BLUE PRINT FOR MODEL QUESTION PAPER – 1

SUBJECT : PHYSICS (33)

CLASS : I PUC

					10	8	8	3+3	Ś
Unit	Chapter	Торіс	Teaching Hours	Marks allotted	1 mark (VSA)	2 mark (SA1)	3 mark (SA2)	5 mark (LA)	5 mark (NP)
Y	1	Physical world	2	2		\checkmark			
Ι	2	Units and measurement	4	3	\checkmark				
	3	Motion in a straight line	8	7		\checkmark		V	
Π	4	Motion in a plane	12	11	\checkmark	\checkmark	V		\checkmark
III	5	Laws of motion	11	10		\checkmark			
IV	6	Work energy and power	11	9	\checkmark		\checkmark		\checkmark
v	7	System of particles and rigid body	12	11	\checkmark			\checkmark	\checkmark
VI	8	Gravitation	9	8	\checkmark				
	9	Mechanical properties of solids	5	4	\checkmark		\checkmark		
VII	10	Mechanical properties of fluids	5	4	\checkmark		\checkmark		
	11	Thermal properties of matter	10	9	\checkmark		\checkmark		\checkmark
VIII	12	Thermodynamics	8	6	\checkmark				
IX	13	Kinetic theory	5	4	\checkmark		\checkmark		
v	14	Oscillations	8	7		\checkmark		\checkmark	
X	15	Waves	10	10		\checkmark	\checkmark		\checkmark
		TOTAL	120	105	10	16	24	30	25

MODEL QUESTION PAPER – 2

I P.U.C. PHYSICS (33)

Time: 3 hours 15 min

General Instructions:

- a) All parts are compulsory
- b) Answers without relevant diagram/figure wherever necessary will not carry any marks.
- c) Direct answers to the Numerical problems without detailed solutions will not carry any marks.

PART A

I. Answer ALL the following

- 1. Mention the SI unit of luminous intensity.
- 2. Define null vector.
- 3. What is potential energy?
- Write the expression for moment of inertia of a solid sphere of radius R about its diameter. 4.
- 5. Write the distance of the geostationary satellite from the center of the earth.
- 6. State Hooke's law.
- 7. What is the principle behind the uplift of an aeroplane?
- 8. Give an example for Greenhouse gas.
- 9. What is the physical significance of Zeroth law of thermodynamics?
- Which quantity remains unchanged in isochoric process? 10.

PART B

II. Answer any FIVE of the following questions.

- 11. Name any two fundamental forces in nature.
- 12. Write two applications of dimensional analysis.
- Distinguish between 'path length' and 'displacement'. 13.
- 14. Write the equation for the trajectory of a projectile motion. What is the nature of its trajectory?
- 15. State the two laws of friction.
- 16. Write the equation for escape velocity and explain the terms used in the equation.
- 17. Where is the velocity of the body maximum and minimum in case of simple harmonic motion?
- 18. What harmonics are present in a) an open pipe b) a closed pipe?

PART C

- III. Answer any <u>FIVE</u> of the following questions.
- 19. Define centripetal acceleration? Write the expression for it and explain the terms.
- 20. Deduce f = ma, using Newton's second law of motion.
- 21. What is meant by collision? Distinguish between elastic and inelastic collision.
- Draw stress-strain curve. Show yield point and fracture point. 22.
- 23. Mention three applications of capillarity.
- Derive $\alpha_V = \frac{1}{r}$ for ideal gas. 24.
- 25. Draw schematic diagram of the refrigerator. Define its coefficient of performance.
- 26. Give the Newton's formula for the speed of sound in air and hence explain Laplace's correction.

5x3=15

10×1=10

5×2=10

Max marks:70

PART D

IV. Answer any <u>TWO</u> of the following questions.

- **27.** What is v t graph? Derive the equation $x = v_0 t + \frac{1}{2}at^2$ using v t graph.
- 28. State and prove the law of conservation of linear momentum from Newton's third law of motion.
- **29.** Define torque and hence derive $\frac{d\vec{l}}{dt} = \vec{\tau}$.

V. Answer any <u>TWO</u> of the following questions.

- **30.** Derive the expression for the variation of the acceleration due to gravity with altitude.
- **31.** Explain Carnot cycle with P V diagram.
- **32.** Derive the expression for the time period of the simple pendulum.

