SAMPLE PAPER (IX MOVING)

PHYSICS

CHOOSE THE CORRECT OPTION:

1.	I wo blocks A and B are	e made of different	kinds of wood. Bloc	$\frac{1}{4}$ K A floats in water with $-\frac{1}{4}$ th of
	its above the surface of	of water. Block B	floats in water with	$\frac{2}{3}$ rds of its volume below the
	surface of water. The rate			
			(C) 9 : 8	(D) 4:3
2.				ngth 20 cm. The distance of the
	image from the mirror is			
	(A) 10 / 3 cm (I	B) 20 / 3 cm	(C) 10 cm	(D) 40 / 3 cm
3.				e of the object. If the mirror is
	20 cm from the object, it			
	(A) $\frac{90}{11}$ cm (1	_D , 120	(C) 150 am	(D) 180 am
	$(A) \frac{1}{11} (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)$	11 CIII	(C) TI	(D) 11 cm
4.	A concave mirror of foca	al length 'f' produce	es a real image ' <i>n'</i> ti	mes the size of the object. The
	distance of the object fro	om the mirror is		¥
	(A) $(n-1) f$	$\mathbb{P}(n+1)f$	(C) $n+1$	(D) $n-1$
	(A) (II - I) I	ט (וו+ ו) ו	$\frac{(G)}{n}$	$\frac{n}{n}$
5.	A concave mirror has ra	adius of curvature 3	0 cm. Where should	an object be placed in front of
	the mirror so that a virtua	al image three time	s the size of the obje	ct is formed?
			(C) 17.5 cm	
6.		- 40 40 4		to be twice as great when the
	object was 15 cm from the	The second second	_	
	(A) 5.0 cm (I			
7.		ixed with 100 g of v	vater 80℃. The final	temperature of the mixture will
	be (A) 0.00	D) 00.0C	(0) 4000	(D) 00.00
_		. 1986	(C) 40 °C	
8.	lower its temperature to		ed to be added to 2	00g of water at 80°C, so as to
	(A) 50 g		(C) 100 a	(D) 200 a
q				1200 c.c of water (SP. Heat
	of iron = $0.1 \text{ cal/g} ^{\circ}\text{C}$, der			· · · · · · · · · · · · · · · · · · ·
	<u>-</u>		,	
40			(C) 1600 c.c	
10.	•	-		spectively. Their masses are in ne resultant temperature of the
	mixture if the liquids A a	· · · · · · · · · · · · · · · · · · ·	iii liie ialio 5 . 4. ii	ie resultant temperature of the
	·		(C) 80 °C	(D) None of these
11.	The amount of heat requ			
- • •			(C) 1000 cal	
12.				e resultant temperature of the
	mixture is			position of the
		B) 20 ℃	(C) 30 °C	(D) 40 °C
	. ,	,		• •

	(A) 88 m distance and (C) 44 m distance and	•	` '	and 44 m displacement
17.				a hockey stick, so as to return it
	along its original patl	n with a velocity of	5 ms ⁻¹ . Calculate	the change in momentum that
	occurred in the motion			
	$(A) - 3 \text{ kg ms}^{-1}$	(B) -5 kg ms^{-1}	(C) -7 kg ms^{-1}	(D) -8 kg ms^{-1}
	Force of 25N, brings a			
19	(A) 5 S The measure of inertia	(B) 2 S	(C) 10 s	(D) 25 s
15.	(A) 5 sThe measure of inertial(A) density	(B) mass	(C) volume	(D) acceleration
			Victory Actions 4	firing a bullet of mass 'm' with a
	velocity of 100 ms ⁻¹ .	The mass of bullet fire	ed is :	
	(A) 20 g	(B) 2 g	(C) 10 g	(D) 5 g
21.				s_1 and s_2 metres in successive
	intervals of t_1 and t_2 s	secs. The acceleration	n is then given by	
	(A) $\frac{s_1t_1 + s_2t_2}{t_1t_2(t_1 + t_2)}$	(B) $\frac{2(s_1t_1-s_2t_2)}{s_1t_2-s_2t_2}$	(C) $\frac{s_2t_1-s_1t_2}{s_2t_1-s_1t_2}$	(D) $\frac{2(s_2t_1-s_1t_2)}{(s_2t_1-s_1t_2)}$
	$t_1t_2(t_1+t_2)$	$t_1t_2(t_1+t_2)$	$t_1 t_2 (t_1 + t_2)$	$t_1 t_2 (t_1 + t_2)$
22.	_		•	a time interval t_1 during which it
	All I			s a constant retardation a_2 and
			_	ne following relations is correct?
	(A) $\frac{a_1}{a_2} = \frac{s_1}{s_2} = \frac{t_1}{t_2}$	(B) $\frac{a_1}{a_2} = \frac{s_2}{s} = \frac{t_1}{t}$	(C) $\frac{a_1}{a_2} = \frac{s_2}{s} = \frac{t_2}{t}$	(D) None of these
22	32 32 32	G ₂	G ₂	ss a certain point with velocities
25.		•	•	passes the same point is
	U + V	$u^2 + v^2$	$u^2 + v^2$	(2)
	(A) $\frac{u+v}{2}$	(B) 2	(C) $\sqrt{\frac{2}{2}}$	(D) $\sqrt{u+v}$
24.	A car starts from res	t and accelerates a	t $5 \mathrm{ms}^{-2}$ for somet	ime. Then, the car moves with
	uniform velocity for 15	second. Again, it d	ecelerates at 5 ms ⁻	² and comes to rest. If the total
	time for the journey is	25 seconds, then the	e average speed for	the journey is
	(A) 10 ms^{-1}	(B) 20 ms^{-1}	(C) 30 ms^{-1}	(D) 40 ms^{-1}
0	ala Danasi IV Marini		2	IOAD
Sam	ole Paper – IX Moving		۷	Creating & Nurturing Talent

