				
	(A)	Disease caused	by m	ercury poisoning				
	(B)		-	romium poisonii				
	(C)		•	anganese poisor	•			
	(D)		-	agnesium poison	_			
			-			-		

25.	Whi	Which one of the below given enzymes is not considered as a liver function enzyme?						
	(A)	Alkaline phophatase	(B)	Alanine transaminase				
	(C)	Aspartate transaminase	(D)	Amylase				
26.	Wha	at is a teratogen?						
•	(A)	A teratogen is an agent that can dist	urb th	e development of the embryo or fetus				
	(B)	A teratogen is an agent that can disturb the carbohydrate metabolism of the embryo or fetus						
	(C)	A teratogen is an agent that can disturb the protein metabolism of the embryo or fetus						
	(D)	A teratogen is an agent that can dist	turb a	ll the metabolisms of the embryo or				
27.	Wha	at is a xenobiotic?						
	(A)	Any substance foreign to living system	ms					
	(B)	A biological product synthesized by the human liver						
	(C)	Excessive biological activity after consuming certain drugs						
	(D)	Scientific name of a frog that secretes toxins						
28.		hanisms that contribute to transmen following EXCEPT:	nbrane	e movement of chemicals include all				
	(A)	the process of passive diffusion.	÷					
	(B)	the process of active transport.						
	(C)	the process of biotransformation.						
	(D)	the process of filtration.	٠					
29.	Cyto	ochrome P ₄₅₀ monooxygenases catalyze	all th	e following reactions EXCEPT:				
	(A)	sulfation	(B)	hydroxylation				
	(C)	O-dealkylation "	(D)	epoxidation				

30.	Conjugation reactions:							
	(A) always yield an inactive metabolite.							
	(B) tend to decrease the molecular weight of many toxicants.							
	(C) tend to yield more water-soluble products.							
	(D) include hydroxylation and glucuronidation.							
31.	The immune system is composed of all the following EXCEPT:							
	(A) serum albumin. (B) interleukins							
	(C) T lymphocytes (D) B lymphocytes.							
32.	Which of the following ionizing radiations has the shortest range (i.e., travels the shortest distance in tissue) for the same initial energy (A) alpha particle (B) beta particle							
	(C) gamma ray (D) x ray							
33.	Polyploidy occurs when a cell contains:							
	(A) multiple copies of specific RNA							
	(B) multiple copies of specific DNA							
	(C) multiple copies of the nucleus of the cell							
	(D) multiple copies of all chromosomes.							
34.	Agonists are chemicals that:							
	(A) bind to a membrane receptor and prevent a response.							
	(B) bind to a membrane receptor and initiate a response.							
	(C) are always poorly bound to a receptor.							
	(D) exert a response in all tissues in the body.							
35.	Choose the correct statement about the genetic code.							
	(A) includes 61 codons for amino acids and 3 stop codons							
	(B) three bases per codon							
	(C) some amino acids are coded by multiple codons							
	(D) all of the above							
36.	X-chromosome inactivation							

- (A) normally takes place in males but not females
- (B) takes place in female mammals where one of the two copies of the X chromosome is made transcriptionally inactive
- (C) takes place in humans so that the same X chromosome is inactive in all of the cells of a female
- (D) is the cause of the Y chromosome being genetically inactive mammals

