Ph.D. selection test

Department of Physics

Indian Institute of Technology, Kanpur

May 23, 2017

Time: 9:30 - 11:30 AM

Maximum marks: 70

Question 1

(A) Consider the harmonic oscillator given by the Hamiltonian $H=\frac{p^2}{2}+\frac{x^2}{2}$ Define the operators $a=\frac{1}{\sqrt{2\hbar}}(p-ix)$ and $a^\dagger=\frac{1}{\sqrt{2\hbar}}(p+ix)$

- (i) The ground state $|0\rangle$ satisfies $a|0\rangle = 0$. Use this to find the ground state wave-function $\psi_0(x)$; you do not have to normalize it. Also find the corresponding energy? [4+2 marks]
- (ii) A perturbation $V(x) = \epsilon x^4$ is added to the Hamiltonian. Calculate the first order correction to the ground state energy due to V(x). [4 marks]

Useful formulae:

$$\int_{-\infty}^{+\infty} \exp(-\alpha x^2) \, dx = \sqrt{\frac{\pi}{\alpha}} \quad ; \quad \int_{-\infty}^{+\infty} x^{2n} \exp(-\alpha x^2) \, dx = (-1)^n \frac{d^n}{d\alpha^n} \int_{-\infty}^{\infty} \exp(-\alpha x^2) \, dx$$

Question 2

- (A) A spherical shell of radius R carries a surface charge distribution $\sigma(\theta) = \sigma_0 \cos\theta$ (standard notation of spherical coordinates is used).
 - (i) Write the expansion of the electrostatic potential $V(r, \theta)$ inside and outside the shell using Legendre polynomials.
 - (ii) Write the appropriate boundary conditions satisfied by the potential.
 - (iii) Solve for the potential everywhere.

[6 marks]

You may find the following information helpful:

$$P_0(X) = 1; P_1(X) = X; P_2(X) = \frac{1}{2}(3X^2 - 1)$$

- (B) An infinitely long cylinder of radius R carries a magnetization $\vec{M} = ks^2\hat{\varphi}$ (standard notation of cylindrical coordinates is used).
 - (i) what is the divergence of the auxiliary field $\vec{H} = \frac{1}{\mu_0} (\vec{B} \vec{M})$, where \vec{B} is the magnetic field due to the given magnetization?
 - (ii) Find the value of \vec{H} and \vec{B} everywhere.

[4 marks]

Question 3

- (A) A spherical ball of mass m falls under gravity in a viscous fluid. Find the position x(t) and velocity v(t) of the ball as a function of time t. Assume that the mass starts from rest at a height t above the ground at t = 0. Solve for x(t) and v(t) assuming a turbulent drag of the form yv^2 , where y is a constant and v is the velocity. [6 marks]
- (B) For a complex function

$$f(z) = \frac{z^2 - 1}{z}$$

perform the contour integral $\oint f(z)dz$ over a circle of radius 2 with its center at the origin.

[4 marks]

Question 4

Consider a system with the Hamiltonian

$$H = \frac{p^2}{2} + \frac{q^2}{2} - 2q \cos 2t \cos 3t$$

of a particle of unit mass, generalized coordinate q, and generalized momentum p. Write the Euler-Lagrange equation for the system in terms of q and solve it for the initial condition: q(0) = a and q(0) = 0. [10 marks]

Question 5

- (A) How many significant figures are there in the product of 0.007 and 1.2345? Express the product to the correct number of significant figures. [2 marks]
- (B) What is the maximum percentage uncertainty in x, if $x = (23.381 \pm 0.007) (23.178 \pm 0.006)$? [2 marks]
- (C) A student wants to determine the acceleration due to gravity (g) by measuring the time-period of a simple pendulum. Determine the mean value and the sample standard deviation of the g values from the data given below. Calculate the best value of the uncertainty in g (standard deviation of mean). Uncertainties in the measurement of length of string and period of oscillation are not known.

 [6 marks]

Length of string (in meter)	1.00	0.75	0.50
Period of oscillation (in seconds)	2.01	1.73	1.42

Question 6

- (A) A transistor circuit is shown in the figure on the right.
 - (i) If the input voltage = 0.2 V what will be the output voltage? [2 mark]
 - (ii) If the input voltage can be expressed as $V_{\rm in} = 2sin(20t)$ (with t in seconds and $V_{\rm in}$ in volts) write an expression for the output voltage. [3 marks]

(B) In the opamp circuit shown, assume that the opamp is powered from ± 15 V supplies. $R_L = 1.0 \text{ k}\Omega$.

[5 marks]

- (i) What is the output of the circuit if $V_{in} = +5 \text{ V}$?
- (ii) What is the output of the circuit if $V_{in} = -5 \text{ V}$?

Question 7

For a system of non-interacting electrons at temperature T and chemical potential μ :

- (A) Show that the probability of finding an electron in a state with energy δ above the chemical potential is the same as the probability of finding a hole at energy δ below the chemical potential. [4 marks]
- (B) For the above system, suppose that the density of states $g(\varepsilon)$ is given by :

$$g(\varepsilon) = \begin{cases} \sqrt{(\varepsilon - \varepsilon_o)} , & \text{for } \varepsilon > \varepsilon_o \\ \\ 0 , & \text{for } \varepsilon_o > \varepsilon > 0 \end{cases}$$

$$\sqrt{(-\varepsilon)} , & \text{for } \varepsilon < 0$$

where ε is the energy of the electron and ε_o is a constant. Find the value of the chemical potential writing all steps clearly. (At T=0 electrons occupy states up to $\varepsilon=0$. However, at finite T some electrons are excited to higher energies).

3