13. Some water at 100°C is mixed with twice the quantity of water at 70°C. The equilibrium

15. An ant covers 2 cm, 1.5 cm, 2.5 cm, 3 cm and 1 cm in one second each. The average speed

16. A body completes one around a circular path of radius 7 m. The distance covered by the body

(B) 80°C

(B) 76 kg m^{-3}

(B) $2.5 \,\mathrm{ms}^{-1}$

14. The density of iron in CGS system is 7.6 g cm⁻³. Its density in SI system is :

(C) 85°

(C) 760 kg m^{-3}

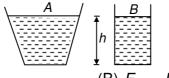
(C) $1.5 \,\mathrm{ms}^{-1}$

(D) 90 °C

(D) None of these

(D) None of these

temperature is

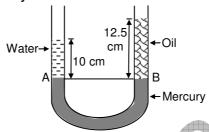

(A) 7600 kg m^{-3}

and his displacement is:

of the ant is: $(A) 2 \text{ ms}^{-1}$

(A) 75 °C

25. Two vessels A and B of different shapes have the same base area and are filled with water up to the same height 'h' (see figure). The force exerted by water on the base is F_A for vessel A and F_B for vessel B. The respective weights of the vessels are W_A and W_B . Then



(A) $F_A > F_B$; $W_A > W_B$

(B) $F_A = F_B$; $W_A > W_B$

(C) $F_A = F_B$; $W_A < W_B$

- (D) $F_A > F_B$; $W_A = W_B$
- 26. A U-tube contains water and oil separated by mercury. The mercury columns in the two arms are at the same level with 10 cm of water in one arm and 12.5 cm of oil in the other, as shown in figure. What is the relative density of oil?

- 8.0(A)
- (B) 1.0
- (C) 1.25
- (D) None of these
- 27. A block of wood floats in a liquid with four-fifths of its volume submerged. If the relative density of wood is 0.8, what is the density of the liquid in units of $kg m^{-3}$?
 - (A) 750
- (B) 1000
- (C) 1250
- (D) 1500
- 28. An ice cube floats on water in beaker with $\frac{9}{10}$ th of its volume submerged under water. What fraction of its volume will be submerged if the beaker of water is taken to the moon where the gravity is 1/6th that on the earth 2
 - (A) $\frac{9}{10}$

- (D) zero
- 29. Choose the correct statement(s) from the following:
 - (A) A body will sink in a liquid if its weight is equal to or greater than the weight of the liquid displaced by it.
 - (B) A body will float in a liquid if its weight is equal to or less than the weight of the liquid displaced by it.
 - (C) When a body floats in a liquid, the portion of the body above the surface of the liquid is independent of the density of the body relative to that of the liquid.
 - (D) In still air, a hydrogen-filled balloon rises up to a certain height and then stops rising.
- 30. A cubical block of steel of each side equal to 'l' is floating on mercury in a vessel. The densities of steel and mercury are ρ_s and ρ_m . The height of the block above the mercury level is given by
 - (A) $l + \frac{\rho_s}{\rho_m}$
- (B) $l \ 1 \frac{\rho_s}{\rho_m}$ (C) $l \ 1 + \frac{\rho_m}{\rho_s}$ (D) $l \ 1 \frac{\rho_m}{\rho_s}$

CHEMISTRY

CHOOSE THE CORRECT OPTION:

