BLUE PRINT FOR MODEL QUESTION PAPER – 4

Class : I PUC

Subject : PHYSICS (33)

BLUE PRINT

Unit	Chapter Number	TOPICS (CHAPTERS)	Number of teaching Hours	Weightage of marks	1Mark	2 Marks	3 Marks	5 Marks (Theory)	5 Marks (Numerical Problem)
I	1	Physical World	2	2		\checkmark			
	2	Units and Measurements	4	3					
п	3	Motion in a Straight Line	8	7				\checkmark	
	4	Motion in a Plane	12	11		\checkmark			\checkmark
III	5	Laws of Motion	11	10					
IV	6	Work, Energy and Power	11	9					
v	7	System of Particles and Rotational Motion	12	11			\checkmark	\checkmark	
VI	8	Gravitation	9	8	\checkmark	\checkmark			$\overline{}$
	9	Mechanical Properties of Solids	5	5				\checkmark	
VII	10	Mechanical Properties of Fluids	5	4	\checkmark		\checkmark		
	11	Thermal Properties of Matter	10	9	\checkmark		\checkmark	\checkmark	
VIII	12	Thermodynamics	8	6	\checkmark				\checkmark
IX	13	Kinetic Theory	5	4					
v	14	Oscillations	8	6	\checkmark			\checkmark	
	15	Waves	10	10		\checkmark	\checkmark		\checkmark
		Number of Questions			10	8	8	6	5
		TOTAL	120	105	20	16	24	30	25

I P.U.C. MODEL QUESTION PAPER – 4

SUBJECT: PHYSICS (33)

Time: 3 hours 15 min.

Max. Marks: 70

General instructions:

a) All parts are compulsory.

b) Answers without relevant diagram/ figure/circuit wherever necessary will not carry any marks.

c) Direct answers to the Numerical problems without detailed solutions will not carry any marks.

PART – A

I. Answer <u>ALL</u> the following questions

- 1. How many metres make one parsec?
- 2. What is a unit vector?
- 3. When does the work done by a force is zero?
- 4. Define torque.
- 5. Mention the value of escape speed of an earth satellite?
- 6. State Pascal's law.
- 7. Give Principle of calorimetry.
- 8. What is equation of state for adiabatic process?
- 9. Name a factor on which internal energy of the gas depends.
- 10. What happens to the time period of a simple pendulum when it is taken from equator to the pole?

PART – B

II. Answer **<u>FIVE</u>** of the following questions.

- 11. Mention any two basic forces in nature.
- 12. The resistance R = V/I, where $V = (100\pm5)$ volt and $I = (10\pm0.2)$ A, Find the percentage error in R.
- 13. Distinguish between distance and displacement.
- 14. Write the expression for range of the projectile? For what angle of projection it is maximum?
- 15. Mention two methods of reducing friction.
- 16. Give two general conditions of equilibrium of a rigid body.
- 17. Define Gravitational potential energy: Give expression for it.
- 18. What is Doppler effect? Mention one of its applications.

PART - C

III. Answer <u>FIVE</u> of the following questions.

- **19.** Derive the expression for centripetal acceleration.
- 20. State Newton's first law of motion? Hence define force and inertia.
- 21. Prove work-energy theorem for a constant force.
- 22. Compare equations of linear and rotational motion.

 $10 \times 1 = 10$

5 × 3 = 15

 $5 \times 2 = 10$

- 23. Derivation of pressure at a point inside a liquid.
- 24. State Stefan's law and Draw the intensity distribution graph of black body radiation.
- 25. Mention three postulates of Kinetic theory of gases.
- 26. Explain Laplace's correction to Newton's formula for the Speed of a sound wave.

PART – D

IV. Answer <u>TWO</u> of the following questions.

- 27. Derive $x = v_0 t + \frac{1}{2} a t^2$ by graphical method.
- 28. Derive the expression for maximum safe speed of a vehicle on a banked road in circular motion
- 29. State and explain the parallel axis and perpendicular axis theorem.

