Hall Ticket	No												Question Paper Code: AHS006
	IN	ST	ITL	JTE	E O	F /							L ENGINEERING
BEGTION FOR LIBERT	(Autonomous) B.Tech I/II Semester Supplementary Examinations - July, 2017												
				/				~ ~	atio		·		

ENGINEERING PHYSICS

[Common for : I Semester (CSE, IT, ECE and EEE)]

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Define the terms dipole moment and polarization. Discuss the different polarizations mechanisms in dielectrics. [8M]
 - (b) If a NaCl crystal is subjected to an electric field of 1000 V/m and the resulting polarization is $4.3 \times 10^{-8} C/m^2$, calculate the dielectric constant of NaCl. [6M]
- (a) What is internal field? Derive an equation for internal field in case of one dimensional array of atoms in dielectric solids. [8M]
 - (b) A silicon material is subjected to a magnetic field of strength 1000 A/m. If the magnetic susceptibility of silicon is -0.3×10^{-5} , calculate its magnetization. Also evaluate the magnetic flux density of the field inside the material. [6M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Obtain an expression for energy density of radiation under equilibrium condition in terms of Einstein coefficients. [8M]
 (b) Each is the theorem is a single for the following following for the following follow
 - (b) Explain the three major engineering applications of laser. [6M]
- 4. (a) Explain the construction of He-Ne laser with neat diagram.Discuss its working in detail with energy level diagram. [8M]
 - (b) Calculate the energy difference in eV between the two energy levels of Neon atoms of He-Ne laser if the transition between these levels results in emission of light of wavelength $\lambda = 632.8$ nm [6M]

$\mathbf{UNIT}-\mathbf{III}$

	5.	(a)	What are nanomaterials? Explain their electrical and magnetic properties.	[7M]	[]
--	----	-----	---	------	----

- (b) Explain briefly quantum confinement nature of nano materials. [7M]
- 6. (a) Explain qualitatively why nanomaterials are significantly different from bulk materials of the same chemical composition. [7M]
 - (b) Explain briefly chemical vapour deposition method of fabrication of nano materials with neat sketch. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	What are the properties of wave functions? Obtain the expression energy Eigen values an e	nergy
		functions for a practice in one dimensional potential well of infinite height.	[7M]
	(b)	What are matter waves? Derive the expression for de-Broglie wavelength.	[7M]
8.	(a)	Describe Davisson and Germer experiment to verify matter waves.	[7M]
	(\mathbf{b})	An electron is head in one dimensional potential well of width 0.12 nm. Find the energy y	a luog

(b) An electron is bond in one dimensional potential well of width 0.12 nm. Find the energy values in the ground state and also the first two excited state in eV. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Define Fermi level in case of semiconductors and mention its position in intrinsic and extrinsic semiconductors at 0 K. [7M]
 - (b) The effective density of states for electrons and holes in silicon at 300 K are: $2.8 \times 10^{19} cm^{-3}$ and $1.04 \times 10^{19} cm^{-3}$ respectively. The energy gap is 1.1 eV. Calculate the intrinsic carrier concentration at 450 K. [7M]
- 10. (a) State and explain Hall effect and derive the expression for Hall coefficient. [8M]
 - (b) A silicon plate of thickness 1mm, breadth 10mm and length 100mm is placed in a magnetic field of $0.5 wb/m^2$ acting perpendicular to its thickness. If 10^{-2} A current flows along its length, calculate Hall voltage developed if Hall coefficient is $3.66 \times 10^{-4} m^3/\text{coulomb}$. [6M]

 $-\circ\circ\bigcirc\circ\circ-$