31.	Which of the following element	ents with the give	en E.C will possess	the lowest I.P. value
	(A) $1s^2 2s^2 2p^6 3s^1$ (B) $1s^2 2s^2 2p^6 3s^1$	$s^2 2s^2 2p^2$ (C) 1s ² 2s ² 2p ⁵	(D) $1s^2 2s^2 2p^6 3s^2 3p^2$
32.	Which of the following is cor		_	- -
	(A) $C < N < O < F$ (B) F		•	
33.				ctronic configuration of another
	element B is 1s ² 2s ² 2p ⁴ . Th	e possible comp	oound that can be fo	ormed between A and B is
	(A) A_5B_2 (B) A	A_3B_2 ($(C) A_2B_5$	(D) AB ₃
34.	Octet rule is not violated in			
	(A) XeF ₂ (B) B	_	-	. 4
35.	_		and D respectively	2.1, 3.0, 3.5, 4.0. Which one of
	the following bonds is more $(A) A - B$ $(B) A$		C) A – D	(D) B - C
36.	• •	•		ecreased by 10%, the pressure
	exerted by the gas is			
	(A) increases by 10% (C) increase by < 10%	`	B) decrease by 10% D) increases by > 1	
37.	• •			and that of Y and Z in the ratio
	of 1:16. The ratio of rates of		NISIO, ZIDIP	
	· ,	`		(D) 30:1
38.	The mass of an atom of an e	. //807	,000° —	_
30	(A) 0.4 (B) 4 Which of the following conta	ins the maximum	97 / 1001	(D) 24
JJ.	(A) 10 g of $CaCO_3$ (B) 4	AND	40000	
40.	Which of the following a red		-/- 3 - 4 -3	() - 30 12 - 0
	(A) NaCl+KNO ₃ \rightarrow NaNO ₃		B) CaC ₂ O ₄ + 2 HCl	\rightarrow CaCl ₂ + H ₂ C ₂ O ₄
	(C) $Mg(OH)_2 + 2NH_4CI \rightarrow Mg$	$Cl_2 + 2NH_4OH$ (D) $Zn + 2AgCN \rightarrow 2$	$2Ag + Zn(CN)_2$
41.	$X Cu + Y HNO_3 \rightarrow Cu(NO_3)$	$_2 + ZNO + H_2O$	then X, Y and	Z in the balanced chemical
	equation are respectively			
			C) 3, 8, 2	(D) 2, 8, 3
42.	The oxidation number of 'N'	_	(0) 1/0	(D) 4
/13	(A) + 1/3 (B) 0 In which of the following con	,	•	(D) 1
70.				(D) H ₂ SO ₄
44.	. , _		, _	hat can diffuse from the same
	container in the same time u			
				(D) 8 gm
45.	The electronic configuration	s for four eleme	ents A, B, C, D are	$1s^2$, $1s^22s^22p^2$, $1s^22s^22p^5$ and
	1s ² 2s ² 2p ⁶ respectively. Th			
	(A) A (B) B	_		(D) D
46.	Water has relatively high spe	`	,	` '