VI. Answer any <u>THREE</u> of the following questions.

- A ball is thrown with the velocity of a 39.2 m/s at an angle of 30⁰ with the horizontal. Calculate the maximum height, time of flight and horizontal range of the projectile.
- **34.** A bullet of mass 50 gram moving with a velocity of 400 m/s strikes a wall and goes out from the other side with a velocity of 100 m/s. Calculate the work done in passing through the wall.
- 35. Three pieces of iron of uniform thickness and mass m, m and 2m respectively are placed at the three corners of the triangle having co-ordinate (2.5, 1.5),(3.5,1.5) and (3,3) respectively. Find the center of mass of the system.
- **36.** How much it is required to convert 10 gram of ice at -5 $^{\circ}$ C into steam at 100 $^{\circ}$ C. Given specific heat of ice 2.1 J g⁻¹ $^{\circ}$ C⁻¹. Latent heat of steam =2268 J g⁻¹ and latent hear of fusion of ice is 336 J/g. Specific heat of water = 4.2 J g⁻¹ $^{\circ}$ C⁻¹
- **37.** The apparent frequency of a note when listener moves towards a stationary source with velocity 40 m/s is 200 Hz. When he moves away from the same source with same speed the apparent frequency of note is 160 Hz. Calculate velocity of sound in air.

