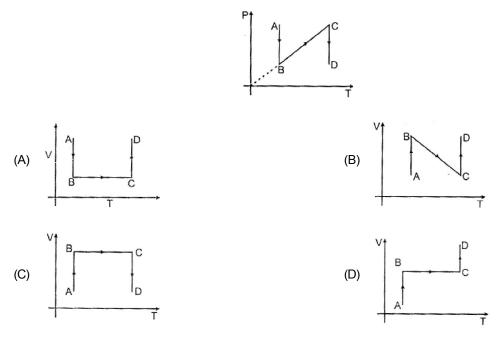


SAMPLE PAPER

Time : 3 :00 hours.

(Class 11th)

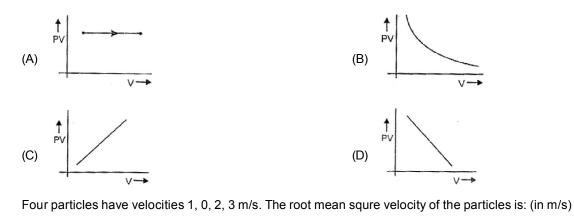

Maximum Marks: 360

INSTRUCTIONS

ATOR	1.	Immediately fill in the particulars on this page of the Test Booklet with Black Ball Point Pen . Use of pencil is strictly prohibited.							
BY THE INVALIDATOR	2.	The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particular carefully.							
王	3.	The test is of 3 hours duration.							
	4.	The Test Booklet consists of 90 questions. The maximum marks are 360.							
0 S O C	5.	There are three parts in the question paper A, B, C consisting of Physic, Chemistry and Mathematics having total 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response.							
SEAL WITHOUT BEING INSTRUCTED TO	6.	Candidates will be awarded marks as stated above in Instructions No. 5 for correct response of each question. ¼ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.							
EING INST	7.	There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 6 above.							
HOUT E	8.	No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc., except the Admit Card inside the examination room/hall.							
EAL WIT	9.	Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in one page at the end of the booklet.							
THE SE	10.	On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/ Hall. <i>However, the candidates are allowed to take away this Test Booklet with them.</i>							
NOT BREAK THE	11.	The CODE for this Booklet A . Make sure that the CODE printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.							
N OG	12.	Do not fold or make any stray marks on the Answer Sheet.							
Ro	Name of the Candiate (in Capital letters) : Roll Number : in figures : in words : Name of Examination Centre (in Capital letters) :								
Ca	Candidate's Signature : Invigilator's Signature :								

PART - I PHYSICS

Q.1 P-T diagram is shown below then choose the corresponding V-T diagram


Q.2 Which of the following will have maximum total kinetic energy at temperature 300 K.

(A) $1 \text{ kg}, \text{ H}_2$ (B) 1 kg, He(C) $\frac{1}{2} \text{ kgH}_2 + \frac{1}{2} \text{kgHe}$ (D) $\frac{1}{4} \text{ kgH}_2 + \frac{3}{4} \text{kgHe}$

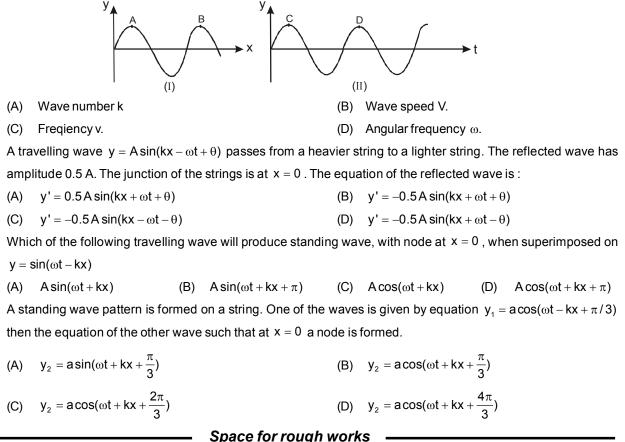
Space for rough works

Q.3 For an adiabatic process graph between PV & V for a sample of ideal gas will be :

