

FRASER ROAD

Grand Plaza, Fraser Road Dak Bunglow, Patna-1 Mob. No. 9431027690 BORING ROAD Raghuvir Prabha Place, Boring Road, Patna-1 Mob. No. 9431027699

<u>GAYA</u> 371, Ramanuj Bhawan A.P. Colony Gaya-1 Mob. No.9006372393

MUMBAI

D55, Sector 12, Kharghar, Navi Mumbai -410210 Mob. No. 9987632422

PART - I (MATHEMATICS)

(SINGLE CORRECT ANSWER TYPE)

This section contains (1-15) multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Q.1	If degree of both $f(x)$ and $[f(x) + g(x)]$ is 18, then degree of $g(x)$ can be								
	(A)	18	(B)	9	(C)	6	(D)	any one of these	
Q.2	If the the m	LCM of the polynomia inimum value of $a + b$	ls f(x	$) = (x + 1)^5 (x + 2)^a$ and	nd g(x	$(x + 1)^{b} (x + 2)^{a}$ is	(x + 1	$)^{a}$ $(x + 2)^{b}$, then find	
	(A)	is 10	(B)	is 14	(C)	is 15	(D)	Cannot say	
Q.3	Ram Rs. 8	u had 13 notes in the de 30. He has more of Rs 1	enomi 100 no	nations of Rs 10, Rs 50 tes than that of Rs 50 r	0 and 1 notes v	Rs 100. The total value vith him. Find the numb	e of the per of F	e notes with him was Rs 10 notes with him.	
	(A)	4	(B)	3	(C)	2	(D)	5	
Q.4	The o	cost of 2 puffs, 14 cups is is Rs 830. Find the c	of co ost of	ffee and 5 pizzas is R 38 puffs and 25 pizza	s 356. s. (in I	The cost of 20 puffs, Rs)	7 cup	s of coffee and is 15	
	(A)	1296			(B)	1104			
	(C)	1304			(D)	Cannot be determine	d		
	Space for rough work								

Q.5	Which of the following are the roots of $ y ^2 - y - 12 = 0$?							
	(a)	4	(b)	-4	(c)	3	(D)	-2
	(A)	Both (a) and (b)			(B)	Both (c) and (b)		
	(C)	(a), (b), (c) and (d)			(D)	None of the above		
Q.6	Find ratio	the condition to be sati 3:4.	sfied b	by the coefficients of the	he equ	ation $px^2 + qx + r = 0$, so tha	at the roots are in the
	(A)	$12q^2 = 49pr$	(B)	$12q^2=-49pr$	(C)	$49q^2 = 12pr$	(D)	$49q^2 = -12pr$
Q.7	Find	the sum of $\frac{0.3}{0.5} + \frac{0.33}{0.55}$	$\frac{3}{5} + \frac{0.3}{0.5}$	333 555 + to 15 to	erms.			
	(A)	10	(B)	9	(C)	3	(D)	5
Q.8	Eval	uate $\Sigma 2^i$, where $i = 2, 3$	3, 4	10 .				
	(A)	2044	(B)	2048	(C)	1024	(D)	1022
Q.9	lf ta	$n86^\circ = m$, then $\frac{tan17}{m+1}$	6° + co - tan 4	$\frac{\text{pt 4}^{\circ}}{\text{o}}$ is				
	(A)	$\frac{m^2-1}{m^2+1}$	(B)	$\frac{m^2 + 1}{1 - m^2}$	(C)	$\frac{1-m^2}{1+m^2}$	(D)	$\frac{m^2+1}{m^2-1}$

