DEV LULLA SIR'S

103, Welcome Shopping Centre, Old Padra Road, Baroda. Ph.: 2355493, 6532751

SCHOLARSHIP CUM ADMISSION TEST

LSAT MOVING TO STD 9

Time 1 hrs Marks: 150

General Instructions

- 1. This booklet consists of 50 questions. Time allowed will be 60 minutes
- 2. The answer sheet, OMR, is provided separately. DO NOT tamper with/ Mutilate the OMR or the booklet
- 3. Submit OMR sheet when asked for by the invigilator. Write all the details which are requested for in capital letters.
- 4. Side spaces of the question paper booklet may be used for rough work.
- 5. Marking System: The total test is of 150 marks. +3 marks will be awarded for every correct answer and -1 will be awarded for every incorrect answer.

ANSWER THE BELOW GIVEN QUESTIONS ON THE OMR SHEET ONLY

1. During corrosion of metals, the dull greenish deposit on copper surface is du							
	$(a) Cu(OH)_2 + CuCO$	O_3 $(b) Cu(OH)_2$	$(c) CuCO_3 + CuO$	$(d) Cu(OH)_2 + CaO$			
2.	Which petroleum product is used in making ointments, candles & Vaseline etc.						
	(a)Bitumen	(b) Lubricating oil	(c)Paraffin wax	(d)Kerosene			
3.	. Burning of charcoal in a closed room will produce -						
	$(a) CO_2$	$(b) NO_2$	(c) CO	(d)All			
4.	Which part of flame h	as very least temperat	ture ?				
	(a)Outermost	(b)Innermost	(c)Middle	(d)all			
5.	Species found in particular habitat is called -						
	(a)Endangered	(b)Endemic	(c)Vulnerable	(d)rare			
6.	6. Term for changes at adolescence is -						
	(a)Puberty	(b)Reproduction	(c)Maturation	(d)Hormonal change			
7.	7. Metamorphosis from tadpole to adult frog is controlled by -						
	(a)Thyroxine	(b)Insulin	(c)Adrenalin	(d)Insulin			
8. A type of fertilization in hen -							
	(a)External	(b)Internal	(c)both	(d)None			
9.	Potable water is						
		(b)Translucent		(d)None			
10.	Male contains XY chromosomes while female contains						
	(a)XX	(b)YY	(c)XYZ	(d)None			
11.		always to dire					
	(a)Similar	(b)Opposite	(c)Perpendicular to	(d)None			
12.	Choose the odd one out.						
	(a)Grooves	(b) Cleats	(c)Treads	(d)Oil			
13.	n/m^2 is the unit of						
	(a)Force	(b)Work	(c)Pressure	(d)Thrust			
14.	The lens used for correction of near sightedness is						
	(a)Concave lens	(b) convex lens	(c)Cylindrical lens	(d)Biconvex lens			
15.	The mirror used for rear view in cars is						
	(a)Concave	(h) convex	(c)plane	(d)Depends			

