## PHYSICS

| 1.                         | The escape velocity of a body |                                                      |                  |                                           |  |  |  |  |
|----------------------------|-------------------------------|------------------------------------------------------|------------------|-------------------------------------------|--|--|--|--|
|                            | (A)                           | a) increases with increase in the mass of the body   |                  |                                           |  |  |  |  |
|                            | (B)                           | 3) decreases with increase in the mass of the body   |                  |                                           |  |  |  |  |
|                            | (C)                           | is independent of the mass o                         | f the body       |                                           |  |  |  |  |
|                            | (D)                           | is independent of the mass o                         | f the earth      |                                           |  |  |  |  |
| 2.                         | Wie                           | n's displacement law states the                      | at               |                                           |  |  |  |  |
|                            | (A)                           | $T + \lambda_m = constant$                           | (B)              | $\lambda_{\rm m} T = {\rm constant}$      |  |  |  |  |
|                            | (C)                           | $\frac{\lambda_m}{T} = \text{constant}$              | (D)              | $T^4 / \lambda_m = constant$              |  |  |  |  |
| 3.                         | A tł                          | nin prism of angle 7° gives a                        | deviation of 3.5 | $5^{\circ}$ . The refractive index of the |  |  |  |  |
|                            | mat                           | erial of the prism is                                |                  |                                           |  |  |  |  |
|                            | (A)                           | 0.58                                                 | (B)              | 1.5                                       |  |  |  |  |
|                            | (C)                           | 2                                                    | (D)              | none of these                             |  |  |  |  |
| 4.                         | The                           | quantity which has newton-se                         | cond as unit is  |                                           |  |  |  |  |
|                            | (A)                           | energy                                               | (B)              | momentum                                  |  |  |  |  |
|                            | (C)                           | torque                                               | (D)              | Planck's constant                         |  |  |  |  |
| 5.                         | The                           | resolving power of a telescop                        | e depends upon   | the                                       |  |  |  |  |
|                            | (A)                           | focal length of the eye lens                         | (B)              | focal length of the object lens           |  |  |  |  |
|                            | (C)                           | length of the telescope                              | (D)              | diameter of the object lens               |  |  |  |  |
| 6.                         |                               | en a <i>p-n</i> junction is forward bi<br>nly due to | ased, the flow   | of current across the junction is         |  |  |  |  |
|                            | (A)                           | drift of charges                                     |                  |                                           |  |  |  |  |
|                            | (B)                           | diffusion of charges                                 |                  |                                           |  |  |  |  |
|                            | (C)                           | both drift and diffusion of ch                       | narges           |                                           |  |  |  |  |
|                            | (D)                           | depends on the nature of the                         | material         |                                           |  |  |  |  |
| Physics (SET-A) [1] P.T.O. |                               |                                                      |                  |                                           |  |  |  |  |

- 7. The total e.m.f of 'n' cells each of e.m.f E connected in parallel is
  - (A) nE (B) E
  - (C) E/n (D) (n-1)E

8. A particle of charge *q* moves in a circular path of radius R with velocity *v*. The magnetic moment associated with it is

(A) 
$$qvR$$
 (B)  $qvR^2$ 

(C) 
$$\frac{qvR}{2}$$
 (D)  $\frac{qvR^2}{2}$ 

9. The electric field intensity at a point due to an electric dipole of small length varies with distance 'r' as

(A) 
$$r^{-4}$$
 (B)  $r^{4}$   
(C)  $r^{3}$  (D)  $r^{-3}$ 

10. What is the relation between the refractive indices  $n_1$  and  $n_2$  if the behaviour of light ray is as shown in the figure ?



11. What is the power dissipation in an a.c circuit in which voltage and current are given by  $E = 500 \sin(wt + \frac{\pi}{2})$  and  $I = 6 \sin wt$ ?

(C) 83.33 W (D)  $1.8 \times 10^4 \text{ W}$ 

12. The nucleus 
$${}_{6}C^{12}$$
 absorbs an energetic neutron and emits a beta particle ( $\beta$ ).  
The resulting nucleus is

[2]

(A) 
$${}_{7}N^{14}$$
 (B)  ${}_{5}B^{13}$ 

(C) 
$$_{7}N^{13}$$
 (D)  $_{6}C^{13}$ 

Physics (SET-A)

