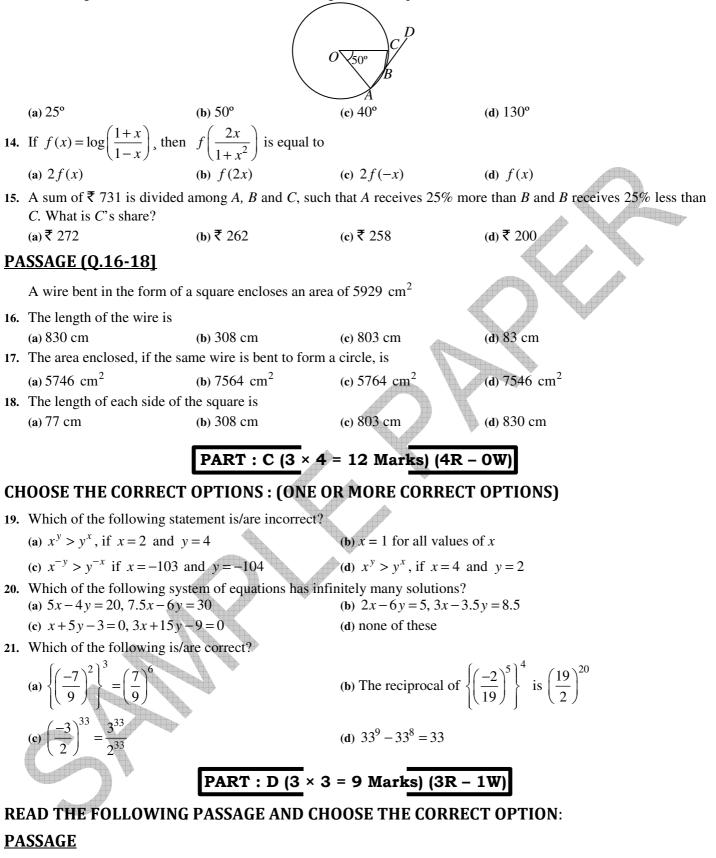
SAMPLE PAPER (XI MOVING)


	MATHEMATICS							
		PART : A (11 × 3	= 33 Marks) (3R -	- 1W)				
CH	IOOSE THE CORRECT	OPTION:						
1.	of cone A to that of cone B	is	-	in the ratio 3 : 4. The ratio of volume				
	(a) 4 : 3If each edge of a cube is inc(a) 50	(b) 125	 (c) 2 : 3 e percentage increase in the constraint of the constrain	(d) 1 : 2 he surface area is (d) 300				
3.	If $\cos \alpha = \frac{3}{5}$, then the value (a) $3/160$	$e \text{ of } \frac{\sin \alpha - \frac{1}{\tan \alpha}}{2 \tan \alpha} \text{ is}$ (b) 841/160	(c) 41/160	(d) 31/160				
4.	If $2^{2x-y} = 32$ and $2^{x+y} = 1$		(c) 41/160 to	(a) 51/100				
	(a) 9	(b) 10	(c) 11	(d) 13				
5.	The value of the expression	$n \sqrt{6} + \sqrt{6} + \sqrt{6} + \dots + upt$	ō∞ is					
6.	(a) 2 ABC is an isosceles triangle	(b) 3 e with $AB = AC = 5$ and	(c) 30 BC = 6. If G is the cen	(d) 5 troid of $\triangle ABC$, then AG is equal to				
7.	(a) 1/3 Three circles have the ce	(b) $2/3$	(c) 4/3	(d) $8/3$ other two externally. If $AB = 5$ cm,				
	BC = 7 cm and $CA = 6 cm$,	then the radii of three ci	rcles respectively are					
	(a) 2, 3, 4	(b) 3, 4, 5	(c) 2, 4, 5	(d) 2, 3, 5				
8.	What should be added to $-x$	$\frac{1}{x^2 - 7x + 12}$ to get $\frac{1}{x^2 - 6}$	$\frac{2}{5x+8}$?					
	(a) 2, 3, 4 What should be added to $-\frac{1}{x}$ (a) $\frac{1}{x^2 + 5x - 16}$	(b) $\frac{1}{(x+3)(x+2)}$	(c) $\frac{4}{(x-3)(x+2)}$	(d) $\frac{1}{x^2 - 5x + 6}$				
9.	$x^{2} + 5x - 16$ If $a + b + c = 0$, the value c	of $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}$ is						
	(a) 1	(b) () ·	(c) -1	(d) 3				
10.	If $\frac{x}{2} = \frac{y}{3}$, then $\left[\frac{4}{5} + \frac{y-x}{y+x}\right]$	equals						
	(a) $3/5$	(b) 4/5	(c) 1	(d) 6/5				
11.	If $a = b^x$, $b = c^y$, $c = a^z$, the (a) -1	(b) 0	(c) 1	(d) <i>abc</i>				
		PART : B (7 × 4	= 28 Marks) (4R –	1W)				
CF	IOOSE THE CORRECT			<u> </u>				