/ >			m of extreme number. (d) 32		
()	ar graph is drawn to scale 1 cm = k units, then a bar of length k cm represents				
(a)1 unit	(b)k units	(c)2k units	(d)k ² units		
$(a) \frac{200}{2} \pi cm^3$	$(b) \frac{350}{2} \pi cm^3$	$(c)\frac{500}{2} \pi cm^3$	$(d)\frac{400}{2} \pi cm^3$		
-	-	-	_		
Supplement of angle and complement of another have a sum equal to half of a complete angle.					
` '			(d)30°		
(a)0 and 8			(d)4 and 3		
ABCD is a Quadrilate	eral in which $\angle A = 60^{\circ}$	$\angle B = 70^{\circ}, \angle C = 110^{\circ}$	D° and $\angle D = 120^{\circ}$. The		
		(c)three	(d)None		
` '		(6)	(cr) i tolic		
$(64)^{\frac{1}{2}} \Big _{3}^{\frac{1}{3}} \times \Big \left(\frac{1}{27}\right)^{\frac{3}{3}}$	=\				
		ASSU			
(a)2	(b)9	$(c)\frac{9}{2}$	$(d)\frac{2}{9}$		
Curved surface area of a right circular cylinder of base radius r is obtained by multiplying its volume by					
$(a)\frac{2}{r^2}$	$(b) 2 r^2$	$(c)\frac{2}{r}$	(d) 2r		
If $S = \frac{a}{1-r}$ then make r as the subject of formula.					
$(a) r = \frac{a}{s} + 1$	$(b) r = 1 + \frac{s}{a}$	$(c) r = 1 - \frac{s}{a}$	$(d) r = 1 - \frac{a}{s}$		
Widespread national Washington-based in Day among the modecision was taken to Stories for Pathways even though none of head for urban transpay. Having Raahg campaign on the interpay, the only such was eparate venues in Otto parts of DLF V and Palam Vihar was ackilometres of roads Raahgiri Day in Gurg the usual sights, with	acclaim aside, Raah on-profit group called ost 'inspiring' sustainally the global advisory to Green Cities' programmer of them lives in Gurga sport at EMBARQ Indigiri Day as one of the trational stage, and inveekly event in the conformational course Road Indigited to the overall segment and the streets of the cars and autos clog	giri Day is now getting. The Earth Day Network ability campaigns being committee of the TEL gramme. "They came on, which is remarkation, which is among the 24 inspiring stories graphine other cities to fountry dedicated to act and 4-kilometre loop near ast month. And most etting, making this the teans and cyclists even hear Galleria market by ging it up, the area in	ork (TEDN) has listed Raahgiring carried out globally. The DN as a part of its 24 Inspiring to know about Raahgiri Day ble," said Amit Bhatt, strategy the main organizers of Raahgiri lobally will help showcase this blow suit, "Bhatt said. Raahgiri tive commuting, now has three and Galleria Market was extended to recently, a separate venue in the only city which has over 13 by Sunday morning. The first pafflingly unfamiliar. Instead of resembled a recreational park.		
	(a) 26 A bar graph is drawn (a) 1 unit Surface area of a food (a) $\frac{200}{3}\pi cm^3$ In a right angled trian (a) 1: $\sqrt{2}$: 1 Supplement of angle If greater angle is 10 (a) 40° Which of following diagonal (a) 0 and 8 ABCD is a Quadrilate number of pairs of pathways even though none of head for urban transpay. Having Raahg campaign on the interpay, the only such was pairs of DLF V and Palam Vihar was ackilometres of roads Raahgiri Day in Gurath usual sights, with	(a) 26 (b) 30 A bar graph is drawn to scale 1 cm = k units (a) 1 unit (b) k units Surface area of a football is $100 \pi \ cm^2$	(a) 26 (b) 30 (c) 24 A bar graph is drawn to scale 1 cm = k units, then a bar of length (a) 1 unit (b) k units (c) 2k units Surface area of a football is $100 \pi \ cm^2$ is volume of air in it. (a) $\frac{200}{3} \pi \ cm^3$ (b) $\frac{350}{3} \pi \ cm^3$ (c) $\frac{500}{3} \pi \ cm^3$ In a right angled triangle ABC, AB = AC. Then a : b : c is (a) 1: $\sqrt{2}$: 1 (b) 1:1: $\sqrt{2}$ (c) 1:1:2 Supplement of angle and complement of another have a sum equif greater angle is 10° more than smaller, then is smaller (a) 40° (b) 35° (c) 45° Which of following digits have two lines of symmetry? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (a) 0 and 8 (b) 1 and 7 (c) 2 and 6 ABCD is a Quadrilateral in which $\angle A = 60^\circ$, $\angle B = 70^\circ$, $\angle C = 110^\circ$ number of pairs of parallel lines is		

this way or that. It was all way too relaxed, upbeat and festive for a Sunday morning in Gurgaon. Raahgiri Day was an attempt to help residents "explore their streets from a new