- 13. When a dielectric slab of dielectric constant K wholly replaces the air between the plates of a capacitor, the capacitance
  - (A) increases K times (B) decreases K times
  - (C) remains the same (D) becomes zero
- 14. A hydraulic lift is designed to lift cars of maximum mass of 3000 kg. If the area of cross-section of the piston carrying the load is  $4.25 \times 10^{-2}$  m<sup>2</sup>, the maximum pressure the smaller piston have to bear is
  - (A)  $6.92 \times 10^5 \text{ Nm}^{-2}$  (B)  $70.5 \text{ Nm}^{-2}$
  - (C)  $14.2 \times 10^2 \text{ Nm}^{-2}$  (D)  $13.76 \times 10^{11} \text{ Nm}^{-2}$
- 15. Which of the following is not an example of perfectly inelastic collision ?
  - (A) A bullet fired into a block, if bullet gets embedded into it
  - (B) A ball bearing striking another ball bearing
  - (C) Capture of electrons by an atom
  - (D) A man jumping onto a moving boat
- 16. The number of electrons per second crossing any section of a wire to constitute a current of 1 ampere is
  - (A)  $1.6 \times 10^{-19}$ (B)  $6.25 \times 10^{-18}$ (C)  $6.25 \times 10^{18}$ (D)  $1.6 \times 10^{19}$
- 17. Two projectiles are fired from the same point with the same speed at angles of projection 60° and 30° respectively. Then their
  - (A) range will be same (B) maximum height will be same
  - (C) landing velocity will be same (D) time of flight will be same

## 18. In a cyclotron, acceleration of a positive ion takes place

- (A) inside the dee (B) in the gap between the dees
- (C) both (A) and (B) (D) none of these

Physics (SET-A) [3]

**P.T.O.** 

| 19. | In a telephonic communication system, the frequency range of speech signals is |                                         |                          |               |                                     |
|-----|--------------------------------------------------------------------------------|-----------------------------------------|--------------------------|---------------|-------------------------------------|
|     | (A)                                                                            | 20 Hz to 2                              | 20 kHz                   | (B)           | 300 Hz to 3100 Hz                   |
|     | (C)                                                                            | 896 MHz                                 | to 901 MHz               | (D)           | 88 MHz to 108 MHz                   |
| 20. | The                                                                            | expression                              | relating polarising ang  | gle and refra | active index is                     |
|     | (A)                                                                            | $\mu \sin p =$                          | 1                        | (B)           | $\mu \cot p = 1$                    |
|     | (C)                                                                            | $\mu$ tan p =                           | 1                        | (D)           | $\mu \cos p = 1$                    |
| 21. | The                                                                            | working of                              | fan a.c.dynamo is based  | d on the pri  | nciple of                           |
|     | (A)                                                                            | heating e                               | ffect of current         | (B)           | magnetic effect of current          |
|     | (C)                                                                            | chemical                                | effect of current        | (D)           | electromagnetic induction           |
| 22. | If the                                                                         | he differer                             | t planets have the sa    | ame densit    | y but different radii, then the     |
|     | acce                                                                           | leration du                             | e to gravity on the surf | ace of the p  | blanet is related to the radius (R) |
|     | of th                                                                          | e planet as                             |                          |               |                                     |
|     | (A)                                                                            | $g \alpha R^2$                          |                          | (B)           | $g \alpha R$                        |
|     | (C)                                                                            | $g \alpha R^2$ $g \alpha \frac{1}{R^2}$ |                          | (D)           | $g \alpha \frac{1}{R}$              |
| 23. | Whi                                                                            | ch of these                             | is/are used as moderat   | tor in a nuc  | lear reactor ?                      |
|     | (i)                                                                            | Boron                                   | (ii) Heavy water         | (iii) G       | raphite (iv) Cadmium                |
|     | (A)                                                                            | (i) only                                |                          | (B)           | (ii) and (iii)                      |

- (C) (i) and (iii) (D) (iv) only
- 24. If the kinetic energy of a free electron doubles, its de-Broglie wavelength changes by the factor
  - (A) 2 (B)  $\sqrt{2}$

(C) 
$$\frac{1}{2}$$
 (D)  $\frac{1}{\sqrt{2}}$ 

- 25. How many significant figures are there in the number 30500?
  - (A) 2 (B) 3
  - (C) 4 (D) 5

Physics (SET-A) [4]