CHOOSE THE CORRECT OPTION :

12. For an acute angle α , $(\sin \alpha + \cos \alpha)$ takes the greatest value when the value of α is equal to (a) 30° (b) 45° (c) 60° (d) 90°

13. In the diagram, O is the centre of the circle. The angle CBD is equal to

Cards marked with the numbers 2 to 101 are placed in a box and mixed thoroughly. One card is drawn from this box.

22.	. The probability that the number on the card is a prime number less than 20, is							
	(a) 9/100	(b) 2/25	(c) 1/10	(d) 3/50				
23.	23. The probability that the number on the card is an even number is							
	(a) 1/2	(b) 49/100	(c) 2/25	(d) 3/50				

24. The probability that the number on the card is a number which is a perfect square, is

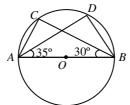
(b) 2/25 **(c)** 9/100

PART : E (2 \times 3 = 6 Marks) (3R - 0W)

ASSERTION AND REASONING: (Questions with Assertion A and Reason R)

Answer Codes: (a) Both A and R are true and R is correct explanation of A

(b) Both A and R are true but R is not correct explanation of A.


(d) 1/20

- (c) A is true, R is false
- (**d**) A is false, R is true

25. Assertion (A) : LCM of $42x(x-2)^2(x-3)^3$ and $14x^2(x-1)(x-2)^3$ is $42x^2(x-1)(x-2)^3(x-3)^3$.

Reason (R) : Lowest common multiple is the product of all the factors (taken once) of the polynomials given with their highest exponents respectively.

26. Assertion (A) : In the given circle $\angle ACB = \angle ADB = 90^{\circ}$

 $Reason\left(R\right)$: An angle in a semi-circle is a right angle.

PART : F $(4 \times 2 = 8 \text{ Marks})$ $(4 \times 2R - 0W)$

nn II

MATCH THE LIST: <u>Column I</u>

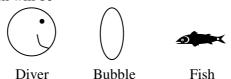
(a) 1/10

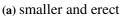
<u>Column I</u>		<u>Column II</u>
27. If $\sqrt{(75.24 + x)} = 8.71$ then the value	x of x is	(a) 324
28. If $\sqrt{0.04 \times 0.4 \times a} = 0.4 \times 0.04 \times \sqrt{b}$ (hen the	(b) 64
value of <i>a / b</i> is		
29. If $\sqrt{256} \div \sqrt{x} = 2$ then the value of x	is	(c) 0.016
30. If $\sqrt{\frac{x}{169}} = \frac{54}{39}$ then the value of x is	,	(d) 0.6241
	נ	