	(A)	3.5	(B)	√3.5	(C)	1.5	(D)	$\sqrt{\frac{14}{3}}$
Q.5		ermodynamic system is t ted by the gas during the		0	D as	shown in figure. He	at	
	(A)	2 PV	-		(B)	4 PV		
	(C)	$\frac{1}{2}$ PV			(D)	PV		Volume \xrightarrow{V}
Q.6	The	change in internal energy	of two	moles of a gas during a	diaba	tic expansion is foun	d to b	e -100 joule. The work
	done	e during the process is -						
	(A)	100 joule			(B)	-100 joule		
	(C)	zero			(D)	200 joule		

Space for rough works

Q.4


V-SAT2018_SAMPLE PAPER_11th [4]

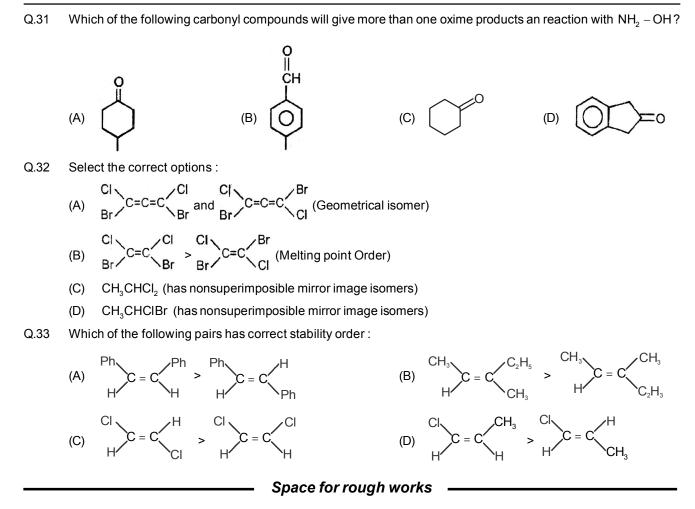
Q.7 There are two parts of a vessel. The pressure in one part is P and its volume is V. The							Vaccum			
	volume of another part is 4V and there is vaccum in it. If the intervening wall is ruptured, \bigvee						4V			
	then work done by the gas and change in its internal energy will be-									
	(A)	$\delta W = 2PV, \ dU = -ve$			(B)	$\delta W = 3PV, \ dU = 0$				
	(C)	$\delta W=\text{0, } d\text{U}=+\text{ve}$			(D)	$\delta W=\text{0, } dU=\text{0}$				
Q.8	lf a bi	imetallic strip is heated,	it will							
	(A)	Bend towards the metal with lower thermal expansion coefficient.								
	(B)	Bend towards the metal	with h	nigher thermal expansio	on coe	fficient.				
	(C)	Twist itself into helix]								
	(D)	Have no bending.								
Q.9	A per	ndulum clock has an iron	pend	ulum 1m long ($\alpha_{iron} = 1$	0 ⁻⁵ /°	C). If the temperature	rises	by 10)°C, the clock-	
	(A)	Will lose 8 seconds per	day		(B)	Will lose 4.32 secon	ds pe	er day	,	
	(C)	Will gain 8 seconds per	day		(D)	Will gain 4.32 secon	ids pe	er day	,	
Q.10	The v	volume of a solid decrese	es by	0.6% when it is cooled	throug	gh 50°C. Its coefficien	nt of li	nere	xpansion is -	
	(A)	$4 \times 10^{-6} K$	(B)	$5 \times 10^{-5} K$	(C)	$6 \times 10^4 K$	(D)	4 ×	10 ⁻⁵ K	
Q.11	Equa will be	tion of two S.H.M. $\mathbf{x}_1 = \mathbf{x}_2$	5sin($2\pi t + \pi/4$), $x_2 = 5. \sqrt{2}$ (s	sin 2t +	$\cos 2\pi t$) ratio of amp	litude	e & ph	ase difference	
	(A)	2 : 1, 0	(B)	1 : 2, 0	(C)	1:2,π/2	(D)	2:1	,π/2	
				Space for rough	worl	ks ———				
				, 5						