| 26. | A sr | oherical mirror forms a diminished virtu          | ıal im | hage of magnification $\frac{1}{2}$ . If the |
|-----|------|---------------------------------------------------|--------|----------------------------------------------|
|     |      | l length is 18 <i>cm</i> , then the distance of t |        | 5                                            |
|     | (A)  | 18 cm                                             |        | 36 cm                                        |
|     | (C)  | 48 cm                                             | (D)    | infinite                                     |
| 27. | Am   | aterial used for making permanent mag             | nets s | hould possess                                |
|     | (A)  | high retentivity and high coercivity              |        |                                              |
|     | (B)  | low retentivity and high coercivity               |        |                                              |
|     | (C)  | high retentivity and low coercivity               |        |                                              |
|     | (D)  | low retentivity and low coercivity                |        |                                              |
| 28. | Whi  | ich of the following functions of time re         | prese  | ents Simple Harmonic Motion ?                |
|     | (A)  | $\sin wt + \cos wt$                               | (B)    | sin <sup>5</sup> wt                          |
|     | (C)  | $1 + t + wt^2 + w^2t^3$                           | (D)    | $e^{w^2t}$                                   |
| 29. | In a | pressure cooker, cooking is faster becau          | use th | e increase in vapour pressure                |
|     | (A)  | increases specific heat                           | (B)    | decreases specific heat                      |
|     | (C)  | increases boiling point                           | (D)    | decreases boiling point                      |
| 30. | Abo  | ody goes 20 km north and then 10 km du            | ie eas | t. The displacement of the body              |
|     | fron | n its starting point is                           |        |                                              |
|     | (A)  | 30 km                                             | (B)    | 22.36 km                                     |
|     | (C)  | 25.2 km                                           | (D)    | 10 km                                        |
| 31. | Witl | h rise in temperature, conductivity of a s        | semic  | onductor                                     |
|     | (A)  | increases                                         | (B)    | decreases                                    |
|     | (C)  | remains constant                                  | (D)    | none of these                                |
| 32. | -    | rism splits a beam of white light into its        | sever  | constituent colours. This is so,             |
|     | beca |                                                   |        |                                              |
|     | (A)  | phase of different colours is different           |        |                                              |
|     | (B)  | amplitude of different colours is diffe           |        |                                              |
|     | (C)  | energy of different colours is differen           |        |                                              |
|     | (D)  | velocity of different colours is different        | ent    |                                              |
|     |      |                                                   |        |                                              |

 Physics (SET-A)
 [ 5 ]
 P.T.O.

33. If  $\frac{v}{2L}$  is the fundamental frequency of standing wave in a string fixed at both ends, the frequency of the second, third and fourth modes of vibration will be

(A) 
$$\frac{3v}{2L}, \frac{5v}{2L}, \frac{7v}{2L}$$
 (B)  $\frac{v}{L}, \frac{2v}{L}, \frac{3v}{L}$ 

(C) 
$$\frac{v}{L}, \frac{3v}{2L}, \frac{2v}{L}$$
 (D)  $\frac{v}{2L}, \frac{v}{L}, \frac{3v}{2L}$ 

34. Fusion reactions take place at high temperature because

- (A) atoms are ionised at high temperature
- (B) molecules break up at high temperature
- (C) nuclei break up at high temperature
- (D) kinetic energy is high enough to overcome repulsion between the nuclei
- 35. A cell of unknown e.m.f is balanced by 60 cm of a potentiometer wire while a 3 V cell gives a balance with 45cm of the wire. The value of unknown e.m.f will be
  - (A) 2.25 V (B) 3 V

36. When an object is placed between the focus F and the optical centre O of a convex lens, the image formed will be

- (A) real, inverted and enlarged (B) virtual, erect and enlarged
- (C) real, inverted and diminished (D) virtual, erect and diminished
- 37. In a Young's double slit experiment the angular width of a fringe formed on a distant screen is  $2.1 \times 10^{-3}$  rad. If the wavelength of light used is 4800 Å, the distance between the slits is

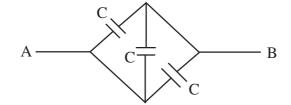
[6]

- (A)  $4.4 \times 10^3$  m (B)  $2.29 \times 10^{-4}$  m
- (C)  $4.4 \times 10^5$  m (D)  $2.29 \times 10^{-5}$  m
- 38. The degree of freedom of a tri-atomic gas molecule is
  - (A) 3 (B) 5
  - (C) 6 (D) 8

Physics (SET - A)

39. The dimensional formula of the Universal Gravitational constant G is given as [M<sup>a</sup>L<sup>3</sup>T<sup>-2</sup>]. The value of 'a' is
(A) 1 (B) -1
(C) 2 (D) -2
40. Decrease of which one of the following quantities enables us to transport even a

40. Decrease of which one of the following quantities enables us to transport even a heavy barrel by rolling across the road ?


- (A) Static friction (B) Normal friction
- (C) Limiting friction (D) Coefficient of friction
- 41. A bullet of mass 200 g is fired with a velocity of 30 m/s from a gun of mass 100 kg. The recoil velocity of the gun is

| (A) 10 m/s | (B) | 5 m/s |
|------------|-----|-------|
|------------|-----|-------|

(C) 0.06 m/s (D) 0.03 m/s

42. The moment of inertia of a circular ring about one of its diameter is I. What will be its moment of inertia about a tangent parallel to the diameter ?