2×5=10

3×5=15

2×5=10

SCHEME OF EVALUATION : MODEL PAPER - 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 14	 i) Checking the dimensional cons ii) Deducing relation among the p Path length Dis It is a scalar It i Is always positive Po 	pody is directly proportional to strain. , chloro floro carbon etc. PART B e, weak nuclear force, gravitational force (any two) istency of equations	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 14	A vector having zero magnitude.Energy possessed by a body by virtue of $I = \frac{2}{5}MR^2$ 42200 kmWithin the elastic limit, the stress in a bernoulli's principle.Carbon dioxide, nitrous oxide methaneTemperatureVolumeStrong nuclear force, electromagnetic forcei)Checking the dimensional consii)Deducing relation among the periodIt is a scalarIt isIt is a scalarIt is	pody is directly proportional to strain. , chloro floro carbon etc. PART B e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
3 4 5 6 7 8 9 10 10 11 12 13 13 14 14 15	Energy possessed by a body by virtue of $I = \frac{2}{5}MR^2$ 42200 kmWithin the elastic limit, the stress in a bernoulli's principle.Carbon dioxide, nitrous oxide methaneTemperatureVolumeStrong nuclear force, electromagnetic forcei)Checking the dimensional constitionii)Deducing relation among the production and the product of the stress of th	pody is directly proportional to strain. , chloro floro carbon etc. PART B e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
4 5 6 7 8 9 10 11 12 13 13 14 14 15	$I = \frac{2}{5}MR^2$ 42200 kmWithin the elastic limit, the stress in a least of limit, the stress of	pody is directly proportional to strain. , chloro floro carbon etc. PART B e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 1 1 1 1 1 1 1 1 each 1 1		
5 6 7 8 9 10 11 12 13 13 14 15	42200 km Within the elastic limit, the stress in a linit, the stress in a linit, the stress in a limit, the stress in	, chloro floro carbon etc. PART B e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 1 1 1 1 1 1 1 1 each 1 1		
6 7 8 9 10 11 12 13 13 14 15	Within the elastic limit, the stress in a limit. Bernoulli's principle. Carbon dioxide, nitrous oxide methane Temperature Volume Strong nuclear force, electromagnetic force i) Checking the dimensional constition ii) Deducing relation among the principle It is a scalar It is a scalar	, chloro floro carbon etc. PART B e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 1 1 1 1 1 1 each 1 1		
7 8 9 10 11 12 13 14 15 16	Bernoulli's principle. Carbon dioxide, nitrous oxide methane Temperature Volume Strong nuclear force, electromagnetic force i) Checking the dimensional cons ii) Deducing relation among the p Path length Dia It is a scalar It is Is always positive Po	, chloro floro carbon etc. PART B e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 1 1 1 1 each 1 1		
8 9 10 11 12 13 13 14 15	Carbon dioxide, nitrous oxide methane Temperature Volume Strong nuclear force, electromagnetic force i) Checking the dimensional cons ii) Deducing relation among the p Path length Dis It is a scalar It i Is always positive Po	PART B e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 1 1 1 each 1 1		
9 10 11 12 13 14 15	Temperature Volume Strong nuclear force, electromagnetic force i) Checking the dimensional constitution is constitution of the provident of the dimensional constitution is constitution. ii) Deducing relation among the provident of the dimensional constitution. Path length Distribution. It is a scalar It is a scalar Is always positive Po	PART B e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 1 each 1 1		
10 11 12 13 14 15	Volume Strong nuclear force, electromagnetic force i) Checking the dimensional constant ii) Deducing relation among the providence Path length Dial It is a scalar It is Is always positive Po	e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1 each 1 1		
11 12 13 14 15	Strong nuclear force, electromagnetic forcei)Checking the dimensional constantii)Deducing relation among the pPath lengthDistrict the pointIt is a scalarIt is a scalarIs always positivePoint	e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 each 1 1		
12 13 14 15	 i) Checking the dimensional cons ii) Deducing relation among the p Path length Dis It is a scalar It i Is always positive Po 	e, weak nuclear force, gravitational force (any two) istency of equations hysical quantities splacement	1 1		
12 13 14 15	 i) Checking the dimensional cons ii) Deducing relation among the p Path length Dis It is a scalar It i Is always positive Po 	istency of equations hysical quantities splacement	1 1		
13 14 15	ii) Deducing relation among the p Path length Dia It is a scalar It i Is always positive Po	hysical quantities placement	1		
14 15	Path lengthDisIt is a scalarIt isIs always positivePo	placement	_		
14 15	It is a scalar It i Is always positive Po	•	1 oach		
15	Is always positive Po	s a Vector	each		
15					
15		sitive or negative or zero			
1.6	$y = x \tan \theta - \frac{gx^2}{v_0^2 \cos^2 \theta_0}$ and trajectory is parabola				
16	i. Limiting friction is independent of area of surface of contact of two bodies				
16	ii. Magnitude of limiting friction is directly proportional to normal reaction.				
	Escape velocity: $v_e = \sqrt{2Rg}$ or $v_e = \sqrt{\frac{2GM}{R}}$ R is radius of the earth, G is gravitational constant and M is mass of the earth				
17			1		
17	i. Mean position or equilibrium position				
18	i. All harmonics	ii. Extreme position			
10	ii. Odd harmonics		1		
		PART C	-		
19	Definition:		1		
	$a_c = v^2/r$				
	Where v is velocity and r is radius of the circle				
20	To get $f \propto \frac{dp}{dt}$				
			1		
	Arriving to the final result				
21	Definition				
	ELASTIC	INELASTIC	\parallel .		
	Kinetic energy conserved	Kinetic energy not conserved	1 each		
	The forces involved are conservative in	The forces involved are non-conservative in			
	nature	nature			
	Curve Explanation		1		

23	1) Rise of oil through wick of the lamp	1 each
	2) Rise of water in the plant through xylem in plants	
	3) Absorption of ink by blotting paper/chalk piece	
24	1) Ideal gas equation	1
	2) Arriving result 2 marks	2
25	1) Diagram with label	2
	2) Definition of coefficient of performance	1
26	1) Newton's formula	1
	2) Laplace's correction	2
	PART D	
27	v-t graph definition $v (m/s) \stackrel{y axis}{v} \stackrel{y axis}{v} \stackrel{B}{c} \stackrel{C}{c} \stackrel{D > x axis}{v}$	1
	Derivation Displacement = area under v-t graph $x = area \ of \ rectangle \ OACD + area \ of \ triangle \ ABC$ $=OA \times OD + \frac{1}{2} (AC \times BC)$ $=v_0t + \frac{1}{2}t \times (v - v_0)$	1
	$x = v_0 t + \frac{1}{2} a t^2$	1
28	Statement: The total momentum of an isolated system of interacting particles is conserved.Consider two bodies A and B, with initial momenta \mathbf{p}_A and \mathbf{p}_B .The bodies collide; get apart, with final momenta \mathbf{p}'_A and \mathbf{p}'_B respectively.By the Second Law: Force exerted on A by B : $\mathbf{F}_{AB}\Delta t = \mathbf{p}'_A - \mathbf{p}_A$ Force exerted on B by A : $\mathbf{F}_{BA}\Delta t = \mathbf{p}'_B - \mathbf{p}_B$ Since $\mathbf{F}_{AB} = -\mathbf{F}_{BA}$ by the third law:	1 1 1 1 1 1
	Thus $\mathbf{p}'_A - \mathbf{p}_A = -(\mathbf{p}'_B - \mathbf{p}_B)$ i.e., $\mathbf{p}'_A + \mathbf{p}'_B = \mathbf{p}_A + \mathbf{p}_B$	1
29	Definition:	1
	Derivation $\vec{L} = \vec{r} \times \vec{p}$	1
	Differentiation of \vec{L}	1
	$\vec{v} \times \vec{p} = 0$ and $\vec{r} \times \vec{F} = \vec{\tau}$	1
1	•	1
	Arriving at $\frac{dL}{dt} = \vec{\tau}$	