Space for rough work

A balloon is connected to a meteorological ground station by a cable of length 215 m inclined at 60° to the horizontal. Determine the height of the balloon from the ground. Assume that there is no slack in the cable.									
(A)	107.5√3 m	(B)	100√3 m	(C)	215√3 m	(D)	215/√3 m		
The f in se	following are the steps involved in finding the value of a when $x - 2$ is a factor of $3x^2 - 7x + a$. Arrange them equential order.								
(a)	$12 - 14 + a = 0 \Longrightarrow a =$	= 2							
(b)	By factor theorem, f(2) = 0	$\Rightarrow 3(2)^2 - 7(2) + a = 0$	C					
(C)	Let $f(x) = 3x^2 - 7x + $	а							
(A)	cba	(B)	bca	(C)	cab	(D)	bac		
Give	$an ax^2 + bx + c is a quantum contains a quantum $	adratic	polynomial in x and le	avesre	emainders 6, 11 and 1	8 respe	ectively when divided		
by (>	(x + 1), (x + 2) and $(x + 3)$	3). Fin	d the value of a + b +	С.					
(A)	1	(B)	2	(C)	3	(D)	4		
Thea	arithmetic mean of the	series	1, 3, 3 ² ,3 ⁿ⁻¹ is		_·				
(A)	$\frac{3^{n}}{2n}$	(B)	$\frac{3^n-1}{2n}$	(C)	$\frac{3^{n-1}}{n+1}$	(D)	None of these		
The	mean height of 25 boy	s in a c	class is 150 cm, and th	ne mea	an height of 35 girls ir	the sa	ame class is 145 cm.		
The	combined mean height	of 60 :	students in the class is	s	_(approximately).				
(A)	143	(B)	146	(C)	147	(D)	145		
		_							
	A ba horiz (A) The f in se (a) (b) (c) (A) Give by () (A) The f (A) The f (A)	A balloon is connected to a horizontal. Determine the h (A) $107.5\sqrt{3}$ m The following are the steps i in sequential order. (a) $12-14+a=0 \Rightarrow a=$ (b) By factor theorem, f((c) Let $f(x) = 3x^2 - 7x +$ (A) cba Given $ax^2 + bx + c$ is a qua by $(x + 1)$, $(x + 2)$ and $(x + 3)$ (A) 1 The arithmetic mean of the (A) $\frac{3^n}{2n}$ The mean height of 25 boys The combined mean height (A) 143	A balloon is connected to a meter horizontal. Determine the height of (A) $107.5\sqrt{3}$ m (B) The following are the steps involves in sequential order. (a) $12-14+a=0 \Rightarrow a=2$ (b) By factor theorem, $f(2) = 0$ (c) Let $f(x) = 3x^2 - 7x + a$ (A) cba (B) Given $ax^2 + bx + c$ is a quadratic by $(x + 1), (x + 2)$ and $(x + 3)$. Fin (A) 1 (B) The arithmetic mean of the series (A) $\frac{3^n}{2n}$ (B) The mean height of 25 boys in a c The combined mean height of 60 s (A) 143 (B)	A balloon is connected to a meteorological ground stathorizontal. Determine the height of the balloon from the (A) $107.5\sqrt{3}$ m (B) $100\sqrt{3}$ m The following are the steps involved in finding the value of in sequential order. (a) $12-14+a=0 \Rightarrow a=2$ (b) By factor theorem, $f(2)=0 \Rightarrow 3(2)^2 - 7(2) + a = 0$ (c) Let $f(x) = 3x^2 - 7x + a$ (A) cba (B) bca Given $ax^2 + bx + c$ is a quadratic polynomial in x and let by $(x + 1), (x + 2)$ and $(x + 3)$. Find the value of $a + b + c$ (A) 1 (B) 2 The arithmetic mean of the series $1, 3, 3^2, \dots, 3^{n-1}$ is (A) $\frac{3^n}{2n}$ (B) $\frac{3^n - 1}{2n}$ The mean height of 25 boys in a class is 150 cm, and the theorem is a series (A) 143 (B) 146	A balloon is connected to a meteorological ground station by horizontal. Determine the height of the balloon from the ground (A) $107.5\sqrt{3}$ m (B) $100\sqrt{3}$ m (C). The following are the steps involved in finding the value of a which is sequential order. (a) $12-14+a=0 \Rightarrow a=2$ (b) By factor theorem, $f(2)=0 \Rightarrow 3(2)^2 - 7(2) + a = 0$ (c) Let $f(x) = 3x^2 - 7x + a$ (A) cba (B) bca (C). Given $ax^2 + bx + c$ is a quadratic polynomial in x and leaves response by $(x + 1), (x + 2)$ and $(x + 3)$. Find the value of $a + b + c$. (A) 1 (B) 2 (C). The arithmetic mean of the series 1, 3, $3^2, \dots, 3^{n-1}$ is (A) $\frac{3^n}{2n}$ (B) $\frac{3^n - 1}{2n}$ (C). The mean height of 25 boys in a class is 150 cm, and the mean the combined mean height of 60 students in the class is (A) 143 (B) 146 (C)	A balloon is connected to a meteorological ground station by a cable of length 21 horizontal. Determine the height of the balloon from the ground. Assume that there (A) 107.5 $\sqrt{3}$ m (B) 100 $\sqrt{3}$ m (C) 215 $\sqrt{3}$ m The following are the steps involved in finding the value of a when x – 2 is a factor of in sequential order. (a) 12–14+a = 0 \Rightarrow a = 2 (b) By factor theorem, f(2) = 0 \Rightarrow 3(2) ² – 7(2) + a = 0 (c) Let f(x) = 3x ² – 7x + a (A) cba (B) bca (C) cab Given ax ² + bx + c is a quadratic polynomial in x and leaves remainders 6, 11 and 1 by (x + 1), (x + 2) and (x + 3). Find the value of a + b + c. (A) 1 (B) 2 (C) 3 The arithmetic mean of the series 1, 3, 3 ² ,3 ⁿ⁻¹ is (A) $\frac{3^{n}}{2n}$ (B) $\frac{3^{n}-1}{2n}$ (C) $\frac{3^{n-1}}{n+1}$ The mean height of 25 boys in a class is 150 cm, and the mean height of 35 girls in The combined mean height of 60 students in the class is(approximately). (A) 143 (B) 146 (C) 147	A balloon is connected to a meteorological ground station by a cable of length 215 m in horizontal. Determine the height of the balloon from the ground. Assume that there is no signal (A) $107.5\sqrt{3}$ m (B) $100\sqrt{3}$ m (C) $215\sqrt{3}$ m (D). The following are the steps involved in finding the value of a when x – 2 is a factor of $3x^2 - 1$ in sequential order. (a) $12-14+a=0 \Rightarrow a=2$ (b) By factor theorem, $f(2)=0 \Rightarrow 3(2)^2 - 7(2) + a = 0$ (c) Let $f(x) = 3x^2 - 7x + a$ (A) cba (B) bca (C) cab (D). Given $ax^2 + bx + c$ is a quadratic polynomial in x and leaves remainders 6, 11 and 18 respectively (x + 1), (x + 2) and (x + 3). Find the value of $a + b + c$. (A) 1 (B) 2 (C) 3 (D). The arithmetic mean of the series 1, 3, 3^2 , 3^{n-1} is (A) $\frac{3^n}{2n}$ (B) $\frac{3^n - 1}{2n}$ (C) $\frac{3^{n-1}}{n+1}$ (D). The mean height of 25 boys in a class is 150 cm, and the mean height of 35 girls in the set the combined mean height of 60 students in the class is(approximately). (A) 143 (B) 146 (C) 147 (D).		