- (A) 4I (B) 2I
- (C)  $\frac{3}{2}$  I (D) 3 I
- 43. The equivalent capacitance between A and B in the given figure is





(C) 3C (D)  $\frac{C}{3}$ 

Physics (SET - A)

[7]

**P.T.O.** 

44. If Young's double slit experiment is performed in water instead of air

- (A) the fringe width will decrease
- (B) the fringe width will increase
- (C) the fringe width will remain unchanged
- (D) there will be no fringe
- 45. In elastic collision, 100 % energy transfer takes place when
  - (A)  $m_1 > m_2$  (B)  $m_1 = 2m_2$
  - (C)  $m_1 = m_2$  (D)  $m_1 < m_2$
- 46. In a sky wave propagation, the radiowaves from the transmitting antenna reach the receiving antenna after reflection from the

| (A) | troposphere | (B) | ionosphere   |
|-----|-------------|-----|--------------|
| (C) | mesosphere  | (D) | stratosphere |

- 47. A plane wave of wavelength 6250 Å is incident normally on a slit of width  $2 \times 10^{-2}$  cm. The width of the central maximum on a screen at a distance 50 cm will be
  - (A)  $3.125 \times 10^{-7}$  cm (B)  $312.5 \times 10^{-7}$  cm (C)  $3.125 \times 10^{-6}$  cm (D)  $31.25 \times 10^{-2}$  cm

48. The current sensitivity of a moving coil galvanometer can be increased by

- (A) increasing the number of turns of coil
- (B) decreasing the magnetic field strength
- (C) decreasing the area of the coil
- (D) increasing the current in the coil

Physics (SET-A) [8]

49. The truth table of NAND gate is

| (A) | A B y                                                          | (B) | A B y                                                          |
|-----|----------------------------------------------------------------|-----|----------------------------------------------------------------|
|     | 0 0 0                                                          |     | 0 0 0                                                          |
|     | 1 0 1                                                          |     | 1 0 0                                                          |
|     | 0 1 1                                                          |     | 0 1 0                                                          |
|     | 1 1 1                                                          |     | 1 1 1                                                          |
|     |                                                                |     |                                                                |
| (C) | A B y                                                          | (D) | A B y                                                          |
| (C) | $\begin{array}{c c} A & B & y \\ \hline 0 & 0 & 1 \end{array}$ | (D) | $\begin{array}{c c} A & B & y \\ \hline 0 & 0 & 1 \end{array}$ |
| (C) |                                                                | (D) |                                                                |
| (C) | 0 0 1                                                          | (D) | 0 0 1                                                          |

50. The force required to increase the length by 0.5 mm of a steel wire of length 2 m and area of cross section 2 mm<sup>2</sup> is (Y for steel =  $2.2 \times 10^{11} \text{ Nm}^{-2}$ )

| (A) | $1.1 \times 10^5 \mathrm{N}$ | (B) | $1.1 \times 10^{11} \mathrm{N}$ |
|-----|------------------------------|-----|---------------------------------|
| (C) | $17.6 \times 10^8 \text{ N}$ | (D) | $1.1 \times 10^2 \mathrm{N}$    |

51. A charge q is enclosed by a spherical surface of radius r. If the radius is doubled, the total electric flux through the surface will

| (A) | be increased four times | (B) | be reduced to half |
|-----|-------------------------|-----|--------------------|
|-----|-------------------------|-----|--------------------|

- (C) remain the same (D) be doubled
- 52. If a car at rest accelerates uniformly to a speed of 144 km/h in 20 s, it covers a distance of
  - (A) 20 m (B) 400 m
  - (C) 1,440 m (D) 2,980 m
- 53. Two bodies are moving in opposite direction with a speed *v*. What is the magnitude of their relative velocity ?

[9]

(A) 0 (B) v

| (C) | $\frac{v}{2}$ |  | (D) | 2v |
|-----|---------------|--|-----|----|
|     | _             |  |     |    |

Physics (SET - A)