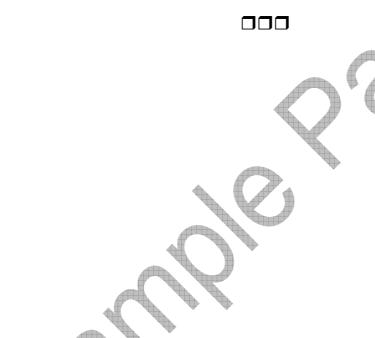
(D) all the three A, B and C $\,$

(C) catalyst

(B) solvent

(A) coolant

47.	If a pure substance boils at substance	t 100°C and	freezes at 0°	C at atmos	spheric pre	ssure,	then	the
	(A) cannot be identified based	d only on this	data					
	(B) need not be water							
	(C) could be water							
	(D) is surely water							
48.	Alkalis are that diss	olve in water.						
	(A) acids (B) ba	ses	(C) oxides	(D) g	gases			
49.	The total number protons, ele-		eutrons in a h	undred wat	er molecul	es are		,
	(A) 900, 900, 900		(B) 1000, 100	00, 800				
	(C) 900, 800, 900		(D) 800, 900,	900				
50.	Valency of inert gases is:							
	(A) zero (B) on	е	(C) two	(D) t	hree			
51.	Protons are obtained when d	-		~.	745.497 111	urs.		
	$(A) Na \qquad (B) H_2$		(C) Hg	(D) H				
52 .	X ³ - is isoelectronic with Arg	gon. It has el	ectrons and r	neutrons in	equal num	nber. T	he m	nass
	number of 'X' is		(C) 22	(D)	20			
	(A) 30 (B) 31		(C) 32	(D) 3	0.0			
53.	The wavelength of a photon i		46 47		7 .			
	(A) $6 \times 10^{-6} \text{J}$ (B) 2 3		,	` ,				
54.	Which one of the following co	_	-	-	pecies?			
	(A) C_2^{2-}, O_2^-, CO, NO		(B) NO^+, C_2^{2-}	_				
	(C) $CN^-, N_2, O_2^{2-}, C_2^{2-}$		(D) N_2, O_2^-, N_1	O^+, CO				
55.	Given that the abundances	s of isotopes	s ⁵⁴ Fe, ⁵⁶ Fe	and ⁵⁷ Fe	are 5%.	90%	and	5%
	respectively, the atomic mass		,		•			
	(A) 55.85 (B) 55	- VIII III	(C) 55.75	(D) 5	56.05			
56.	Which of the following is corre	ectly matched						
	(A) Eka Boron - Aluminimum		(B) Eka Silico					
	(C) Eka Aluminium - Germani		(D) Eka Boro	n - Scandiu	m			
57.	The elements with atomic null (A) IVA group, 4 th period	iliber 34 belor	(B) IVA group	5 th period				
	(C) IVA group, 6 th period		(D) VIA group					
58.	Which of the following repres	ents the elect	. , .	•	ock elemer	nts.		
	(A) $(n-1)$ s ² nd ¹⁻¹⁰		(B) $(n-1) d^{1-1}$					
	(C) $ns^2(n-1) d^{0 \text{ or } 1}$		(D) $(n-1) d^{1-}$					
50	Match the following:		(D) (II – I) d	πο πρ				
59.	List – I	List – II						
	(Z)	(Position)						
	(i) 19	(p) p – block						
	(ii) 23	(q) f – block						
	(iii) 36	(r) d – block						
	(iv) 64	(s) s - block	(D)::	. !!! !				
	(A) $i - s$; $ii - r$; $iii - p$, $iv - q$		(B) $i - r$; $ii - s$		•			
	(C) $i - s$; $ii - q$; $iii - r$, $iv - p$		(D) $i - s$; $ii - r$, III – q, IV -	۲			


	(A) $I^+ < I < I^-$	(B) $I < I^- < I^+$	(C) $I^- < I^+ < I$	(D) $I^+ < I^- < I$
		(3 00	
		<u>MAT</u> H	IEMATICS	
СН	OOSE THE CORRECT	OPTION:		
61.	A cube is enclosed in	a sphere of diameter	_	_
	(Α) π	(B) 1	(C) $\sqrt{2}$	(D) 2√2
	(A) 125%	(B) 150%	(C) 100%	ace area increases by : (D) None of these
	(A) 21	(B) 19	(C) 23	ne sum of its digits will be: (D) 18
64.	Simplify: $300^2 - 299^2$ (A) 55150	$+298^2 - 297^2 + 296$ (B) 45150		$2^2 - 1^2$ (D) 65150
65.	What will be the unit's (A) 1	digit in $3^{99} + 5^{99} + 9^{9}$ (B) 3		(D) 9
66.	Given that $3^{x}.3^{y}.3^{z} = 3^{x}$,	of x , y and z will be:	
	(A) 2	(B) 3	(C) 4	(D) 4.5
67.	Given that $c = b^x = a^q$	and $d = a^y = b^z$, th	e value of, $\frac{xy}{qz}$ is :	
	(A) d	(B) b	(C) a	(D) 1
68.				3 and $n(A) = n(B)$, then x is:
60	(A) 12	(B) 14	(C) 16	(D) 18
09.	A'-B' is same as : (A) $(A-B)'$	(B) A-B'	(C) A-B	(D) <i>B</i> – <i>A</i>
70.		, ,	<u> </u>	(a, b) R (c, d) iff $a + d = b + c$,
	where $a, b, c, d \in N.F$,	
	(A) Anti-symmetric	(B) Identity	(C) Equivalence	(D) Not equivalence
71.	$A = \{1, 2\}, B = \{a, b\}$ a	and $R = \{(1, a), (1, b),$	$(2, a), (2, b)$ }. If R^-	$^{1} = \{(a, 1), (b, 1), (a, 2), (b, 2)\}$ the
	$R^{-1} = $			
	(A) $A \times B$	(B) $B \times A$	(C) $A^{-1} \times B$	(D) $A \times B^{-1}$
72.	$(R^{-1})^{-1} = R$ is:			
	(A) True	(B) False	(C) Doubtful	(D) None of these
73.	A relation R on a set A			
	(A) Symmetric		(C) Transitive	
74.		-3=5 is 2 more that	In the root of $4-x=3$	2x-5, then p is equal to; taking
	x as the variable.			1
	(A) 0	(B) 1	(C) -1	(D) $\frac{1}{2}$
75.	The sides of an equila	teral triangle are $(3x)$	(x + 2y) cm, $(5x + 6y)$	cm and $(x+y+3)$ cm. Then the
	perimeter of the triang			
	(A) 15 cm	(B) 12 cm	(C) 18 cm	(D) 10.5 cm
76.				decreased by 25%. The ratio of
	the area of the square (A) 15:16		•	(D) 4:5