37.	DNA	A ligase is:							
	(A)	an enzyme that joins DNA fra	gments		· .				
	(B)	an enzyme involved in protein synthesis							
	(C)	an enzyme of bacterial origin	which cuts DI	NA at defined base se	quences				
	(D)	an enzyme that facilitates tra	nscription of s	specific genes					
38.	An :	Hfr strain of E. coli contains:		•					
	(A)	a vector of bacterial origin wh	ich is used in	rDNA technology					
	(B)	a bacterial chromosome with	a human gene	inserted					
	(C)	a bacterial chromosome with	the F factor in	serted					
	(D)	a bacterial chromosome with	a phage insert	ted"	· .				
39.	In w	hich phase of the cell cycle doe	s DNA replica	tion occur?					
	(A)	G_0 (B) G_1	(C)	S (D)	G_2				
40.	enzy	biotics such as Ciprofloxacin a me that normally relieves tors a during replication. What is th	ional strain th	nat is caused by the u					
	(A)	DNA ligase	(B)	Topoisomerase (DN	A Gyrase)				
	(C)	single-stranded binding prote	in (D)	primase					
41.	Whi	ch of the following techniques i	s primarily ur	ndertaken to amplify	DNA?				
	(A)	PCR	(B)	Microarrays					
	(C)	Northern Blotting	(D)	Southern Blotting					
42 .	In P	olymerase Chain Reaction (PCI	R) all of the fo	ollowing are used in F	EXCEPT:				
	(A)	Taq polymerase	(B)	Restriction enzymes	•				
	(C)	Oligonucleotide primers	(D)	Deoxynucleoside tri	phosphates				
43.	The	following are features of DNA	replication EX	CEPT:					
	(A)	Semi-conservative							
	(B)	Semi-discontinuous							
	(C) _.	unidirectional	·						
	(D)	chain growth in the 5' -> 3' di	rection						

44.		ch out of the following mechanisms in nunoglobulins each specific for a specifi					
	(A)	Gene replacement	(B)	Gene amplification			
	(C)	Gene rearrangement	(D)	RNA editing			
45.		ch out of the followings is a commonway of purine biosynthesis?	n enz	yme for de novo as well as salvage			
	(A)	Amidotransferase	(B)	PRPP synthetase			
	(C)	HGPRTase	(D)	Adenylosuccinate synthetase			
46.	Whi	ch out of the followings is an example o	of post	transcriptional modification?			
	(A)	Splicing	(B)	Class switching			
	(C)	Subunit aggregation	(D)	Base modification			
47.	Ergo	osterol Is a precursor of					
	(A)	Vitamin D	(B)	Acyl protein			
	(C)	Coenzyme A	(D)	Lanosterol			
48.	Eicosanoids are formed from						
	(A)	20-carbon polyunsaturated fatty acid	s				
	(B)	22-carbon monounsaturated fatty aci	ds				
	(C)	Phosphadidate		•			
	(D)	Monoacyl glycerol					
49.	Peri	lipin is present					
	(A)	Periplasmic space in E.coli	(B)	Adipocytes			
	(C)	Hepatocytes	(D)	Neuron			
50.	Aspi	irin inhibits the function of	-				
	(A)	Cyclooxygenases	(B)	Lipooygenases			
	(C)	Cytochrome P450	(D)	Acyl transferases			
51.	Esse	ential fatty acids are the precursors for					
	(A)	Arachidonate	(B)	Phosphadidate			
	(C)	Cardiolipin	(D)	Platelet activating factor			

5 2.	Chy	lomicrons are				
	(A)	formed in liver	(B)	formed in kidne	y	
	(C)	formed in intestinal cells	(D)	formed in lungs		
53.	Inst	din promotes				
	(A)	Lipolysis	(B)	Fatty acid biosy	nthesis	
	(C)	Ketogenesis	(D)	Gluconeogenesi	s	
54 .	Hor	mone sensitive lipases are activated by	y			
	(A)	insulin	(B)	estrogens		
	(C)	glucagon	(D)	Prostaglandins	•	
55 .	The	proton-sugar transporter in bacteria i	s			
	(A)	Uniport (B) Symport	(C)	Antiport	(D) Diport	
56.	The	major plant hormone auxin causes				
	(A)	Shoot growth and shoot initiation	(B)	Splitting of the	internode	
	(C)	Cell expansion	(D)	Internodal elon	gation	
57 .	Ovu	le is attached to placenta by a slender	stalk	called		
	(A)	Pedicel (B) Petiole	(C)	Placenta	(D) Funicle	
58.	_	ars that contain a free aldehyde or ke called	etone g	roup in the open	-chain configuratio	ı
	(A)	Reducing sugars	(B)	Non reducing s	ugars	
	(C)	ketotrioses	(D)	Stereoisomers		
59 .	Nen	natode is a		•		
	(A)	Round worm (B) Tape worm	(C)	Fluke	(D) Hooklet	
60.	Asco	orbic acid may be associated with all o	f the fo	llowing EXCEPT	7.	
	(A)	iron absorption.				
	(B)	bone formation.				
	· (C)·	wound healing.		•	4.	
	(D)	participation in hydroxylation reacti	one			