**P.T.O.** 

| 54. | Which molecule will have greater root mean square velocity ; hydrogen or oxygen? |                                                                              |         |                                     |  |  |
|-----|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|-------------------------------------|--|--|
|     | (A)                                                                              | hydrogen                                                                     | (B)     | oxygen                              |  |  |
|     | (C)                                                                              | they have same rms velocity                                                  | (D)     | cannot be compared                  |  |  |
| 55. | Grav<br>will                                                                     | vitational force of attraction between tw<br>be                              | o mas   | ses 1 kg each separated by 1 m      |  |  |
|     | (A)                                                                              | $6.67 \times 10^{-9} \text{ N}$                                              | (B)     | $6.67 \times 10^{-11} \text{ N}$    |  |  |
|     | (C)                                                                              | $6.67 \times 10^{-13} \text{ N}$                                             | (D)     | Zero                                |  |  |
| 56. | Whi                                                                              | ch of the following is a paramagnetic su                                     | ıbstar  | nce?                                |  |  |
|     | (A)                                                                              | Alnico                                                                       | (B)     | Cobalt                              |  |  |
|     | (C)                                                                              | Manganese                                                                    | (D)     | Silver                              |  |  |
| 57. | The                                                                              | speed of an electron having a waveleng                                       | th of   | 10 <sup>-10</sup> m is              |  |  |
|     | (A)                                                                              | $7.25 \times 10^6 \text{ m s}^{-1}$                                          | (B)     | $6.26 \times 10^6 \text{ m s}^{-1}$ |  |  |
|     | (C)                                                                              | $5.25 \times 10^6 \text{ m s}^{-1}$                                          | (D)     | $4.24 \times 10^6 \text{ m s}^{-1}$ |  |  |
| 58. | A ch<br>done                                                                     | arge $q$ is moved from point A to B acrossis                                 | ss an e | equipotential surface. The work     |  |  |
|     | (A)                                                                              | zero                                                                         | (B)     | $q(V_{\rm A} - V_{\rm B})$          |  |  |
|     | (C)                                                                              | $\frac{q}{(\mathbf{V}_{\mathrm{B}}-\mathbf{V}_{\mathrm{A}})}$                | (D)     | $\frac{(V_{\rm B}-V_{\rm A})}{q}$   |  |  |
| 59. | -                                                                                | bint object is placed at a distance of 3<br>th 30 cm. The image will form at | 0 cm    | from a convex mirror of focal       |  |  |
|     | (A)                                                                              | infinity                                                                     | (B)     | pole                                |  |  |
|     | (C)                                                                              | 15cm behind the mirror                                                       | (D)     | no image will be formed             |  |  |
| 60. | A ba                                                                             | ll is whirled around a circular path of ra                                   | adius 2 | 2 m. If it makes 5 revolutions in   |  |  |
|     | 8 sec                                                                            | conds, the centripetal acceleration of th                                    | ne bal  | lis                                 |  |  |
|     | (A)                                                                              | 36.25 m/s <sup>2</sup>                                                       | (B)     | 30.87 m/s <sup>2</sup>              |  |  |
|     | (C)                                                                              | 32.25 m/s <sup>2</sup>                                                       | (D)     | 34.20 m/s <sup>2</sup>              |  |  |

Physics (SET-A) [ 10 ]

| 61. | In an <i>n</i> -type semiconductor, which of the following statements is true ? |                                         |  |  |  |  |
|-----|---------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
|     | (A) Electrons are majority carriers and t                                       | rivalent atoms are the dopants          |  |  |  |  |
|     | (B) Electrons are minority carriers and pentavalent atoms are the dopants       |                                         |  |  |  |  |
|     | (C) Holes are majority carriers and triva                                       | lent atoms are the dopants              |  |  |  |  |
|     | (D) Holes are minority carriers and pent                                        | avalent atoms are the dopants           |  |  |  |  |
| 62. | The self inductance of a straight conductor                                     | or is                                   |  |  |  |  |
|     | (A) zero                                                                        | (B) infinity                            |  |  |  |  |
|     | (C) very small                                                                  | (D) very large                          |  |  |  |  |
| 63. | The time period of a satellite of earth is                                      | 5 hours. If the separation between the  |  |  |  |  |
|     | earth and the satellite is increased to 4 th                                    | imes the previous value, the new time   |  |  |  |  |
|     | period will become                                                              |                                         |  |  |  |  |
|     | (A) 10 hours                                                                    | (B) 80 hours                            |  |  |  |  |
|     | (C) 40 hours                                                                    | (D) 20 hours                            |  |  |  |  |
| 64. | Resultant of two equal forces acting at ri                                      | ght angles to each other is 1,414 dyne. |  |  |  |  |
|     | Then the magnitude of each force is                                             |                                         |  |  |  |  |
|     | (A) 1,100 dyne                                                                  | (B) 1,200 dyne                          |  |  |  |  |
|     | (C) 1,000 dyne                                                                  | (D) 1,414 dyne                          |  |  |  |  |
| 65. | Which of the following is not true for an                                       | -                                       |  |  |  |  |
|     | (A) Compression or expansion should ta                                          | ake place slowly                        |  |  |  |  |
|     | (B) There is change in temperature                                              |                                         |  |  |  |  |
|     | (C) The cylinder should have insulating                                         | walls                                   |  |  |  |  |
|     | (D) No heat enters or leaves the system                                         |                                         |  |  |  |  |
| 66. | The Boolean expression for the NOR gate                                         |                                         |  |  |  |  |
|     | (A)  Y = A + B                                                                  | (B) $Y = A + B$                         |  |  |  |  |
|     | (C) $Y = A \bullet B$                                                           | (D) $Y = A \bullet B$                   |  |  |  |  |
| 67. | An overhead power line carries current in                                       |                                         |  |  |  |  |
|     | of magnetic field at a point directly below                                     |                                         |  |  |  |  |
|     | (A) vertically downwards                                                        | (B) vertically upwards                  |  |  |  |  |
|     | (C) towards the east                                                            | (D) towards the west                    |  |  |  |  |