Q.15 In the shown figure, O is the centre of the circle and AD is a tangent to the circle at A. If $\angle CAD = 55^{\circ}$ and $\angle ADC = 25^{\circ}$, then $\angle ABO =$

			B			25° D		
	(A)	10°	(B)	15°	(C)	20°	(D)	25°
Q.16	In ∆F PM J	PQR, PQ = 6cm, PR = _ QR . Find QR.	9cm,	PR = 9 cm and M is	a point	t on QR such that it di	vides (QR in the ratio 1:2.
	(A)	$\sqrt{18}$ cm	(B)	3√12 cm	(C)	$3\sqrt{15}$ cm	(D)	$\sqrt{20}$ cm
Q.17	The	base of a pyramid is an	n-side	ed regular polygon of a	area 3	60 cm ² . The total sur	ace a	rea of the pyramid is
	900	cm ² . Each lateral face	of the	pyramid has an area	of 300	cm ² . Find n.		
	(A)	20	(B)	18	(C)	16	(D)	24
Q.18	The c with t the c	outer radius and inner ra pronze. The densities o ylinder formed.(in gm).	adius c f gold	f a 30 cm long cylindri and bronze are 20 gm	cal gol 1/cm ³ :	d pipe are 14 cm and 7 and 30 gm/cm ³ resp	cm re	espectively. It is filled ly. Find the weight of
	(A)	66150 π	(B)	99225 π	(C)	132300 π	(D)	198450 π
			_					

Q.19 In the following figure, a circle is inscribed in square ABCD and the square is circumscribed by a circle. If the radius of the smaller circle is r cm, then find the area of the shaded region (in cm²).