61.	The	characteristic that all lipids have in common is					
	(A)	they are all made of fatty acids and glycerol.					
	(B)	none of them is very high in energy content.					
	(C)	they are all acidic when mixed with water.					
	(D)	none of them dissolves in water.					
62.	Wha	at best explains the observation of substrate specificity?					
	(A)	There is a precise compatibility between an enzyme's active site and the substrate molecule					
	(B)	Molecules and active sites vary in size; only properly sized molecules can fit.					
	(C)	Reaction-specific enzymes, such as hydrolases, assume a fit by folding around the most numerous substrate molecules.					
	(D)	Polarity compatibilities; active sites contain electronegative atoms while substrates tend to carry slight positive charges.					
63.	Whi	ch of the following hormones has the broadest range of targets?					
	(A)	ADH (B) TSH (C) epinephrine (D) ACTH					
64.	Which of the following hormones have antagonistic (opposing) effects?						
	(Å)	thyroxin and calcitonin (B) insulin and glucagon					
	(C)	growth hormone and epinephrine (D) ACTH and glucocorticoids					
65.	When the levels of juvenile hormone (JH) are maintained at artificially high levels, insects will						
	(A)	be unable to molt.					
	(B)	bypass some larval stages and pupate prematurely.					
	(C)	molt more frequently.					
	(D)	be unable to advance to a pupal stage.					
66.		It takes much longer for sex hormones and other steroids to produce their effects than it takes nonsteroid hormones. Why?					
	(A)	Steroids are bigger, slower molecules.					
·	(B)	Steroids usually must be carried longer distances by the blood.					
	(C)	Steroids cause target cells to make new proteins, which takes time.					
	(D)	Steroids must relay their message via a second messenger.					
368		10					

67.	The	2 nitrogen atoms in urea are contrib	uted by	
	(A)	Ammonia and glutamate	(B)	Glutamine and glutamate
	(C)	Ammonia and aspartate	(D)	Ammonia and alanine
68.	All t	the following are functions of prostag	landins	except
	(A)	Lowering of B.P	(B)	Introduction of labour
	(C)	Anti inflammatory	(D)	Prevention of myocardial infraction
69.	Calo	citriol synthesis involves		
	(A)	Both liver and kidney	(B)	Intestine
•	(C)	Adipose tissue	(D)	Muscle
70.	The	activity of tocopherols is destroyed b	y	
	(A)	Commercial cooking	(B)	Reduction
	(C)	Conjugation	(D)	All of these
71.		min K is involved in posttranslations	al modif	ication of the blood clotting factors by
	(A)	Carboxylase	(B)	Decarboxylase
	(C)	Hydroxylase	(D)	Oxidase
72.	Ster	ilised milk lacks in		
	(A)	Vitamin A	(B)	Vitamin D
	(C)	Vitamin C	(D)	Thiamin
73.	An e	example of ligases is		
	(A)	Succinate thiokinase	(B)	Alanine racemase
	(C)	Fumarase	(D)	Aldolase
74.	LDF	H1 and LDH2 are elevated in		
	(A)	Myocardial infarction	(B)	Liver disease
	(C)	Kidney disease	(D)	Brain disease
75 .	A'no	on-functional plasma enzyme is		
	(A)	Psudocholinesterase	(B)	Lipoprotein lipase
÷	(C)	Proenzyme of blood coagulation	(D)	Lipase

