B.Ed. Programme - PART-B: MATHEMATICS MODEL QUESTION PAPER

Ouestions: 100 Marks: 100

TIME: 100 Mins

SAMPLE QUESTIONS

Choose the correct alternative out of the following.

- 1. If R is the relation on $A = \{1,2,3\}$ given by (1,1)(2,2)(3,3) then R is
 - a) reflexive

- b) not reflexive
- c) symmetric
- d) transitive
- 2. Which of the following is correct?
 - a) Any two square matrices can be multiplied
 - b) Any two square matrices of order n can be multiplied
 - c) Any two unit matrices can be multiplied
 - d) Any two diagonal matrices can be multiplied
- The inverse of $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ is 3.
 - a) $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ b) $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
- The value of $\begin{vmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{vmatrix}$ is 4.
 - a) 10
- b) 15
- c) 20
- d) 25
- A value of θ in the 3rd quadrant satisfying $\cos^2\theta = \frac{1}{4}$ is 5.

6.	If $\sin^{-1} x + \sin^{-1} (2x) = 2\pi/3$ then $4x^2 - 4x$ is e	qual to
6.	If $Sin^{-1} x + Sin^{-1} (2x) = 2\pi/3$ then $4x^2 - 4x$ is e	qual to

- a) -1
- b) 1
- c) 0 d) -2
- The equation of two circles are $x^2 + y^2 4x 2y + 1 = 0$ and $x^2 + y^2 4x 4y 8 = 0$. The 7. circles are such that
 - a) the radius of one is 4 times the other
 - b) they intersect at real point
 - c) one circle lies inside the other
 - d) they touch each other externally
- 8. What is the minimum force required to move a body of weight W placed on a rough horizontal surface?
 - a) W Cot λ
- b) W Tan λ c) W Sin λ
- d) W Cos λ

$$\int_{-a}^{a} f(x) dx = 0 \text{ if}$$

- a) f(x) is single valued function
- b) f(x) is even function
- c) f(x) is analytic function
- d) f(x) is an odd function
- On the curve $y^2 = ax^2 + ax^2$ (a>0) the origin is 10.
 - a) ordinary point
- b) a conjugate point

c) a cusp

- d) a node
- The cubic $Z^2 + 3H_z + G = 0$, $G^2 + 4H^2 = 0$ implies that 11.
 - all equal roots a)
- two equal roots b)
- no equal root c)
- three equal roots d)

12.
$$\int_{-\infty}^{\infty} dx/x^2 + 2x + 2 \text{ is}$$

- П
- с) П d) 2Π
- 13. If three forces acting on a body are in equilibrium, then the forces are
 - a) collinear

- b) parallel
- c) meeting at a point
- d) forming a closed triangle

14. One of the factors of
$$\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$$
 is

- a) a + b
- b) b+c c) c+a
- d) a+b+c

15. The line
$$y = mx + c$$
 touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$ if

a) $c^2 = a^2m^2 + h^2$ c) $c^2 = a^2 + b^2m^2$

b) $c^2 = a^2m^2 - h^2$ d) $c^2 = a^2 - b^2m^2$

$$\int_{1}^{4} x \sqrt{x} dx =$$

- a) 12.8
- b) 12.4
- c) 8.4 d) 8.8

. . .