 Physics (SET-A)
 [ 11 ]
 P.T.O.

| 68. | The                    | quantity $\frac{PV}{kT}$ represents                   |         |                                      |
|-----|------------------------|-------------------------------------------------------|---------|--------------------------------------|
|     |                        | mass of the gas                                       |         |                                      |
|     | (B)                    | number of molecules of the gas                        |         |                                      |
|     | (C)                    | number of moles of the gas                            |         |                                      |
|     | (D)                    | Avogadro's number                                     |         |                                      |
| 69. | . /                    | force between two charges $+3\mu$ C and               | -8µC    | is F. If a charge $+5\mu$ C is added |
|     |                        | ich of the charges, the force between th              | •       |                                      |
|     |                        | F + 5                                                 |         | F – 5                                |
|     | (C)                    | F                                                     | (D)     | cannot be found                      |
| 70. | The                    | length and cross sectional area of the                | ee dif  | ferent copper wires are (l, A),      |
|     | (2 <i>l</i> , <i>l</i> | A/2), $(l/2, 2A)$ . The resistance is minim           | num in  | l                                    |
|     | (A)                    | wire $(l, A)$                                         |         |                                      |
|     | (B)                    | wire (2 <i>l</i> , A/2)                               |         |                                      |
|     | (C)                    | wire ( <i>l</i> /2, 2A)                               |         |                                      |
|     | (D)                    | resistance is same in all three wires                 |         |                                      |
| 71. | In an                  | LCR circuit, capacitance is changed from              | om C to | o 2C. For the resonant frequency     |
|     | to re                  | main unchanged, the inductance should                 | d be cł | nanged from L to                     |
|     | (A)                    | 4L                                                    | (B)     | 2L                                   |
|     | (C)                    | L                                                     | (D)     | L                                    |
|     | (C)                    | 2                                                     | (D)     | 4                                    |
| 72. |                        | separation between carbon and oxygen                  |         |                                      |
|     |                        | listance of the centre of mass from the               |         |                                      |
|     | (A)                    | 0.03 nm                                               | (B)     | 0.04 <i>nm</i>                       |
|     | (C)                    | 0.05 nm                                               | (D)     |                                      |
| 73. |                        | t is the frequency of a travelling wave $g$           | given t | by the equation                      |
|     | <i>y</i> =             | $10^{-4}\sin(600t-2x+\frac{\pi}{3})$ ?                |         |                                      |
|     | (A)                    | $\frac{300}{\pi} \text{Hz}$ $\frac{\pi}{3} \text{Hz}$ | (B)     | 300π Hz                              |
|     | $(\mathbf{C})$         | $\frac{\pi}{-Hz}$                                     | (D)     | $10^{-4}$ Hz                         |
|     |                        | 3                                                     |         |                                      |

Physics (SET-A)

[ 12 ]

- 74. The ionization energy of hydrogen atom is 13.6 eV. Following Bohr's theory, the energy corresponding to a transition between 3<sup>rd</sup> and 4<sup>th</sup> orbit is
  - (A) 2.36 eV (B) 1.51 eV
  - (C) 0.85 eV (D) 0.66 eV

75. The unit of power in S.I (watt) is equivalent to

- (A) kg m s<sup>-2</sup> (B) kg m<sup>2</sup> s<sup>-2</sup>
- (C)  $kg m^2 s^{-3}$  (D) none of these
- 76. The value of I in the given figure is
  - (A) 5.3 A
  - (B) 1.7 A
  - (C) 4.1 A
  - (D) 0.5 A

77. A transformer is used to light a 100 W - 110 V lamp from a 220 V mains. If the main current is 0.5A, the efficiency of the transformer is approximately

3A

4A

- (A) 10% (B) 91%
- (C) 30% (D) 50%

78. Which of the following electromagnetic waves have the longest wavelength?

- (A) Heat waves (B) Light waves
- (C) Radio waves (D) Ultraviolet waves
- 79. The radius of curvature of the convex face of a plano-convex lens is 15 cm and the refractive index of the material is 1.4. Then the power of the lens in dioptre is
  - (A) 21 (B) 1.66
  - (C) 0.026 (D) 2.66
- 80. The cause of potential barrier in a junction diode is
  - (A) depletion of positive charges near the junction
  - (B) concentration of positive charges near the junction
  - (C) depletion of negative charges near the junction
  - (D) concentration of positive and negative charges near the junction

Physics (SET-A)

[13]