	EMISTRY	
	= 33 Marks) (3R -	- 1W)
CHOOSE THE CORRECT OPTION:		
31. In 0.32 gm. of methane, the number of moles is $-$		
(a) 0.002 (b) 0.20 32. For the isotope ${}_{6}C^{13}$ the number of neutrons is —	(c) 2	(d) 0.02
(a) 6 (b) 7	(c) 19	(d) 13
33. Which of the following oxides react with both HCl		(d) 15
(a) CaO (b) N_2O_5	(c) CO_2	(d) ZnO
34. The molecular formula of ammonia is NH_3 . There	efore the number of hydr	ogen atoms in 34 gms of ammonia will
be—		
(a) $3 \times 6.023 \times 10^{23}$ (b) 6.023×10^{23}		(d) $6 \times 6.023 \times 10^{23}$
35. A compound of ammonia which sublimes on heating (a) ammonium substate (b) ammonium situate		
(a) ammonium sulphate(b) ammonium nitrate36. Which of the following is the composition of red le	(c) ammonium chloride	e (d) annhomum mirite
(a) PbO (b) PbO ₂	(c) Pb_3O_4	(d) PbI ₂
37. 10 g of a monoatomic gas at an atmospheric press	sure is cooled from 273°	C to 0°C keeping volume constant; its
pressure would become:		
(a) 273 atm (b) 1/2 atm	(c) 2 atm	(d) remains constant
38. Which of the following gives black precipitate with(a) Cupric chloride(b) Cadmium chloride	_	(d) Ferric chloride
(a) Cupric chloride(b) Cadmium chloride39. The reducing agent used in the blast furnace to reduce	NO.000	(a) Ferric chioride
(a) coke (b) carbon	(c) lime stone	(d) carbon monoxide
40. Which of the following salts would give SO_2 with	dil. H_2SO_4 and also deco	olourises bromine water?
(a) Na_2SO_4 (b) $NaHSO_4$	(c) Na_2SO_3	(d) Na_2S
41. Aluminium is extracted by	Þ Í	
(a) heating sodium aluminium silicate to a high tem	-	
(b) treating crtyolite with sodium hydroxide solution(c) heating aluminium oxide with coke in a furnace	n under pressure	
(d) the electrolysis of molten aluminium oxide in cr	yolite	
PART : B (7 × 4	= 28 Marks) (4R –	1W)
CHOOSE THE CORRECT OPTION :		
42. The major component of CNG is		
(a) Methane (b) Ethane	(c) Propane	(d) Butane
43. Which of the following would contain the same	-	
C = 12; Ca = 40, O = 16, K = 40)—		
(a) 12 g. of carbon (b) 20 g. of calcium	(c) 32 g. of oxygen	(d) 40 g. of potassium
44. When phosphorus is heated with strong sodium hyd		
(a) Oxidation takes place	(b) Hydroxide is formed	
(c) An inflammable gas evolves	(d) No reaction takes pl	lace
45. Electron affinity is positive when $(x,y) = 0$	$a = 0^{2-1}$	0
(a) O^- is formed from O atom	(b) O^{2-} is formed from	
(c) O^+ is formed from O atom	(d) O^{2+} is formed from	n Oʻion