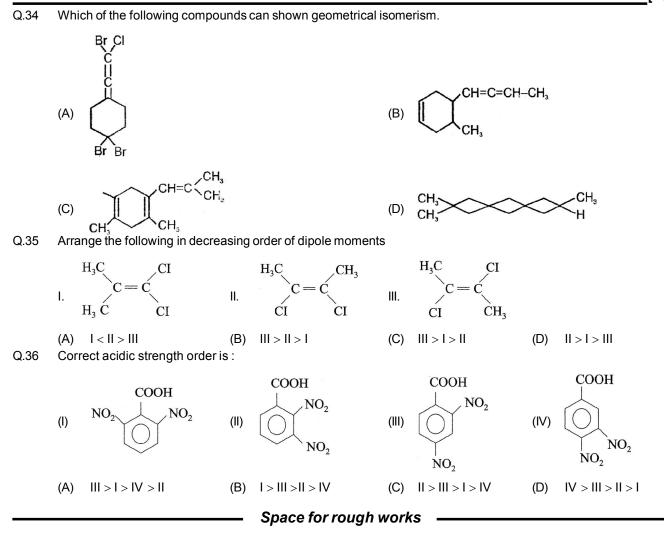
Q.12 The graph in the figure shows how the displacement of a particle describing S.H.M.								Y /:
varies with time. Which one of the following statements is not true?								T/2
	(A)	The force is zero at time	3T 4				y	
	(B)	The velocity is maximun	n at tir	me T/2				I
	(C)	The acceleration is max	um a	t time T	(D)	The P.E. = total ene	ergy at	time T/2
Q.13	Fora	a particle executing SHM,	whicl	h of the following staten	nents	does not hold good ?	>	
	(A)	The total energy of the p	articl	e always remains the sa	ame			
	(B)	The restoring force is alv	vays	directed towards a fixed	point	t		
	(C)	The restoring force is m	aximı	um at the extreme posit	ions			
	(D)	The velocity of the partic	le is r	minimum at the centre o	of mot	ion of the particle		
Q.14	The	total energy of the body e	kecuti	ing S.H.M. is E. Then th	e kine	etic energy when the	displa	cement is half of the
	amp	litude, is						
	(A)	<u>E</u> 2	(B)	<u>E</u> 4	(C)	<u>3E</u> 4	(D)	$\frac{\sqrt{3}}{4}E$
Q.15	A lin	ear harmoic oscillator of fo	orce c	constant 2×10 ⁶ N/m ai	nd am	plitude 0.01 m has a	total n	nechanical energy of
	160	joules. Its -						
	(A)	Maximum potential ener	gy is	100 J	(B)	Maximun K.E. is 10	0 J	
	(C)	Maximum P.E. is 40 J			(D)	Minimum P.E. is ze	ro	
Q.16	Ара	rticle executing S.H.M of	ampli	itude 4 cm and T = 4 sec	c. The	e time taken by it to m	iove fr	om positive extreme
	posi	tion to half the amplitude	s -					
	(A)	1 sec	(B)	1/3 sec	(C)	2/3 sec	(D)	$\sqrt{3/2}$ sec
				Space for rough	work	is		