**P.T.O.** 

2.4 A

| 81.  | Dimensional formula of magnetic flux is                                              |                                              |  |  |  |
|------|--------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|
|      | (A) $ML^2T^{-2}A^{-1}$                                                               | (B) $M L^2 T^2 A^{-1}$                       |  |  |  |
|      | (C) $M L T^{-2} A^{-1}$                                                              | (D) $M L^2 T^{-3} A^{-1}$                    |  |  |  |
| 82.  |                                                                                      |                                              |  |  |  |
|      | (A) <i>Nm</i>                                                                        | (B) $kgm^{-1}s^{-1}$                         |  |  |  |
|      | (C) $kg m^2 s^{-1}$                                                                  | (B) $kgm^{-1}s^{-1}$<br>(D) $kg^2m^2s^{-1}$  |  |  |  |
| 83.  | 3. A carbon resistor is marked with colored bands of black, brown and black.         |                                              |  |  |  |
|      | value of its resistance is                                                           |                                              |  |  |  |
|      | (A) $100 \Omega \pm 20\%$                                                            | (B) $10 \Omega \pm 20\%$                     |  |  |  |
|      | (C) $100 \Omega \pm 10\%$                                                            | (D) $1\Omega \pm 20\%$                       |  |  |  |
| 84.  | A man's near point is $0.5 m$ and far point is $3 m$ . Power of the spectacle lenses |                                              |  |  |  |
|      | prepared for seeing distant objects is                                               |                                              |  |  |  |
|      | (A) $+ 3 D$                                                                          | (B) $-3 D$                                   |  |  |  |
|      | (C) $-0.33$ D                                                                        | (D) $+ 0.33$ D                               |  |  |  |
| 85.  | If a source of sound of frequency $v$ moves towards a stationary listener with a     |                                              |  |  |  |
|      | velocity half of the velocity of the sound, the apparent frequency of the sound will |                                              |  |  |  |
|      | be<br>v                                                                              |                                              |  |  |  |
|      | (A) $\frac{\upsilon}{2}$<br>(C) $\frac{2\upsilon}{3}$                                | (B) $2v$                                     |  |  |  |
|      | $(C) \frac{2v}{2}$                                                                   | (D) $\frac{3v}{2}$                           |  |  |  |
| 86   | If the vector $2\hat{i} + 3\hat{j} + 8\hat{k}$ is perpendicu                         | (D) $\frac{2}{2}$                            |  |  |  |
| 00.  | value of <i>a</i> is                                                                 | that to the vector $4i - 4j + ak$ , then the |  |  |  |
|      | (A) 1                                                                                | (B) –1                                       |  |  |  |
|      |                                                                                      |                                              |  |  |  |
|      | (C) $\frac{1}{2}$                                                                    | (D) $-\frac{1}{2}$                           |  |  |  |
| 87.  | An <i>n-p-n</i> transistor conducts when                                             |                                              |  |  |  |
|      | (A) both collector and emitter are positive w.r.t the base                           |                                              |  |  |  |
|      | (B) both collector and emitter are negative w.r.t the base                           |                                              |  |  |  |
|      | (C) collector is positive and emitter is negative w.r.t the base                     |                                              |  |  |  |
|      | (D) collector is positive and emitter is at same potential as the base               |                                              |  |  |  |
| Phys | sics (SET-A) [14]                                                                    | Contd.                                       |  |  |  |