- (A) $\left(\frac{\pi-2}{4}\right)r^2$ (B) $\left(\frac{3\pi-4}{2}\right)r^2$ (C) $\left(\frac{\pi+2}{4}\right)r^2$ (D) $\left(\frac{\pi-2}{2}\right)r^2$
- Q.20 The Independence day of India in 2007 was celebrated on a Wednesday, then Children's day in 2008 was celebrated on a _____.
 - (A) Friday (B) Saturday (C) Sunday (D) Monday

Space for rough work

PART - II (PHYSICS)

(SINGLE CORRECT ANSWER TYPE)

This section contains (21-30) multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Q.21 In the given circuit, the value of total current I passing will be :

Q.25	How many electrons constitute current of one micro ampere in one second ?							
	(A)	6.25×10^{6}	(B)	6.25×10^{12}	(C)	6.25×10^9	(D)	6.25×10^{15}
Q.26	The	velocity of an object is direcly proportional to the time elapsed, the object has :						
	(A)	uniform speed			(B)	uniform velocity		
	(C)	uniform acceleration			(D)	variable acceleration		
Q.27	The	atmosphere is held to t	he ear	th due to :				
	(A)	Winds	(B)	Clouds	(C)	Gravity	(D)	Rotation of earth
Q.28	The v	weight of a block in air is lock is (in Newtons):	s 60 N.	. When it is immersed	in wat	er completely its weigh	nt is 52	N. Buoyant force on
	(A)	52	(B)	60	(C)	8	(D)	112
Q.29	The	S.I. unit of magnetic fie	ld inte	nsity is -				
	(A)	Weber	(B)	Tesla	(C)	Oersted	(D)	Gauss
Q.30	A Fo	rce of 4 N acts on a bo	dy of n	nass 40 kg for distanc	e of 2r	m. The kinetic energy	acquir	ed by the body is :
	(A)	16 J	(B)	$32 \times 10^8 \text{ erg}$	(C)	8 J	(D)	32 erg

Space for rough work

PART - III (CHEMISTRY)

(SINGLE CORRECT ANSWER TYPE)

This section contains (31-40) multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Q.31	The number of molecules in 5.65 g of ammonia is approximately $x \times 10^{23}$. What is the value of x ?									
	(A)	3	(B)	2	(C)	4	(D)	1		
Q.32	How	many total protons are	found	in one molecule	of retional (C ₂₀ H ₃₀ O)?				
	(A)	51	(B)	151	(C)	600	(D)	158		
Q.33	The	graph shows the tempra	ature o	hange of solid 'A	Υ;					
				1		/				
				90°C -						
	room temperature									
				l	timo	>				
					ume					
	Whic	ch of the following set o	f state	ments is correct	for solid 'A'	at 90°C?				
	(A)	The solid 'A' is underg	joing a	change of state						
	(B)	Solid 'A' is an impure	substa	ance.						
	(C)	Solid 'A' is a pure sub	stance	Э.						
	(D)	Solid 'A' is has a fixed	melti	ng point.						
	(A)	A only	(B)	A & D	(C)	A, B & D	(D)	A, C & D		
			_							
				Space for r	ouah w <mark>or</mark> l					