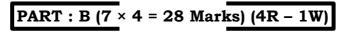
46.	Equivalent mass of a metal	is 12 g mol ⁻¹ . Hence equ	ivalent mass of its oxide	is
	(a) 20 g mol^{-1}	(b) 28 g mol^{-1}	(c) 32 g mol^{-1}	(d) 40 g mol^{-1}
47.	Which of the following is co	orrect scientific notation	for number 0.0975	
	(a) 9.75×10^{-2}	(b) 97.5×10^{-3}	(c) 975×10^{-4}	(d) 0.00975×10^{1}
48.	The equivalent weight of M	$InSO_4$ is half its molecu	lar weight when it is con-	verted to—
	(a) Mn_2O_3	(b) MnO ₂	(c) MnO_4^-	(d) $MnO_4^{}$
		PART : C (3 × 4 =	= 12 Marks) (4R –	OW)
СН	OOSE THE CORRECT	OPTIONS : (ONE O	R MORE CORRECT	OPTIONS)
49.	When 28 g of nitrogen gas	occupying a volume of	22.4 litres at 0°C and 1 a	ttm. Temperature was heated to 273°C
	the pressure became 2 atm.		-	
-0	(a) 44.8	(b) 11.2	(c) 22.4	(d) 89.6
50.	Cryolite is— (a) Sodium aluminium fluor	ida	(b) Magnesium silicate	
	(c) Calcium Magnesium Car		(d) Sodium borofluoride	
51.	Which of the following repr			
	(a) $2Cu^+ \longrightarrow Cu^{2+} + Cu$		(b) $3I_2 \longrightarrow 5I^- + I^{+5}$	
	(c) $H_2O + Cl_2 \longrightarrow Cl^- + O$	$210^{-} + 211^{+}$	(d) 2HCHO $\xrightarrow{\text{OH}^-}$ He	
	$(c) \Pi_2 O + C \Pi_2 \longrightarrow C \Pi + C$	210 + 211		200 ×+ CH ₃ 0H
		PART : D (3 × 3	= 9 Marks) (3R – 2	1W)
RE	AD THE FOLLOWING	PASSAGE AND CH	DOSE THE CORREC	T OPTION:
<u>PA</u>	<u>SSAGE</u>			
	The concentration of solution	ons can be expressed in	number of ways such that	t Normality, Molarity, Molality, Mole
	fractions, Strength, % by v	veight, % by volume ar	nd % by strength. The n	nolarity of ionic compound is usually
	· ·		· ·	Addition of water to a solution changes
				ole fraction and % by weight terms.
52.	Volume of water required to			
	(a) 250 mL	(b) 150 mL	(c) 100 mL	(d) 400 mL
53.	The equivalent weight of H		t weigth of $P = 31$)	
	$Ca(OH)_2 + H_3PO_4 \longrightarrow Ca$	$aHPO_4 + 2H_2O$ is :		
	(a) 49	(b) 32.66	(c) 98	(d) 196
54.	Number of oxalate ions in 1	00 mL of 0.1N oxalic ac	eid is :	
	(a) $\frac{N_A}{100}$	(b) $\frac{N_A}{20}$	(c) $\frac{N_A}{200}$	(d) $\frac{N_A}{1000}$
	100	20	200	1000
		$PART \cdot E (2 \times 3)$	= 6 Marks) (3R – (
AS	SERTION AND REASO	NING: (Questions	with Assertion A a	nd Reason R)
			e and R is correct explan	
			e but R is not correct exp	planation of A.
		(c) A is true, R is false (d) A is false. R is true		
55		(d) A is false, R is true	is in CO or CO, or cellu	lose or in coal
55.		(d) A is false, R is true ${}^{14}C$ is same whether it	_	

56. Assertion (A) :1 equivalent of $K_2Cr_2O_7$ has 1 equivalent of K, Cr and O each.

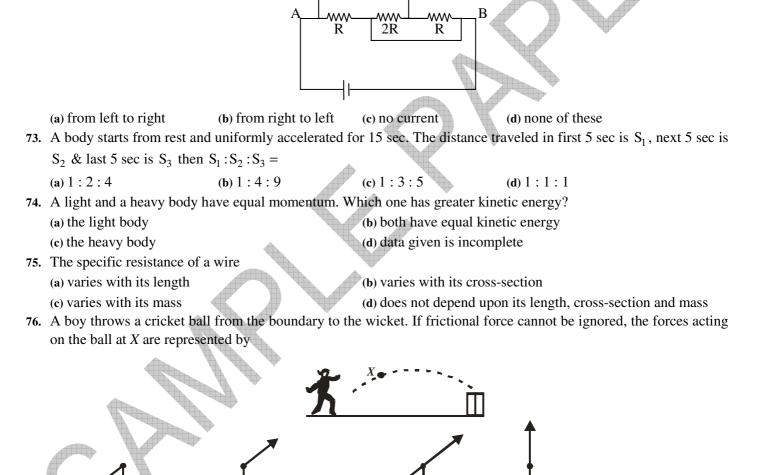

Reason (R): Equivalent and milli-equivalent reacts in equal number to give same equivalent or milli equivalent of product.