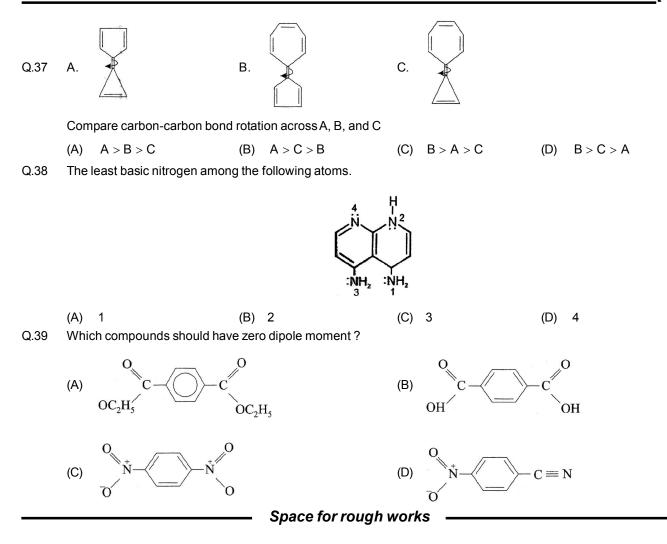
Q.17	One mass m is suspended from a spring. Time period of oscillation is T. Now if spring is divided into n pieces &							
	thes	e are joined in paralled or	der th	en time period of oscilla	ition i	f same mass is suspe	ended	
	(A)	n²T	(B)	nT	(C)	T n	(D)	$\frac{T}{n^2}$
Q.18	Two	objects A and B of equal r	nass	are suspended from tw	o spri	ings of spring consta	nts k _A	and $\boldsymbol{k}_{_{B}}$ if the objects
	oscil	Ite vertically in such a man	ner th	at their maximum kinetio	c ene	rgies are equal, then t	he rat	io of their amplitudes
	is							
	(A)	$\frac{K_{B}}{K_{A}}$	(B)	$\sqrt{\frac{K_{\rm B}}{K_{\rm A}}}$	(C)	$\frac{K_{A}}{K_{B}}$	(D)	$\sqrt{\frac{K_{A}}{K_{B}}}$
Q.19	lf Le	ngth of simple pendulaun	is per	ndulaun is inecreased by	/ 6% 1	then percentage char	nge in	time-period will be
	(A)	3%	(B)	9%	(C)	6%	(D)	1/9%
Q.20	The	amplitude of a darmped ha	armor	nic oscillator become hav	/led ir	n 1 minute. After three	minu	tes the amplitude will
	beco	ome 1/x of initial amplitud	e wh	ere x is -				
	(A)	8	(B)	2	(C)	3	(D)	4
Q.21	Two	particles of medium disturb	ed by	the wave propagation are	e at x	$_{1} = 0$ and $x_{2} = 1$ cm. T	he res	pective displacement
	(in c	m) of the particles can be	giver	by the equations :				
	y ₁ =	$2\sin 3\pi t$, y ₂ = $2\sin(3\pi t - t)$	π/8)	The wave velocity is :				
	(A)	16 cm/sec	(B)	24 cm/sec	(C)	12 cm/sec	(D)	8 cm/sec.
Q.22	A str	ing is stretched by a force	of 40	N . The mass of 10 m le	ngth	of this string is 0.01k	g. The	speed of transverse
	wave	es in this string will be -						
	(A)	400 m/s	(B)	40 m/s	(C)	200 m/s	(D)	80 m/s
				Space for rough v	vork	(S		

Q.23 The same progressive wave is represented by two graphs I and II. Graph I shows how the displacement 'y' varies with the distance x along the wave at a given time. Graph II shows how y varies with time t at a give point on the wave. The ratio of measurements AB to CD, marked on the curves, represents