- Q.34 Acetic acid was added to a solid X kept in a test tube. A colourless and odourless gas Y was evolved. The gas was passed through lime water which turned milky. It was concluded that
 - (A) Solid X is sodium hydroxide and the gas Y is CO_2 .
 - (B) Solid X is sodium carbonate and the gas Y is CO_2 .
 - (C) Solid X is sodium acetate and the gas Y is CO₂.
 - (D) Solid X is sodium hydrogen carbonate and the gas Y is SO₂.
- Q.35 The postulates of Bohr's atomic model are given below. Arrange them in the correct sequence.
 - (A) As long as the electron revolves in a particular orbit, the electron does not lose its energy. Therefore, the orbits are called stationary orbits and the electrons are said to be in stationary energy states.
 - (B) Electron revolve round the nucleus in specified circular path called orbits or shells.
 - (C) The energy associated with a certain energy level increase with the increase of distance from the nucleus.
 - (D) An electron jumps from a lower energy level to a higher energy level by absorbing energy. But when it jumps from a higher to lower energy level, energy is emitted in the form of electromagnetic radiation.
 - (E) each orbit or shell is associated with definite amount of energy. Hence these are also called energy levels and are designated as K, L, M, N respectively.
 - (A) acdeb (B) bcead (C) becad (D) badce

Q.36 Which among the following are isobars?

(A) ${}_{b}X^{a}, {}_{b}Y^{a+1}$ (B) ${}_{b}X^{a}, {}_{c}Y^{b}$ (C) ${}_{b}X^{a}, {}_{b+1}Y^{a}$ (D) ${}_{b}X^{a}, {}_{b-1}Y^{a-1}$

Comprehensionv (For Q. No. 38 to Q.No 40)

A new way of expressing the concentration of H^+ ions in solution is pH. pH is defined as the negative logarithm to base 10 of H^+ ion concentration.

 $pH = -log_{10}[H^+]$, where $[H^+]$ represent the concentration of H^+ ions in moles per litre.

Pure water is considered neutral as it dissociates to give equal concentration of H⁺ and OH⁻ ions as follows

 $H_2O \rightleftharpoons H^+ + OH^-$.

 $[H^{\scriptscriptstyle +}] = [OH^{\scriptscriptstyle -}] = 10^{\scriptscriptstyle -7}$ moles per litre at $25^{\circ}C$.

As per the formula, $pH = -\log_{10}(10^{-7}) = 7$, hence pH of water is 7.

 K_w is the ionic product of water which is equila to product of H^+ and OH^- concentration at a particular temperature.

At $25^{\circ}C$, $K_{w} = [H^{+}] \cdot [OH^{-}] = 10^{-14} \text{ mol}^{2} / L^{2}$.

Hence, pH + pOH = 14 (only at $25^{\circ}C$).

For an acidic solution $[H^+] > [OH^-]$ which is numerically greater than 10^{-7} mol ion /litre (at 25° C).

Lower the pH value, greater will be the acidic strength of the solution.

For a basic solution $[H^+] < [OH^-]$ which is numerically less that 10^{-7} mol ion/litre. Thus, pH of a base is always greater than 7 at 25°C.

Greater the pH value greater will be the basic strength of the solution.

 $(\log 10 = 1; \log 0.1 = -1; \log 100 = 2)$

Q.38 You are provided with four solutions P, Q, R, S with $[H^+]$ values (in mol/litre) as 1.076×10^{-13} , 1.89×10^{-12} , 3.2×10^{-10} and 2.7×10^{-11} respectively. Which solution will be most acidic ?

(A) P (B) Q (C) R (D) S

Q.39 At $60^{\circ}C$, if water has $[H^{+}] = 16^{-5}$ mole/litre, then the solution will be

- (A) Acidic (B) Basic (C) Amphoteric (D) Neutral
- Q.40 Now if 3.65 gm of HCl is added to 1 litre of water (as mentoned in Q. NO. 16) What will be the pH of resultant solution at 60° C (atomic weight of Cl = 35.5, H = 1)?
 - (A) 0.01 (B) 0.1 (C) 1 (D) 10

PART - IV (BIOLOGY)

(SINGLE CORRECT ANSWER TYPE)

This section contains (41-50) multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Q.41 Select the alternative giving correct identification and function of the organelle 'A' in the diagram.

- (A) Endoplasmic reticulum-synthesis of lipids
- (B) Mitochondria produce cellular energy in the from at ATP
- (C) Golgi body packaging of material
- (D) Lysosomes secrete hydrolytic enzymes
- Q.42 Which one of the following organs is NOT associated with the alimentary canal?
 - (A) Liver (B) Gall bladder (C) Diaphragm (D) Colon

Q.43 Given is a table describing the social organization of Honey bees. Which of the following is a correct match of the description of honey bees ?