60. Different species of iodine can be placed in the increasing order of their size as

77.	The length and bread possible size of the tile (A) 25 cm×20 cm	es which can be used	d to pave the floor is	
78.	` ,	ombus is 52 cm. The	•	10 cm. The length of the other
	(A) 20	(B) 26	(C) 24	(D) 18
79.			e ratio 1:2 and its a	area is $64\mathrm{cm}^2$. The hypotenuse
	of the triangle is		<i></i>	
	(A) 8	_		
80.	volumes is :	-	-	the ratio 2:3. The ratio of their
	(A) 1:9	(B) 2:9	(C) 3:9	(D) 4:9
81.			• •	nake it a perfect square is:
	(A) 2	(B) 3		(D) 11
82.	If $\sqrt{3364} = 58$, then $\sqrt{4}$	1.3456 =	(C) 1.24	(D) 4 40
83	(A) 1.42 The price of 3 books			nce between the costliest and
00.	cheapest is Rs. 52. Th		40000000	
		(B) Rs. 70		(D) Rs. 80
	If $\frac{a}{b} = \frac{b}{c}$, then we can			
	(A) $\frac{a}{c} = \frac{a^2 - b^2}{b^2 - c^2}$ If $\frac{a}{b} = \frac{c}{d}$, then we can	(B) $\frac{a}{c} = \frac{a^2 + b^2}{b^2 + c^2}$	(C) $\frac{a}{c} = \frac{a^2 + c^2}{a^2 + b^2}$	$(D) \frac{a^2}{c^2} = \frac{a+b}{b+c}$
85.	If $\frac{a}{b} = \frac{c}{d}$, then we can	say that $\frac{a-c}{ab-cd} = \frac{a}{b}$	2 22	
	(A) True	(B) False	(C) Doubtful	(D) None of these
06	(A) True $\sqrt[4]{4a^8} \cdot \sqrt[6]{3a^9}$ is equal	to	(0) = 00.000	(-,
00.	yya yya is equai	10.		
	(A) a^2	(B) a	(C) $a^{\frac{1}{4}}$	(D) $a^{\frac{1}{3}}$
87.	Given that $2^{x+y} = 32$	and $3^{x-y} = 27$, find x	<, y.	
	(A) 2, 3 Evaluate: 3001 2	(B) 3, 2	(C) 4, 1	(D) 3, 1
88.	Evaluate: 3001 ²	2999 ²		
	AHV			
	(A) $333\frac{2}{3}$	(B) $333\frac{5}{6}$	(C) $333\frac{1}{6}$	(D) $333\frac{1}{3}$
89.	Given that $x^{x^x} - (x^2)^x$	= 0; then x equals :		
	(A) 1	(B) 2	(C) $\frac{1}{2}$	(D) $-\frac{1}{2}$
			2	2
90.	If $x = \frac{1}{2}$ then the value	e of $(x^x)^x$ is:		
	(A) ⁴ √2	(B) ³ √2	(C) $\frac{1}{\sqrt[4]{2}}$	(D) $\frac{1}{\sqrt[3]{2}}$
		١	3 00	
		L		

Answer Key

1. C	2. B	3. D	4. C	5. B	6. C	7. A	8. D	9. C	10. A
11. C	12. B	13. B	14. A	15. D	16. C	17. A	18. B	19. B	20. B
21. D	22. C	23. C	24. B	25. B	26. A	27. B	28. A	29. D	30. B
31. A	32. C	33. C	34. C	35. C	36. D	37. D	38. D	39. B	40. D
41. C	42. C	43. C	44. D	45. C	46. A	47. D	48. B	49. B	50. A
51. B	52. D	53. A	54. B	55. B	56. D	57. D	58. B	59. A	60. A
61. D	62. A	63. D	64. B	65. A	66. B	67. D	68. B	69. D	70. C
71. B	72. A	73. A	74. C	75. B	76. B	77. D	78. C	7 9. D	80. B
81. A	82. D	83. A	84. B	85. A	86. B	87. C	88. D	89. B	90. C

