Postgraduate Programme

Model Question Paper

M.Sc. (Physics)

Time: 2 Hours Max. Marks: 75

Choose the correct answer and WRITE IN CAPITAL LETTER viz., A, B, C, D or E in the space provided with each question.

SAMPLE QUESTIONS

Section A (25 marks) - 25 questions

1.	If the Cartesian coordinates (x, y, z) of a point are $(4, 3, 1)$, its cylindrical polar coordinates (ρ, φ, z) will be	ıl polar	
B) C)	$(5, 36.9^{\circ}, 1)$ $(5, 53.1^{\circ}, 1)$ (4, 3, 1) $(\sqrt{7}, 36.9^{\circ}, 1)$	()
2.	$V(\mathbf{r},\theta) = \frac{k\cos\theta}{\mathbf{r}^2}, \ \overline{\nabla}V =$	()
A) C)	$-\frac{k}{r^{3}}(2\cos\theta\hat{e}_{r}+\sin\theta\hat{e}_{\theta})$ $-\frac{k}{r^{3}}\sqrt{3\cos^{2}\theta+1}$ B) $-\frac{k}{r^{3}}(2\cos\theta+\sin\theta)$ $-\frac{k}{r^{3}}(2\cos\theta\hat{e}_{r}+r\sin\theta\hat{e}_{\theta})$ D)		,
3.	The essential singularity of the differential equation: $x^2(x^2-1)y'' + \frac{x}{x+1}y' $	$\frac{y}{1} =$	0

- 3. The essential singularity of the differential equation: $x^{2}(x^{2}-1)y'' + \frac{x}{x+1}y' + \frac{y}{x-1} = 0$ is/are at
- A) x = 0 B) x = +1 C) x = -1 D) $x = 0, \pm 1$
- 4. The eigen values of the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ are

 A) 0,1 B) +1,-1 C) +i, -i D) 1,i
- 5. $\Im\{f(t-A)\}=e^{i\omega a}F(\omega)$ is called the ——property of the Fourier transformation
- A) Attenuation B) time Shifting
- C) Convolution D) Parseval

6.	In emitter bias configuration for a transistor, $V_{BB} = 5V$, $V_{CC} = 15V$, $R_E = 1k\Omega$ and $R_C = 2k\Omega$ The collector-emitter voltage V_{CE} is								
	A) 2.1V	B) 4.3V	C) 6.4	V	D) 8.6V	()		
7.	$\overline{\overline{A} \ \overline{B} \ \overline{C}}$	is equivaler	at to			()		
	A) $\overline{A \cdot B}$	\overline{C}	B) $\overline{A} \cdot \overline{B} \cdot \overline{C}$	C)	$\overline{A+B+C}$	D) $A+B+C$,		
8.	Consider the following: Reaction: $HCl_{(aq)} + NaOH_{(aq)} \rightarrow H_2O_{(1)} + NaCl_{(aq)}$ The rate of this reaction could be determined by monitoring the change of concentration of:								
	A)	H ⁺				()		
	B)	C1 -							
	C)	Na ⁺							
	D)	H_2O							
9.	Which of	the following	gives the value	stored at the	e address pointe ()	d to by pointer a?			
	A) a;	B) val(a);	C) *a;	D) &a					
		SECTIO	ON B – 50 MA	RKS – <u>(5</u>	<u>0 QUESTIO</u>	<u>NS</u>)			
			SAMPLE	QUESTI	ONS				
1.	-		gm moves on the Γhe points of stal			d whose potential			
	A) $x = 3$,	B) x = 1	C) $x = 1$	and 3	D) does not ex	ist			
2.	A particle moves under the influence of the potential $(x) = A/\chi^2 - B/\chi$. The frequency of small oscillations around the equilibrium point is								
A)	$\sqrt{8mA^3B}$	B) 8n	nB^4	C) $\sqrt{\frac{B^4}{8mA^3}}$	D) .	$\sqrt{\frac{8mA^3}{B^4}}$			
3.	Part of the	equation of	a plane EM wave	e travelling	in the negative	Y direction can be			
	E=Acos(wt	• /	B) E=Acos(wt E) E=Acos(ky	• / •	C) E=Acos	(wt+ky)î)		

Which of the following equation does not change from one medium to another

) (

- $\vec{\nabla} \cdot \vec{B} = 0$

- D) $\nabla x \vec{H} = \partial \vec{D} / \partial t$
- B) $\vec{\nabla} \cdot \vec{D} = 0$ C) $\vec{\nabla} x \vec{E} = -\partial \vec{B} / \partial t$ E) $\vec{\nabla} \cdot \vec{E} = \rho / \epsilon$
- The ABCD matrix of a thin lens of focal length f is

)

- A) $\begin{pmatrix} 1 & 1/f \\ 1 & 0 \end{pmatrix}$ B) $\begin{pmatrix} 1 & -1/f \\ 0 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix}$ D) $\begin{pmatrix} 1 & 1/f \\ 0 & 1 \end{pmatrix}$ E) $\begin{pmatrix} -1/f & 1 \\ 0 & 1 \end{pmatrix}$

- The electric field in a certain region is given by $\vec{E} = A(yz\hat{\imath} + xz\hat{k})$, where A= 10Nm⁻²/C and the potential at the origin of the coordinates is 20 Volts. What will be the potential at a point x=2, y=1, z=1? (all coordinates are in meters)

)

- A) 10 Volts
- B) -30 Volts
- C) 30 Volts
- D) -10 Volts E) 0 volts
- A mathematical approach to the first law of thermo dynamics produced which equation?

- A) W + Q = U
- B) Q = U + W
- C) U = O W

- D) all the above
- E) None of the above
- A nucleus ZXA has mass M kg. If Mp and Mn denote the mass (in kg) of proton and neutron respectively, the binding energy in joule is

()

- $\begin{array}{ll} A) \ [ZMp + (A-Z)Mn M]c^2 & B) \ [ZM_p + ZM_n M]c^2 \\ C) \ M ZM_p (A-Z)M_n & D) \ [M ZM_p (A-Z)M_n]c^2 \end{array}$
- E) $A[Mp + Mn]c^2$
- 9. The eigen values of the operator L_{τ} are

()

- A) $\ell(\ell+1)\hbar^2$ B) $\ell(\ell+1)\hbar$ C) m \hbar
- D) $m\hbar^2$ E) Zero
- 10. A mass M moves with speed V in the x-direction. It explodes into two pieces that go off at angles θ_1 , θ_2 as shown in figure. What are the magnitudes of the momenta of the two pieces?

- A) $p_1 = \frac{P \sin \theta_2}{\sin(\theta_1 + \theta_2)}$, $p_2 = \frac{P \sin \theta_1}{\sin(\theta_1 + \theta_2)}$ B) $p_1 = \frac{P \sin \theta_2}{\sin(\theta_1 \theta_2)}$, $p_2 = \frac{P \sin \theta_1}{\sin(\theta_1 \theta_2)}$ B) $p_1 = \frac{P \sin \theta_2}{\cos(\theta_1 + \theta_2)}$, $p_2 = \frac{P \sin \theta_1}{\cos(\theta_1 \theta_2)}$ D) $p_1 = \frac{P \sin \theta_2}{\cos(\theta_1 \theta_2)}$, $p_2 = \frac{P \sin \theta_1}{\cos(\theta_1 \theta_2)}$