Space for rough works

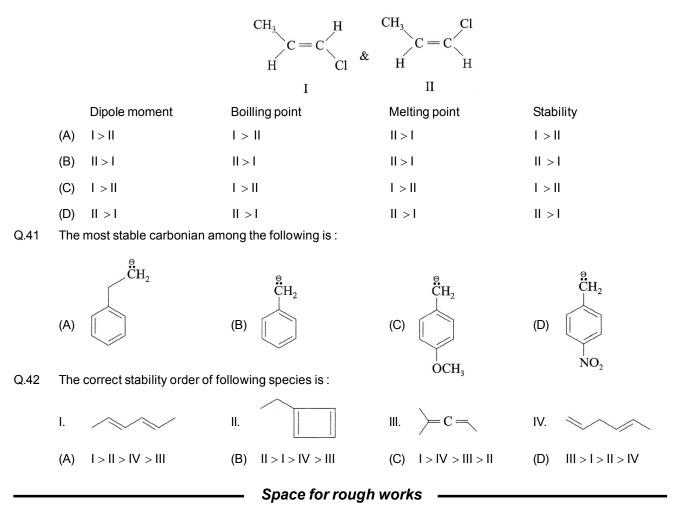

Q.24

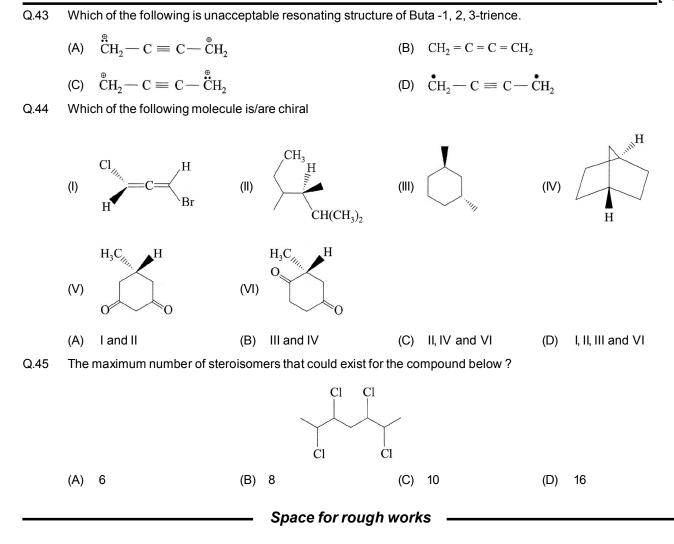

Q.25

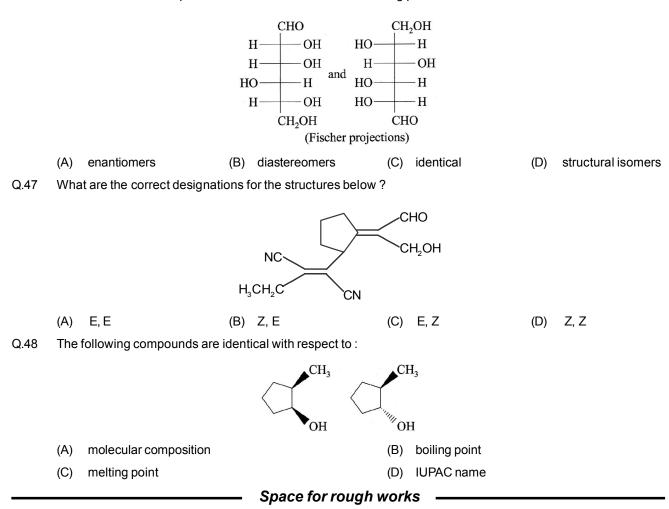

Q.26

Q.27	7 Consider following statements and choose the correct option;						
S_1 : A standing wave pattern is formed in a string. The power transfer through a point (other than node a is zero always.							
	S_2 : If the equation of transverse wave is $y = 5 \sin 2\pi \left[\frac{t}{0.04} - \frac{x}{40} \right]$, where distance is in cm and time in second,						
	then the wavelength will be 40 cr	m.					
	S_3 : The phase difference betwee	en two points separated by ?	1 m in a wave of frequenc	y 120 Hz is 90°. The velocity			
	of the wave is 480 m/s.						
	(A) FTT (I	(B) TTF	(C) T F T	(D) FFF			
Q.28	Two small boats are 10m apart or	n a lake. Each pops up and o	down with a period of 4.0	seconds due to wave motion			
	on the surface of water. When or	ne boat is at its highest poir	nt, the other boat is at its l	lowest point. Both boats are			
	always within a single cycle of th	he waves. The speed on the	e waves in m/s is :				
	(A) 2 m/s (I	(B) 2.5 m/s	(C) 10 m/s	(D) 5 m/s			
Q.29	Three waves of equal frequency h	having amplitudes $10\mu m$, 4μ	μm and $7 \mu m$ arrive at a g	given point with a successive			
	phase difference of $\pi/2$. The an	mplitude of the resulting way	ve in μm is				
	(A) 10 (I	(B) 5	(C) 15	(D) 20			
Q.30	The length of the wire shown in f						
	15 g. What is the frequency of vi			1 10kg			
	leaving the middle point of the mi	iddle point of the wire betwe	en the pulleys at rest?				
	(g10 m/s²)						
	(A) $\frac{100}{3}$ Hz (I	(B) $\frac{200}{3}$ Hz	(C) $\frac{400}{3}$ Hz	(D) $\frac{500}{3}$ Hz			
		– Space for rough v	works				