	Reuson (R) + Equivalent and	mini equivalent reacts m	equal number to give sum	
		PART : F (4 × 2	= 8 Marks) (4×2F	R –OW)
MA	ATCH THE LIST : (ON			
	<u>Column I</u>		<u>Column II</u>	
57	Molten NaCl		(a) pH < 7	
			-	
	Aqueous NaCl		(b) $pH = 7$	
	Aqueous CH ₃ COONa		(c) Electrolyt	ic solution
60.	Aqueous NH ₄ Cl		(d) $pH > 7$	
		P	HYSICS	
		PART : A (11 × 3	3 = 33 Marks) (3R	- 1W)
СН	IOOSE THE CORRECT	OPTION:		
	Inertia of a body			
	(a) depends on the velocity	of the body	(b) depends on the siz	e of the body
	(c) is determined by the ma	-		-
62.	A luminous object is kept	at a distance D from a s	creen. In order to obtain	the image of the same size as the object,
	the focal length of a conve	x lens to be inserted bet	ween them must be	
	(a) D	(b) D/2	(c) 2D	(d) D/4
63.	A particle moving along the	ne x-axis travels first 3m	n distance with velocity	3 ms^{-1} and the second 3 m distance with
	velocity $6 \mathrm{ms}^{-1}$. The avera	age velocity of the partic	ele is	
	(a) 4 ms ^{-1}	(b) 2 ms^{-1}	(c) 4.5 ms^{-1}	(d) 6 ms ⁻¹
64.	A piece of ice, with a sto	one embedded inside it,	is floating in water co	ntained in a vessel. When the ice melts
	completely, the level of wa	ater in the vessel		
	(a) remains unchanged		(b) rises	
	(c) falls		ę	ing and rises to the same level later
65.	A ray of light strikes a gla other, the index of refraction		60°. If the reflected and	refracted rays are perpendicular to each
	(a) 1/2	(b) $\sqrt{3/2}$	(c) 3/2	(d) $\sqrt{3}$
66.		(-)		ass and radius are twice of that of earth?
	(Where $g = acceleration due$		-	
	(a) 2 <i>g</i>	(b) g	(c) $g/4$	(d) $g/2$
67.	If a soap bubble is given a (a) decreases	charge, then its radius	(b) increases	
	(c) remains unchanged		(d) depends on the na	ture of charge given
68.	When a red rose is seen the	rough green glass then r	-	
	(a) red	(b) green	(c) yellow	(d) black
69.	An athlete completes one of 2 min. 20 sec ?	round of a circular track	x of radius K in 40 sec.	What will be his displacement at the end
	(a) zero	(b) 2 <i>R</i>	(c) $2\pi R$	(d) $7\pi R$
70.			(-)	tted through an angle θ about an axis in
	the plane of mirror, then the	• •		
	(a) $\frac{\theta}{-}$	(b) θ	(c) 2 θ	(d) $\frac{3\theta}{2}$
	(a) $\frac{\sigma}{2}$	~ / -	(-/	2

71. A fish sees the smiling face of a scuba diver through a bubble of air between them, as shown. Compared to the face of the diver, the image seen by the fish will be



(b) smaller and inverted


(c) larger and erect

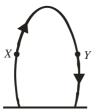
(d) Can be either of above depending on the distance of the diver.

CHOOSE THE CORRECT OPTION:

72. In the figure shown the current flowing through 2R is:

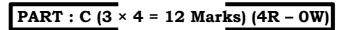
77. A boy has two spare light bulbs in his drawer. One is marked 240 V and 100 W and the other is marked 240 V and 60 W. He tries to decide which of the following assertions are correct ?(a) The 60 W light bulb has more resistance and therefore burns less brightly

(d)


(c)

- (b) The 60 W light bulb has less resistance and therefore burns less brightly
- (c) The 100 W bulb has more resistance and therefore burns more brightly
- (d) The 100 W bulb has less resistance and therefore burns less brightly

(b)



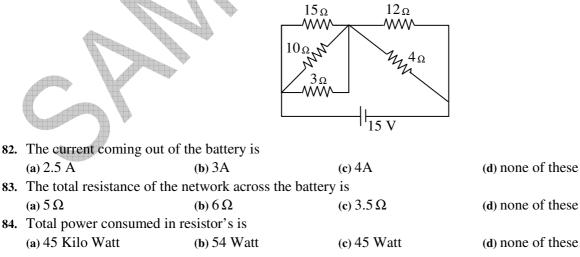
78. A ball is thrown vertically upwards and returns to the point of projection. Which statement about the acceleration at point *X* and *Y* is correct ?