V. Answer <u>TWO</u> of the following questions.

- **30. State and explain Hooke's law. Draw Stress strain curve with labeling the parts.**
- 31. Graphically represent the variation of coefficient of volume expansion of copper as a function of temperature. Derive $\alpha_V = 1/T$ for an ideal gas.
- 32. Derive the expression for time period of a simple pendulum.

VI. Answer <u>THREE</u> of the following questions.

- 33. A particle starts from origin at t = 0 with a velocity 5 \hat{i} ms⁻¹ and moves in x-y plane under the action of a force which produces a constant acceleration of $(4\hat{i} + 2\hat{j})$ ms⁻².
 - (a) What is the y-coordinate of the particle at an instant when its x-coordinate is 84 m?
 - (b) What is the speed of the particle at this time?
- 34. A pump on the ground floor of a building can pump up water to fill a tank of volume 40m³ in 20minutes if the tank is 30m above the ground and the efficiency of the pump is 60%. How much electric power is consumed by the pump? Given density of water = 1000 kg/m³ and acceleration due to gravity = 9.8m/s²
- 35. The planet Mars take 1.88 years to complete on revolution around the sun. The mean distance of the earth from the Sun is 1.5×10^8 km. Calculate that of planet Mars?
- **36.** A steam engine delivers **7**.5×10⁸J of work per minute and services **3**.6 × 10⁹J of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source.
- 37. A particle executes SHM along the x-axis, its displacement varies with the time according to the equation: x(t) = 5.4 cos(6πt + π/4), where x(t) in metre and t is in second.
 Determine the amplitude, frequency, period and initial phase of the motion.

$2 \times 5 = 10$

 $2 \times 5 = 10$

3 × 5 = 15

SCHEME OF VALUATION FOR I PU PHYSICS – 4

Q.No	Key Answers	Marks
1	How many metres make one parsec?	1
	3.08×10 ¹⁶ m	
2	What is a unit vector?	1
	A vector whose magnitude is equal to one.	
3	When does the work done by a force is zero?	1
	If the force acts at angle of 90 ⁰ or if the displacement is zero	
4	Define torque.	1
	The rotating effect of the applied force is called torque.	
5	Mention the value of escape speed of an earth satellite?	1
	11.2 km/s	
6	State Pascal's law.	1
	It states that if change in pressure is produced in any part of an	
	enclosed fluid (liquid or gas), the same is transmitted equally to all	
	points of the fluid in all directions.	
7	Give Principle of calorimetry.	1
	If there is no loss of heat energy by radiation, heat lost by hot body is	
	equal to heat gained by cold body.	
8	What is equation of state for adiabatic process?	1
	$PV^{\gamma} = constant$	
9	Name a factor on which internal energy of the gas depends.	1
	Temperature/pressure	
10	What is the time period of a seconds pendulum?	1
	2 seconds	
II main	Two marks questions/ any Five	
11	Mention any two basic forces in nature.	1 each
	Gravitational force, Electrostatic force and nuclear force	
	Any two forces	
12	The resistance R = V/I, where V = (100 ± 5) volt and I = (10 ± 0.2) A, Find	2 marks
	the percentage error in R.	
	The percentage error in V is 5% and that in current is 2% therefore	
	error in R is 5% + 2% = 7%	