perspective" and , of course, to have a social gathering of sorts, with all its fun aspects in place. Diversions for the health-conscious included an open-air gym, combat training, yoga and aerobic workshops, along with cycling and marathon events organized early in the morning. For the more casual variety of visitors, there were Frisbee and gully-circket challenges, not to mention the singing and dancing that kept everyone's spirits high. When is the Raahgiri Day celebrated? (a) First Sunday of each month (b) Last Sunday of each month (c)On holidavs (d) Every Sunday What is the core purpose behind the Raahgiri Day? A: To make people realize that roads are not only for the cars, but also for pedestrians and cvclists. B: To bring the society together C: To avoid parks from getting dirty. (b) Only B (a)Only A Who is the main organizer of the Raahgiri Day? (b) DLF (c) EMBARQ (d) Resident Welfare Associations of Gurgaon (RWA) Why has TEDN enlisted Raahgiri Day as an inspirin campaign? (a) First of its kind campaign dedicated to active commuting. (b) Environment-friendly, as for few hours there are no cars on the road. (c) Bringing the society closer. (d)All of the above. Which of the following activity is not a part of this day? (c)Cycling (d)Shopping (b)Yoga Pick out the nearest correct meaning of synonym of the words given below: ATTRIBUTE (c)inhere (a)Infer (b) impute (d)inundate Pick out the antonyms of the words given below: FEIGN (b) attend (c) willing (d)original (a)condone Rearrange the following six sentences (A), (B), (C), (D), (E) and (F) in the proper sequence to form a meaningful paragraph; then answer the questions given below them.(Q. 48 – 50) O-nami was very strong and knew the art of wresting. In his private spells he defeated even his teacher, but in public he was so timid, that his own pupils defeated him. The teacher advised him saying "Your name means Great Waves, imaging that you are huge waves sweeping everything before you, swallowing everything in your path. Do this and you will be the greatest wrestler in the country." O-nami soon registered for a wrestling match and won. After that, no one in Japan was able to defeat him. In the early days of the Meiji era there lived a well-known wrestler called O-nami, Great Waves. In the days that followed, O-nami meditated on the advice given by the Zen master. O-nami felt he should go to a Zen master for help. He approached Hakuju a wandering teacher and told him of his great trouble. Which of the following should be the SECOND sentence after the rearrangement? (a)A(b)D (c)F (d)BWhich of the following should be the FIRST sentence after the rearrangement?

(c)D

(c)B

(d)F

Which of the following should be the FIFTH sentence after the rearrangement?

(b) D

41.

42.

43.

44.

45.

46.

(A)

(B)

(C)

(D)

(E)

(F)

48.

49.

50.

(a)E

Solutions

	Joiutic		
1.	$(a) Cu(OH)_2 + CuCO_3$	26.	(<i>c</i>)9
2.	(c)Paraffin wax	27.	$(d)\frac{T\sqrt{g}}{2\pi}$
3.	(c) CO	28.	$(c)\frac{7}{15}$
4.	(b) Innermost	29.	$(a)33\frac{1}{3}\%$
5.	(b) Endemic	30.	$(c) \frac{100 + Z\%}{100}$
6.	(a) Puberty	31.	(a)26
7.	(a)Thyroxine	32.	(d)k ² units
8.	(b) Internal	33.	$(c)\frac{500}{3}\pi cm^3$
9.	(a)Transparent	34.	$(d)\sqrt{2}:1:1$
10.	(a)XX	35.	(a)40°
11.	(b) Opposite	36. 9	(a)0 and 8
12.	(d)Oil	37.	(a)One
13.	(c)Pressure	38.	$(d)\frac{2}{9}$
14.	(a)Concave lens	39.	$(c)\frac{2}{r}$
15.	(b)convex	40.	$(d) r = 1 - \frac{a}{s}$
16.	(d)	41.	(d)
17.	(a)Sriharikota (A.P)	42.	(a)
18.	(c)Protest	43.	(d)
19.	(b) Methane	44.	(b)
20.	(a)USA	45.	(d)
21.	(c)18	46.	(c)
22.	(a)0.55	47.	(a)
23.	(d)5814	48.	(a)
24.	(<i>a</i>)91 days	49.	(d)
25.	(b) 168 times	50.	(e)