(a) The acceleration is downwards at both point

- (b) The acceleration is upwards at both points
- (c) The acceleration is downwards at X and upwards at Y
- (d) The acceleration upwards at X and downwards at Y

CHOOSE THE CORRECT OPTION: (ONE OR MORE CORRECT OPTIONS)

- 79. Identify the statement explaining the correct difference between conduction, convection and radiation.
 - (a) Conduction and convection require material medium but radiation does not required material medium
 - (b) Conduction transfers heat without transporting matter but convection transfers heat with transportation of matter.
 - (c) The radiation mode of heat transfer cannot be eliminated


(d) None of these

- 80. A particle moving along a circular path with constant speed is
 (a) in equilibrium
 (b) moving with varying velocity
 (c) accelerating towards the centre of the rotation
 (d) constantly pulled towards the centre
- 81. When light ray traveling in air enters into a medium of refractive index μ .
 - (a) its speed decreases by μ times
 (b) its frequency decreases by μ times
 (c) its wavelength decreases by μ times
 (d) all of these

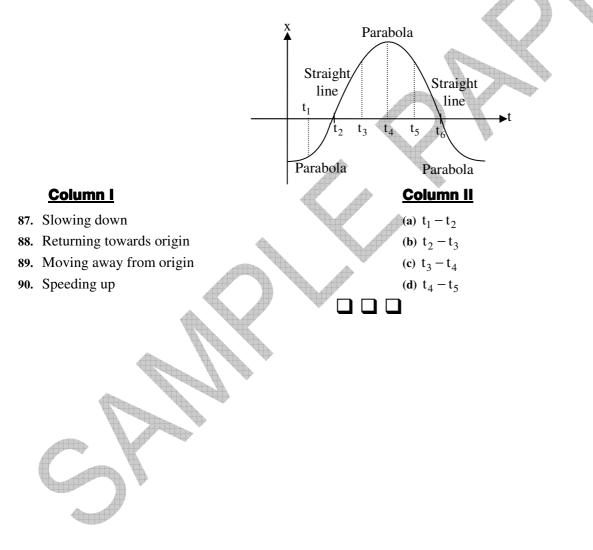
PART : D ($3 \times 3 = 9$ Marks) (3R - 1W)

READ THE FOLLOWING PASSAGE AND CHOOSE THE CORRECT OPTION: <u>PASSAGE</u>

The fig. shows a network of five resistances and a battery.

PART : E (2 \times 3 = 6 Marks) (3R - 0W)

ASSERTION AND REASONING: (Questions with Assertion A and Reason R)


Answer Codes:

- (a) Both A and R are true and R is correct explanation of A(b) Both A and R are true but R is not correct explanation of A.
- (c) A is true, R is false
- (d) A is false, R is true
- 85. Assertion (A) : When velocity of a particle is zero then acceleration of particle is also zero.. Reason (R) : Acceleration is equal to rate of change of velocity.
- 86. Assertion (A): On a rainy day, it is difficult to drive a car or bus at high speedReason (R) : The value of coefficient of friction is lowered due to wetting of the surface

MATCH THE LIST : (ONE OR MORE CORRECT OPTIONS)

Figure shows a graph of position versus time graph for a particle moving along x-axis.

1. a	2. b	3. a	4. b	5. b	6. d	7. a	8. d	9. d	10. c
11. c	12. b	13. a	14. a	15. a	16. b	17. d	18. a	19. abc	20. ac
21. ab	22. b	23. a	24. c	25. a	26. a	27. d	28. c	29. b	30. a
31. d	32. b	33. d	34. d	35. c	36. C	37. b	38. a	39. d	40. c
41. d	42. a	43. b	44. c	45. b	46. c	47. a	48. b	49. c	50. a
51. abcd	52. b	53. a	54. c	55. a	56. b	57. c	58. bc	59. cd	60. ac
61. c	62. d	63. a	64. c	65. d	66. d	67. b	68. d	69. b	70. C
71. a	72. b	73. c	74. a	75. d	76. a	77. a	78. a	79. abc	80. bcd
81. ac	82. b	83. a	84. c	85. d	86. a	87. c	88. ad	89. bc	90. ad
		1			1				1

Answer Key

Sample Paper-(XI Moving)