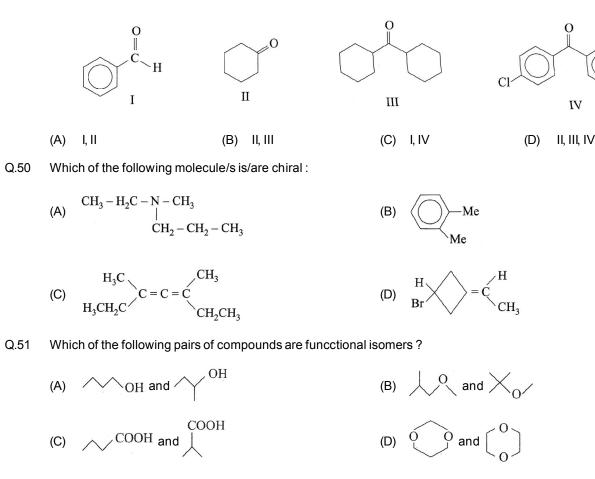
PART - II CHEMISTRY



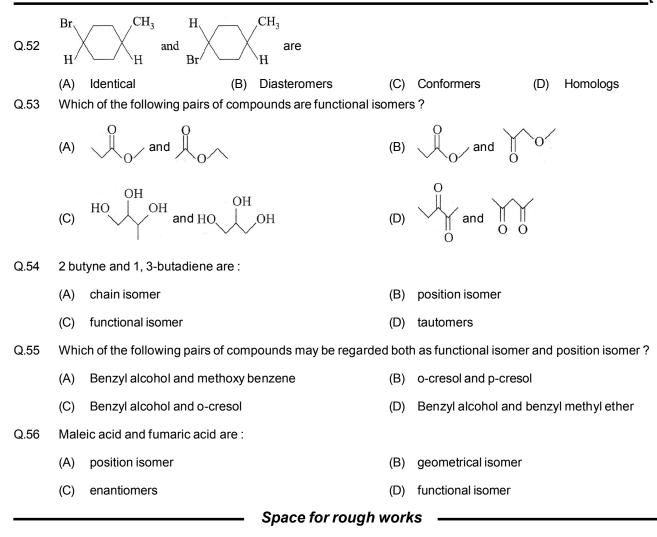


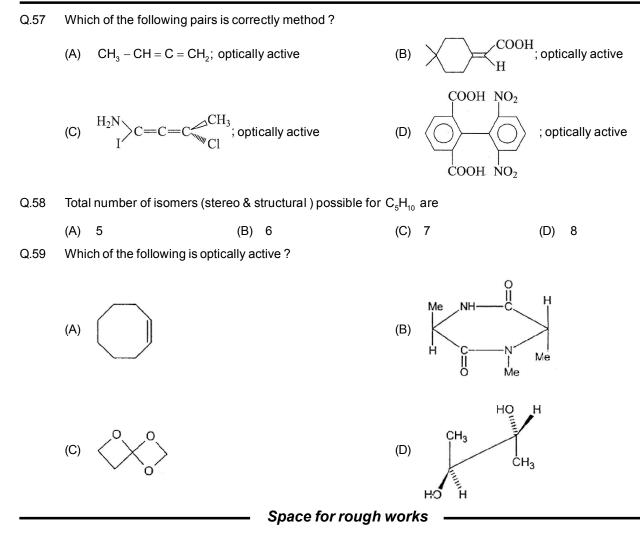


Q.40 Which of the following is correct set of physical properties of the geometrical isomers

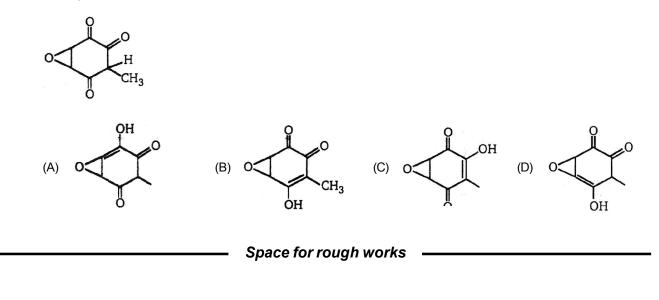


Q.46 What is the relationship between the molecules in the following pairs?




Q.49 Which of the following will form only one oxime on reaction with NH₂OH solution?

Space for rough works



Q.60 Identify most stable enol form of terric acid :

Space for rough works

Head Office : 216 & 217, 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna -01, Ph.- 9631835989, 0612-3210240