| 88. | A 100 W bulb is connected to a 200 V supply. The current in the circuit is                                                   |                                               |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|
|     | (A) 0.5A                                                                                                                     | (B) 2A                                        |  |  |  |  |
|     | (C) 1A                                                                                                                       | (D) 20A                                       |  |  |  |  |
| 89. | For liquids which wet a surface, the angle of contact                                                                        |                                               |  |  |  |  |
|     | (A) is zero only                                                                                                             | (B) lies between $0^{\circ}$ and $90^{\circ}$ |  |  |  |  |
|     | (C) lies between $90^{\circ}$ and $180^{\circ}$                                                                              | (D) None of these                             |  |  |  |  |
| 90. | ). The relative velocity of two parallel layers of water is $8 \text{ cms}^{-1}$ . If the perpendic                          |                                               |  |  |  |  |
|     | distance between the layers is 0.1cm, the                                                                                    | n velocity gradient will be                   |  |  |  |  |
|     | (A) $40 \text{ s}^{-1}$                                                                                                      | (B) 50 s <sup>-1</sup>                        |  |  |  |  |
|     | (C) $60 \text{ s}^{-1}$                                                                                                      | (D) 80 s <sup>-1</sup>                        |  |  |  |  |
| 91. | The energy equivalent of one atomic mass unit is                                                                             |                                               |  |  |  |  |
|     | (A) $1.6 \times 10^{-19} \text{ J}$                                                                                          | (B) $6.02 \times 10^{-23} \text{ J}$          |  |  |  |  |
|     | (C) 931.5 MeV                                                                                                                | (D) 931.5 J                                   |  |  |  |  |
| 92. | In photoelectric effect, the electrons are ejected from metals if the incident light                                         |                                               |  |  |  |  |
|     | has a certain minimum                                                                                                        |                                               |  |  |  |  |
|     | (A) wavelength                                                                                                               | (B) amplitude                                 |  |  |  |  |
|     | (C) frequency                                                                                                                | (D) angle of incidence                        |  |  |  |  |
| 93. | The kinetic energy of a molecule of hydrogen at $0^{\circ}$ C is                                                             |                                               |  |  |  |  |
|     | (Given: $k = 1.381 \times 10^{-23}$ Jmolecule <sup>-1</sup> K <sup>-1</sup> ; R = 8.31 Jmole <sup>-1</sup> K <sup>-1</sup> ) |                                               |  |  |  |  |
|     | (A) $5.65 \times 10^{-21} \text{ J}$                                                                                         | (B) $3.402 \times 10^3 \text{ J}$             |  |  |  |  |
|     | (C) $3.402 \times 10^{-3} \text{ J}$                                                                                         | (D) $5.65 \times 10^{20} \text{ J}$           |  |  |  |  |
| 94. | An electric dipole placed in a uniform electric field does not experience torque when                                        |                                               |  |  |  |  |
|     | (A) it is aligned perpendicular to the di                                                                                    | rection of electric field                     |  |  |  |  |
|     | (B) it is aligned parallel to the direction of electric field                                                                |                                               |  |  |  |  |
|     | (C) it is at an angle $45^{\circ}$ to the direction of field                                                                 |                                               |  |  |  |  |
|     | (D) it always experiences torque for any alignment                                                                           |                                               |  |  |  |  |
|     |                                                                                                                              |                                               |  |  |  |  |

 Physics (SET-A)
 [ 15 ]
 P.T.O.

| 95.                                                                                                  | Two straight conductors each of length 4 cm and carrying current 10 A are placed parallel to each other at a distance of 2 cm. The magnitude of force between them will be |                                   |     |                                 |  |  |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----|---------------------------------|--|--|
|                                                                                                      | (A)                                                                                                                                                                        | 10 <sup>3</sup> N                 | (B) | 10 <sup>-5</sup> N              |  |  |
|                                                                                                      | (C)                                                                                                                                                                        | 10 <sup>5</sup> N                 | (D) | $4 \times 10^{-5} \text{ N}$    |  |  |
| 96.                                                                                                  | In an a.c circuit containing only capacitor, the current                                                                                                                   |                                   |     |                                 |  |  |
|                                                                                                      | (A)                                                                                                                                                                        | leads voltage by 180°             | (B) | leads voltage by 90°            |  |  |
|                                                                                                      | (C)                                                                                                                                                                        | lags voltage by 90°               | (D) | remains in phase with voltage   |  |  |
| 97.                                                                                                  | The angular velocity of second's hand in a watch is                                                                                                                        |                                   |     |                                 |  |  |
|                                                                                                      | (A)                                                                                                                                                                        | 0.82 rad/s                        | (B) | 0.105 rad/s                     |  |  |
|                                                                                                      | (C)                                                                                                                                                                        | 0.21 rad/s                        | (D) | 0.052 rad/s                     |  |  |
| 98.                                                                                                  | The magnifying power of an astronomical telescope in normal adjustment is 10 and the focal length of its eye-piece is 20 cm. The focal length of its objective will be     |                                   |     |                                 |  |  |
|                                                                                                      | (A)                                                                                                                                                                        | 200 cm                            | (B) | 2 cm                            |  |  |
|                                                                                                      | (C)                                                                                                                                                                        | 0.5 cm                            | (D) | $0.5 \times 10^{-2} \text{ cm}$ |  |  |
| 99.                                                                                                  | A heat engine works at source temperature $100^{\circ}$ C and sink temperature $-23^{\circ}$ C.<br>Its efficiency will be                                                  |                                   |     |                                 |  |  |
|                                                                                                      | (A)                                                                                                                                                                        | 0.77                              | (B) | 1.23                            |  |  |
|                                                                                                      | (C)                                                                                                                                                                        | 0.329                             | (D) | 0.206                           |  |  |
| 100. When a particle executing simple harmonic motion is at the mean position, its kinetic energy is |                                                                                                                                                                            |                                   |     |                                 |  |  |
|                                                                                                      | (A)                                                                                                                                                                        | zero                              | (B) | maximum                         |  |  |
|                                                                                                      | (C)                                                                                                                                                                        | greater than zero but not maximum | (D) | equal to its potential energy   |  |  |