13	Distinguish between distance and o	displacement.	
	It is the actual path length	It is the shortest distance	
	positions of the body during	petween the initial and final	1+1
	motion.	motion.	
	It is a scalar quantity	It is a vector quantity	
	It is never zero or negative,	It may be zero or positive or	
	but is always positive	negative	
14	Write the expression for range of t	the projectile? For what angle of	
	projection it is maximum?		
	u ² si	120	1
	$R = \frac{u \sin \theta}{\sigma}$		L
	ج if ۵–		
45		()	1
15	Mention two methods of reducing	friction.	
	 Friction can be reduce Eriction can be reduced 	ed by polishing.	1+1
	3) Friction can be reduce	ed by lubrication .	
	Any two		
16	Give two general conditions of equ	ilibrium of a rigid body.	
	Vector sum of external forces actin	g on the body is zero.	1+1
	Vector sum of external torques act	ing on a body is zero.	
17	Define Gravitational potential ener	gy: Give expression for it.	
	Energy possessed by the body	y by virtue of its position or	1+1
	configuration.		1.1
	P.E = mgh.		
18	What is Doppler effect? Mention of	one of its applications.	
	Apparent change in the frequency	of source of sound due to relative	1+1
	motion between source and the ob	oserver.	±'±
	It is used in SONAR, over speeding	of the vehicles RADAR etc.	
- 111	THREE marks qu	estions/ any Five	
main			
19	Derive the expression for centripet	al acceleration.	1
	Vector Diagram		-
	$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{v}} = \frac{\mathrm{d}\mathbf{l}}{\mathrm{d}\mathbf{v}}$		1
	Final equation $a = v^2/r$		1
20	State Newton's first law of motion	? Hence define force and inertia.	
	Statement of the law		1
	Definition of force		1

	Definition of inertia	1
21	Prove work-energy theorem for a constant force.	
	Taking the equation $v^2 - u^2 = 2 a x$	1
	Multiplying both sides of above equation by $\frac{m}{2}$	1
	Arriving the final equation, Final KE – Initial KE = F x	1
22	Compare equations of linear and rotational motion.	
	Any three differences	1 mark each
23	Derivation of pressure at a point inside a liquid.	
	Diagram	1
	$P = \frac{F}{F}$	1
	A P = creh	
24	r = pgn State Stefan's law and briefly explain black body radiation	1
24	It states that the total amount of heat energy radiated nor second	
	per unit area of a perfect black body is directly proportional to the	1
	fourth power of the absolute temperature of the surface of the body.	2
	Graph	2
	Voltada o o K 3200 o K 2500 o K Wavelength	
25	Mention three postulates of Kinetic theory of gases.	
	Any three postulates	1 mark each
26	Explain Laplace's correction to Newton's formula for the Speed of a sound wave.	
	Newtons formula	1
	Considering adiabatic changes and final answer	1 . 1
		1+1
IV main	FIVE marks questions/ any TWO	
	Derive $x = v_0 t + \frac{1}{2} a t^2$ by graphical method.	
27	v-t graph	1
	Calculating area under v-t graph	1+1
	Intermediate steps with final answer	1+1

28	Derive the expression for maximum safe speed of a vehicle on a	
	banked road in circular motion.	
	Diagram	
	Taking resolved components	1
	Calculation of N and arriving at the final expression	
	$rg(tan\theta + \mu_{1})$	2
	$v_{\text{max}} = \sqrt{\frac{g(\tan \theta + \mu_s)}{(1 - \mu_s \tan \theta)}}$	2
29	State and explain the parallel axis and perpendicular axis theorem.	
	Statements	1+1
	Both the diagrams	1+1
		1
V main	FIVE marks questions/ any TWO	
30	State and explain Hooke's law. Draw Stress – strain curve with	
	labeling the parts.	
	S Proportional limit	1+1
	Elastic limit or yield point	2
	s, BC point	1
	A Plastic benaviour	
	2 Flastic behaviour	
	Permanent set	
	Statement and explanation 30%	
	Drawing of graph	
21	Craphically represent the variation of coefficient of volume	
51	Graphically represent the variation of coefficient of volume $x = 1/T$ for	
	expansion of copper as a function of temperature. Derive $\alpha_V = 1/1$ for	
	an ideal gas.	
	t_	
	250 500 T (K) → Graph	
	PV=nRT	2
	ΡΛV=nRAT	
	Arriving at the final equation	1
		2
<u> </u>		