PART - III MATHEMATICS

Q.61	If $z(1+a) = b + ic$ and $a^2 + b^2 + c^2 = 1$, then $[(1+iz)/(1-iz)] =$						
	(A) $\frac{a+ib}{1+c}$	(B) $\frac{b-ic}{1+a}$	(C) $\frac{a+ic}{1+b}$	(D) None of these			
Q.62	Number of solutions of the ed	quation z ³ + [3(z) ²]/ z = 0 w	here z is a complex num	ber is			
	(A) 2	(B) 3	(C) 6	(D) 5			
Q.63	If $a^2 + b^2 = 1$, then $(1 + b + ia)$)/(1+b+ia) =					
	(A) 1	(B) 2	(C) b + ia	(D) a + ib			
Q.64	Let z, w be compex numbers	s such that $\overline{z} + i\overline{w} = 0$ and arg	$zw = \pi$ Then arg z equals	S			
	(A) $\frac{\pi}{4}$	(B) $\frac{\pi}{2}$	(C) $\frac{3\pi}{4}$	(D) $\frac{5\pi}{4}$			
Q.65	If $ z^2 - 3 = 3 z $, then the m	naximum value of z is					
	(A) 1	(B) $\frac{3+\sqrt{21}}{2}$	(C) $\frac{\sqrt{21}-3}{2}$	(D) None of these			
Q.66	If $ 2z-1 = z-2 $ and z_1, z_2	,, z ₃ are complex numbers suc	ch that $ \mathbf{z}_1 - \alpha < \mathbf{a}$, $ \mathbf{z}_2 - $	$\beta \mid < \beta$, then $\left \frac{z_1 + z_2}{a + \beta} \right $			
	(A) < z	(B) < 2 z	(C) > z	(D) > 2 z			
Q.67	If $z = (\lambda + 3) - i\sqrt{5 - \lambda^2}$, then	the locus of z is					
	(A) Ellipse	(B) Semicircle	(C) Parabole	(D) Straight line			
		— Space for rough	works ———				

Q.68 Which of the following is equal to $\sqrt[3]{-1}$?

	$(A) \frac{\sqrt{3} + \sqrt{-1}}{2}$	(B) $\frac{-\sqrt{3}+\sqrt{-1}}{\sqrt{-4}}$	$(C) \frac{\sqrt{3} - \sqrt{-1}}{\sqrt{-4}}$	(D) _√_1					
Q.69	If $\left \frac{z_1}{z_2} \right = 1$ and $\arg(z_1 z_2) = 0$,	then							
	(A) $Z_1 = Z_2$	(B) $ z_2 ^2 = z_1 z_2$	(C) $z_1 z_2 = 1$	(D) None of these					
Q.70	From a point $(\sin\theta, \cos\theta)$, if t	three normals can be drawn to	the paraboda $y^2 = 4ax$, 1	then the value of a is					
	(A) (1/2, 1)	(B) [-1/2, 0]	(C) [1/2, 0]	(D) (-1/2, 0) U(0, 1/2)					
Q.71	The length of normal chord	of the parabola $y^2 = 4x$ which	makes an angle of $\pi/4$ v	with the axis of x is					
	(A) 8	(B) 8√2	(C) 4	(D) 4√2					
Q.72		$y^{2} = 4ax$ at three points (ap ² , 2 x ² + qx + r = 0 and a(b - c)x ² - (B) q							
Q.73		circle which cuts orthogonally	(-)						
	(A) (3, 4)	(B) (4, 3)	(C) (5, 3)	(D) (2, 4)					
Q.74	If $2x + y + \lambda = 0$ is a normal	to the parabokla $y^2 = -8x$, the	en λ is						
	(A) 12	(B) ₋₁₂	(C) 24	(D) –24					
	Space for rough works								

Q.75	The equation of the line that passes through (10, -1) and is perpendicular to $y = \frac{x^2}{4} - 2$ is							
	(A) $4x + y = 39$ (B) $2x + y = 19$	(C) $x + y = 9$ (D) $x + 2y = 8$						
Q.76	The length of the shortest normal chord of the par	abola $y^2 = 4ax$ is						
	(A) _{2a√27} (B) 9a	(C) $a\sqrt{54}$ (D) None of these						
Q.77	A variable chord of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, (b > chord touches	\mathbf{a}), subtends a right angle at the center of the hyperbola if this						
	(A) A fixed circle concentric with the hyperbola	(B) A fixed ellipse concentric with hyperbola						
	(C) A fixed hyperbola conecntric with the hyperb	ole (D) A fixed parabole having vertex at (0, 0)						
Q.78	The asymptotes of the hyperbola $\frac{x^2}{a_1^2} - \frac{y^2}{b_1^2} = 1$ and	$\frac{x^2}{a_2^2} - \frac{y^2}{b_2^2} = 1$ are perpendicular to each other. Then,						
	(A) $a_1 / a_2 = b_1 b_2$ (B) $a_1 a_2 = b_1 b_2$	(C) $a_1a_2 + b_1b_2 = 0$ (D) $a_1 - a_2 = b_1 - b_2$						
Q.79	The chords of contanct of a point P w.r.t a hyperbo on	la and its auxiliary circle are at right angle. Then the point P lies						
	(A) Conjugate hyperbola	(B) One of the directrix						
	(C) One of the asymptotes	(D) None of these						
Q.80	If two distinct tangents can be drawn from the po then	int (α ,2) on different branchers of the hyperbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$,						
	(A) $ \alpha < 3/2$ (B) $ \alpha > 2/3$	(C) $ \alpha > 3$ (D) None of these						
	Space for	rough works						