		Types of Honey Bees	Description
	Ι	Drone	Female honey bees which prepare honey.
	Ш	Queen	Fertile female which lays eggs.
	III	Worker	Sterile males which look after the young ones, collect nectar and pollen.
(A) I (C) (and II an Only II is	e correct correct	(B) I and III are corect (D) II and III are correct
		Space	for rough work

Q.44 Compare the movement of substances in xylem and phloem tissues.

Feature	Xylem	Phloem
Material transported	Water and minerals	I
Process of movement	П	Translocation
Name of relevant theory	III, IV	Mass flow theory

Replace I, II, III and IV with the appropriate words.

- (A) I sucrose, II-asent of sap, III root pressure theory, IV-guttation
- (B) I starch, II ascent of sap, III guttation, IV transpiration pull
- (C) I sucrose, II-ascent of sap, III-root pressure theory, IV transpiration pull
- (D) I glucose, II pressure flow hypothesis, II root pressure theory, IV adhesion cohesion theory
- Q.45 Two test tubes are filled with a solution of bromothymol blud. A student exhales through a straw into each tube, and the bromothymol blue turns yellow. An aquatic green plant is placed in each tube, and the tubes are corked. One tube is placed in the dark, and the other tube is placed in direct sunlight. The yellow solution in the tube in sunlight turns blue, while the one in the dark remains yellow. Which statement best explains why the solution in the tube placed in sunlight returns to a blue colour ?

(D)

- (A) Oxygen was produced by photosynthesis.
- (B) Oxygen was removed by respiration.

Carbon dioxide was produced by respiration.

(C) Carbon dioxide was removed by photosynthesis.

Space for rough work

Q.46 The anterior pituitary gland facilitates growth of an individual by release of the human growth hormone (HGH) which in turn is regulated by two hormones namely growth hormone releasing hormone (GHRH) and growth hormone inhibiting hormone (GHIH). Imbalance of these hormones could result in gigantism (an individual gains excessive height), dwarfism (a short statured individual) or acromegaly (thickening of limbs, fingers and toes). Interpret the data given below and select the appropriate statement :

Individual	Age group	Hormones
1	2 - 5 yrs.	Excessive GHRH
2	2 - 5 yrs.	Normal GHRH
3	30 - 35 yrs.	Excessive GHRH
4	30 - 35 yrs.	Excessive GHIH
5	2 - 5 yrs.	Excessive GHIH

- (A) 1 and 3 will lead to gigantism while 4 and 5 will show dwarfism
- (B) 3 will show gigantism, 1 will show acromegaly and 4 and 5 will show dwarfism
- (C) 2, 3 and 4 will show normal growth
- (D) 1 will show gigantism, 3 will show acromegaly and 5 will show dwarfism

- Q.47 Part of the respiratory system where gaseous exchange takes place is
 - (A) The parts starting from external nostrils upto terminal bronchioles
 - (B) Alveoli and their ducts
 - (C) All bronchi and terminal bronchioles
 - (D) All bronchioles
- Q.48 The principal nitrogenous excretory compound in humans is synthesized
 - (A) in liver but eliminated mostly through kidneys.
 - (B) in kidneys but eliminated mostly through liver.
 - (C) in kidneys as well as eliminated by kidneys.
 - (D) in liver and also eliminated by the same through bile.
- Q.49 Given below are certain feaures.
 - X. One produces spores, whereas the other produces seeds.
 - Y. One is photosynthetic, whereas the other is saprophytic.
 - Z. One contains xylem and phloem, whereas the other does not.