32	Derive the expression for time period of a simple pendulum.	
	$\theta L T \\ s = L\theta F_g \sin\theta$	
	Figure	
	$I\alpha = mgL\sin\theta$	1
	$\alpha = \omega^2 \theta$	1
	$\omega = \sqrt{\frac{g}{z}}$	1
		1
	$T = 2\pi \sqrt{\frac{L}{s}}$	I
	V 8	
		1
VI	FIVE marks questions/ any THREE	
main		
	moves in x-y plane under the action of a force which produces a constant acceleration of $(4\hat{i} + 2\hat{j}) \text{ ms}^2$. (a) What is the y-coordinate of the particle at an instant when its x-coordinate is 84 m? (b) What is the speed of the particle at this time? $\vec{r} = \vec{v_0} + \frac{1}{2}\vec{a}t^2$ $X(t) = 5t + 2t^2$ $Y(t) = 1.0t^2$ t = 5.26s Y(t)=27.7m V=28.08m/s	1 2 1 1
34	A pump on the ground floor of a building can pump up water to fill	
	a tank of volume 40m ³ in 20minutes if the tank is 30m above the	
	ground and the efficiency of the pump is 60%. How much	
	electric power is consumed by the pump? Given density of	
	water = 1000 kg/m ³ and acceleration due to gravity = 9.8m/s ²	
	$P_0=W/t=mgh/t=\rho Vmgh/t$	

		1
	Substitution	1
		_
		2
	$P_{0} = 9.8 \times 10^{+3} W/$	2
		1
	D = 0.8km/0.6 = 16.22kM	T
	P-9.0KW/0.0-10.35KW	
25	The planet Many take 1.00 years to complete an involution enough	
30	the sum The mass distance	
	the sun. The mean distance	
	of the earth from the Sun is 1.5×10° km. Calculate that of planet	
	Mars?	
	_2	
	$\frac{T^2}{r^3}$ = constant	
	$\frac{a^{3}}{T_{2}^{2}} = a_{2}^{3}$	
	$\frac{1}{T_1^2} = \frac{1}{a_1^3}$	1
	Substitution	
		1
	$a_2 = 22.8 \times 10^{10} \text{m}$	
		1
		2
	8	
36	A steam engine delivers 7.5×10°J of work per minute and services	
	3.6 × 10 ⁻ J of heat per minute from its boiler. What is the efficiency	
	of the engine? How much heat is wasted per minute? Also find the	
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source.	
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source.	
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_c}$	
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $n = 0.21$	1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$	1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$	1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$	1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ P ₀ - P _i =47.5MW	1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5 MW$	1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ P ₀ - P _i =47.5MW n = 1 - $\frac{T_1}{2}$	1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$	1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$	1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$	1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$	1 1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{p_0}{p_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$	1 1 1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$	1 1 1 1
	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$	1 1 1 1
37	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ P ₀ - P _i =47.5MW $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$ A particle executes SHM along the x-axis, its displacement varies	1 1 1 1
37	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{P_0}{P_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$ A particle executes SHM along the x-axis, its displacement varies with the time according to the equation: $x(t) = 5.4 \cos(6\pi t + 1)$	1 1 1 1
37	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{p_0}{p_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$ A particle executes SHM along the x-axis, its displacement varies with the time according to the equation: $x(t) = 5.4 \cos(6\pi t + \pi/4)$	1 1 1 1
37	of the engine? How much heat is wasted per minute? Also find the ratio of temperature of sink to the source. $\eta = \frac{p_0}{p_i}$ $\eta = 0.21$ $P_0 - P_i = 47.5MW$ $\eta = 1 - \frac{T_1}{T_2}$ $\frac{T_1}{T_2} = 0.79$ A particle executes SHM along the x-axis, its displacement varies with the time according to the equation: $x(t) = 5.4 \cos(6\pi t + \pi/4)$, where $x(t)$ in metre and t is in second.	1 1 1 1

Determine the amplitude, frequency, period and initial ph	ase of
the motion.	
$x(t) = 5.4 \cos(6\pi t + \pi/4),$	
A= 5.4m	1
n = 3 Hz	1
T = 0.333 s	1
Initial Phase = $arphi=\pi/4$	1
	1