Q.81	A hyperbola passes passes through (2, 3) and has asymptotes $3x - 4y + 5$ and $12x + 5y - 40 = 0$ Then, the equation of its trasverse axis is							
	(A)	77x - 21y - 265 = 0			(B)	21x - 77y + 265 = 0		
	(C)	21x - 77y - 265 = 0			(D)	21x + 77y - 265 = 0		
Q.82	The	asymptotes of the hyperb	ola x	y = hx + ky are				
	(A)	x-k=0 and $y-h=0$			(B)	x + k = 0 and $y + k =$	- 0	
	(B)	x - k = 0 and $y + h = 0$			(D)	x + k = 0 and $y - h =$	- 0	
Q.83	If th	e normals at P(θ) and Q(η	τ/2+	θ) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2}$	· = 1 m	eet the major axis at (3 and	g, respectively, then
	PG ²	$^{2} + Qg^{2} =$						
	(A)	$b^2(1-e^2)(2-e^2)$			(B)	$a^{2}(e^{4}-e^{2}+2)$		
	(C)	$a^{2}(1+e^{4})(e^{2}+2)$			(D)	$b^{2}(1+e^{4})(e^{2}+2)$		
Q.84	The	line $y = mx - \frac{(a^2 - b^2)m}{\sqrt{a^2 + b^2m^2}}$	is no	formal to the ellipse $\frac{x^2}{a^2}$	$+\frac{y^2}{b^2}=$	1 for all values of m l	pelon	ging to
	(A)	(0, 1)	(B)	(0, ∞)	(C)	R	(D)	None of these
Q.85	The is	equation of the line passir	ng thro	ough the center and bise	cting t	he chord $7x + y - 1 = 0$) of th	e ellipse $\frac{x^2}{1} + \frac{y^2}{7} = 1$
	(A)	x = y	(B)	2x = y	(C)	x = 2y	(D)	$\mathbf{x} + \mathbf{y} = 0$
				Space for rough	work	(S		

The equation of the chord of contact of the pair of tangents drawn to the ellipse $4x^2 + 9y^2 = 36$ from the point Q.86 (m, n) where $m \cdot n = m + n$, m, n being nonzero positive integers, is (B) 2x + 2y = 1(A) 2x + 9y = 18(C) 4x + 9y = 18(D) None of these The number of points on the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$ from which a pair of perpendicular tangents is drawn to the ellipse Q.87 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is (A) 0 (B) 2 (C) 1 (D) 4 Q.88 The equation of the ellipse whose axes are conicident with the coordinates axes and which touches the straight lines 3x - 2y - 20 = 0 and x + 6y - 20 = 0 is (C) $\frac{x^2}{10} + \frac{y^2}{40} = 1$ (D) $\frac{x^2}{40} + \frac{y^2}{30} = 1$ (A) $\frac{x^2}{40} + \frac{y^2}{10} = 1$ (B) $\frac{x^2}{5} + \frac{y^2}{8} = 1$ If $z = (i)^{(i)^{(i)}}$ where $i = \sqrt{-1}$, then |z| is equal to Q.89 (B) $e^{-\pi/2}$ (A) 1 (C) e^{-π} (D) None of these Roots of the equations are $(z + 1)^5 = (z - 1)^5$ are Q.90 (B) $\pm i \cot\left(\frac{\pi}{5}\right), \pm i \cot\left(\frac{2\pi}{5}\right)$ (A) $\pm i \tan\left(\frac{\pi}{5}\right), \pm i \tan\left(\frac{2\pi}{5}\right)$ (C) $\pm i \cot\left(\frac{\pi}{5}\right), \pm i \tan\left(\frac{2\pi}{5}\right)$ (D) None of these

Space for rough works