Find the pair of two divisions that can represent X, Y and Z respectively

- A. Monocot and dicot
- C. Ferns and mosses

- B. Algae and fungi
- D. Ferns and gymnosperms
- E. Gymnosperms and angiosperms
- (A) X = A, Y = B and Z = D
- (C) X = E, Y = D and Z = C

- (B) X = D, Y = B and Z = C
- (D) X = B, Y = E and Z = A

- Q.50 Which of the following is an effect of HIV on the human body?
 - (A) It reduces the number of erythrocytes in the blood
 - (B) It reduces the number of platelets in the blood
 - (C) It increases the amount of plasma in the blood
 - (D) It reduces the number of lymphocytes in the blood

Space for rough work

PART - V (MENTAL ABILITY)

(SINGLE CORRECT ANSWER TYPE)

This section contains (51-60) multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Q.51	Which one of the following countries fall in the category of 'coming together federation?							
	(A)	India	(B)	US	(C)	Spain	(D)	Belgium.
Q.52	Amo	ng the following which	counti	ry suffered disintegrat	tion du	e to political fights o	n the b	asis of religious and
	ethni	c identities ?						
	(A)	Belgium	(B)	India	(C)	yugoslavia	(D)	Nether lands
Q.53	Theo	congress passed resolu	ution to	begin non-cooperatio	on mo	vement in its session	at	
	(A)	Nagpur	(B)	Bombay	(C)	Lahore	(D)	Calcutta.
Q.54	Rowl	att act was passed in						
	(A)	1919	(B)	1917	(C)	1918	(D)	1920
Q.55	lf '+	' means '×', '-' me	ans '	÷', '÷' means '+' a	nd '×	' means '-', then	what v	vill be the value of
	16 ÷	$64 - 4 \times 4 + 3 = ?$						
	(A)	20	(B)	15.12	(C)	52	(D)	None of these
Q.56	Imag	ine a clock where the h	iour ha	and makes only one re	evoluti	on in 1 day (i.e., 24 hi	r) wher	eas the minute hand
	comp	oletes one revolution in	one h	our. What is the angle	betwe	en the two hands at 1	4 : 50	hr as per this clock?
	(A)	90°	(B)	120°	(C)	77.5°	(D)	162.5°
				Space for rough	worl			

Q.57 How many odd numbers are there in the following number series, which are immediately followed by an odd number? 7 3 2 9 5 7 4 1 3 6 4 9 5 4 6 5 2 7 2 4 1 6 7 2 1 3 (A) 4 (B) 6 (C) more than 6 3 (D) Q.58 The minute hand of a clock overtakes the hour hand at intervals of 65 min. How much in a day does the clock gain or lose? (A) Gains 56 $\frac{8}{77}$ min (B) Loses $32 \frac{8}{11}$ min (D) Gains $10\frac{10}{143}$ min (C) Loses 10 $\frac{10}{143}$ min Six students A, B, C, D, E and F are sitting in the field. A and B are from Delhi while the rest are from Bangalore. Q.59 D and E are tall while others are short. A, C and D are girls while others are boys. Who is the tall girl from **Bangalor?** (A) C (B) D (C) Е (D) F Q.60 Find the missing character (?). (A) 112 (B) 145 (C) 135 (D) 102 Space for rough work

SAMPLE TEST PAPER ANSWER KEY

1.	(D)	2.	(A)	3.	(B)	4.	(C)
5.	(A)	6.	(A)	7.	(B)	8.	(A)
9.	(A)	10.	(A)	11.	(A)	12.	(B)
13.	(B)	14.	(C)	15.	(A)	16.	(C)
17.	(B)	18.	(C)	19.	(D)	20.	(A)
21.	(B)	22.	(D)	23.	(A)	24.	(D)
25.	(B)	26.	(C)	27.	(C)	28.	(C)
29.	(B)	30.	(C)	31.	(B)	32.	(D)
33.	(D)	34.	(B)	35.	(C)	36.	(C)
37.	(A)	38.	(C)	39.	(A)	40.	(C)
41.	(B)	42.	(C)	43.	(C)	44.	(C)
45.	(C)	46.	(D)	47.	(B)	48.	(A)
49.	(B)	50.	(D)	51.	(B)	52.	(C)
53.	(A)	54.	(A)	55.	(A)	56.	(C)
57.	(B)	58.	(D)	59.	(B)	60.	(C)

V-MAT REWARDS & RECOGNITION

LMAT- 2016 Glimpses

V-MAT- 2017 Glimpses

LIMAT -2018 Glimpse

Get Complimentary Online Test Series (NTSE/IJSO/JEE/NEET) with V-MAT Registration