30		Diagram	1		
30	Ī	Diagram Derivation:	1		
	h				
	Earth's surface	Consider a point mass m at a height h above			
		the surface of the earth as shown in Figure.			
		The radius of the earth is denoted by R_E .			
		The distance from the centre of the earth is			
	R.	$(\mathbf{R}_{\mathrm{E}}+\mathbf{h}).$			
		The magnitude of the force on the point mass			
		m, F = $\frac{GM_{\rm E}m}{(R_{\rm E}+h)^2}$			
			1		
	The acceleration experienced by the point mass $g' = \frac{F}{m} = \frac{GM_E}{(R_E + h)^2}$ (2)				
	On earth surface acceleration experienced by the point mass: $g = \frac{GM_E}{R^2}$.				
	On earth surface acceleration experienced by the point mass: $g = \frac{B}{R_E^2}$.				
	GM				
	Thus $g' = \frac{GM_E}{R_E^2 (1 + h/R_E)^2} = g (1+h/R_E)^{-2}$				
	$R_{\rm E}(1 + n/R_{\rm E})$				
31	p-v diagram		1		
			-		
	$P = \frac{s_{othermal}}{r_{mal}}$				
	Explanation of isothermal expansion				
	Explanation of isothermal compression				
	Explanation of adiabatic expansion				
	Explanation of adiabatic compression		1		
32	Simple pendulum Diagram		1		
	Resolving acceleration due to gravity		1		
	Arriving at expression for time period.		3		
VI					
33	1) $H_m = \frac{v_0^2 \sin^2 \theta}{2g}$ =19.6 m		2		
	2) $T_f = \frac{2v_0 \sin \theta}{g}$ =4 s		1		
	3) $R = \frac{v_0^2 \sin 2\theta}{g}$ =135.79 m		2		
34	$W = KE_2 - KE_1$		1		
	$KE_1 = \frac{1}{2}mv_1^2 = 4000 J$		1		
	$KE_{2} = \frac{1}{2}mv_{1}^{2} = 250 J$				
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				

	Arriving at final answer,	
	W = 3750 J	2
35	$x = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3} = 3 m$	2
	$y = \frac{m_1 + m_2 + m_3}{m_1 y_1 + m_2 y_2 + m_3 y_3} = 2.25 m$	2
	Writing the co-ordinates of the center of mass,	1
36	$Q_1 = m S_i \Delta T = 10 \times 2.1 \times 5 = 105 \text{ J}$	1
	$Q_2 = m L_f = 10 \times 336 = 3360 \text{ J}$	1
	$Q_3 = m S_w \Delta T = 10 \times 4.2 \times 100 = 4200 \text{ J}$	1
	$Q_4 = m L_v = 10 \times 2268 = 22680 \text{ J}$	1
	$Q = Q_1 + Q_2 + Q_3 + Q_4 = 30345 \text{ J}$	1
37	$\nu' = \left(\frac{\nu + \nu_0}{\nu}\right)\nu$	1
	$\nu'' = \left(\frac{\nu - \nu_0}{\nu}\right)\nu$	1
	$\frac{\nu'}{\nu''} = \frac{\nu + \nu_0}{\nu - \nu_0}$	1
	Finding $v = 360 m/s$	2