76.	Cori disease (Limit dextrinosis) is caused due to absence of							
	(A)	Branching enzyme	(B)	Debranching enzyme				
	(C)	Glycogen synthase	(D)	Phosphorylase				
77.	A li	potropic factor is						
	(A)	Choline	(B)	Palmitic acid				
	(C)	Calcium	(D)	Vitamin C				
78.	Fatt	y liver is also caused by						
r	(A)	CH ₃ Cl (B) CCl ₄	(C)	Na ₂ SO ₄ (D) Riboflavin				
79.	Mole	ecular iron is						
	(A)	Stored primarily in the spleen						
	(B) `	Exreted in the urine as Fe ²⁺						
	(C)	Stored in the body in combination with	h feri	ritin				
	(D)	Absorbed in the ferric form						
80.	Hormone that bind to cell surface receptor and require the second messenger camp is							
	(A)	Antidiuretic hormone	(B)	Cholecystokinin				
	(C)	Calcitriol	(D)	Gastrin				
81.	Ery	thromycin acts on ribosomes and inhibi	t					
	(A)	Formation of initiation complex	(B)	Binding of aminoacyl tRNA				
	(C)	Peptidyl transferase activity	(D)	Translocation				
82.	The	half-life of a protein depends upon its						
	(A)	Signal sequence	(B)	N-terminus amino acid				
	(C)	C-terminus amino acid	(D)	Prosthetic group				
83.	Carrier protein can							
	(A)	Transport only one substance	(B)	Transport more than one substance				
	(C)	Exchange one substance to another	(D)	Perform all of these function				
84.	A li	pid bilayer is permeable to						
	(A)	Urea (B) Fructose	(C)	Glucose (D) Potassium				

65.	MITT	arotation refers t	o cna	iige iii							
	(<u>A</u>)	pH			(B)	Optical rotation	ı				
	(C)	Conductance			(D)	Chemical prope	rties				
86.	Taut	tomerisation is				•					
	(A)	Shift of hydroge	en	,	(B)	Shift of carbon	٠				
	(C)	Shift of both			(\mathbf{D})	None of these					
87.	The enzyme used in polymerase chain reaction (PCR) is										
	(A)	Taq polymerase			(B)	RNA polymeras	3 e				
	(C)	Ribonuclease			(D)	Endonuclease					
			_								
88.	8. Which of the following is a microsomal enzyme inducer?										
	(A)	Indomethacin			(B)	Clofibrate					
	(C)	Tolbutamide			(D)	Glutethamide					
89.	 Identify the correct molecule which controls the biosynthesis of proteins in l organisms. 										
	(A)	DNA	(B)	RNA	(C)	Purines	(D)	Pyrimidines			
90. The tear secretion contains an antibacterial enzyme known as											
	(A)	Zymase	(B)	Diastase	(C)	Lysozyme	(D)	Lipase			
91.	Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic										
	anhydrase enzyme.										
	(A)	Methazolamide	• .		(B)	Acetazolamide					
	(C)	Dichlorphenam	ide		(D)	Benzolamide					
OQ.		two	٠								
92.		oup transferring (•			, _ :	DAT.			
	(A)	CoA	(B)	NAD+	(C)	NADP+	(D)	FAD+			

93.	The co-enzyme containing an automatic hetero ring in the structure is											
	(A)	Biotin			(B)	TPP						
	(C)	Sugar Phospha	ıte		(D)	Co-enzyme						
94.	The example of hydrogen transferring Co-enzyme is:											
	(A)	B6-PO4			(B)	NADP+						
	(C)	TPP			(D)	ATP						
95.	Enzyme catalyzed hydrolysis of proteins produces amino acid of the form											
	(A)	D	(B)	DL	(C)	L	(D)	Racemi				
96.	Transaminase activity needs the Coenzyme:											
	(A)	ATP	(B)	B6-PO4	(C)	FADT	(D)	NAD+				
97.	The biosynthesis of urea occurs mainly in the liver:											
	(A)	Cytosol			(B)	Mitochondria	٠					
	(C)	Microsomes			(D)	Nuclei						
98.	Which of the following organisms is not represented in Locus Link?											
	(A)	Mouse			(B)	Fly						
	(C)	Human			(D)	Escherichia col	i					
99.	Raw DNA sequences (other than Refseq) in the EMBL and NCBI databases:											
	(A)	Overlap entire	ly					•				
	(B) Overlap to a substantial degree but have distinct sequences											
	(C)	Have a little ov	verlap									
	(D)	None of the ab	ove									
100.	Which is the first sequenced free-living bacterial genome?											
	(A)	Phage154 geno	me		(B)	Caenorhabditis elegans						
	(C)	Escherichia col	li		(D)	Haemophilus ir	ıfluen	ıza				