

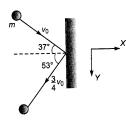

2. A uniform ring of mass m is lying at a distance  $\sqrt{3}a$  from the centre of a sphere of mass M just over the sphere (where a is the radius of the ring as well as that of the sphere). Then magnitude of gravitational force between them is






3. As shown in the figure, A is a man of mass 60 kg standing on a block of mass 40 kg kept on ground. The coefficient of friction between the feet of the man and the block is 0.3 and that between B and the ground is 0.2. If the person pulls the string with 125 N force, then




- (a) B will slide on ground
- (b) A and B will move with acceleration  $0.5 \text{ ms}^{-2}$
- (c) the force of friction acting between A and B will be 40 N
- (d) the force of friction acting between A and B will be 180 N.

4. A system of wedge and block as shown in figure, is released with the spring in its natural length. All surfaces are frictionless. Maximum elongation in the spring will be



(a) 
$$\frac{2mg\sin\theta}{K}$$
 (b)  $\frac{mg\sin\theta}{K}$  (c)  $\frac{4mg\sin\theta}{K}$  (d)  $\frac{mg\sin\theta}{2K}$ 

5. A ball of mass m moving with velocity  $v_0$  collides a wall as shown in figure. After impact it rebounds with a velocity  $\frac{3}{4}v_0$ . The impulse acting on ball during impact is



(a) 
$$-\frac{m}{2}v_0\hat{j}$$
 (b)  $-\frac{3}{4}mv_0\hat{i}$  (c)  $-\frac{5}{4}mv_0\hat{i}$  (d) None of these

## PART-2 (CHEMISTRY)

1.  $NH_4COONH_2(s) \implies 2 NH_3(g) + CO_2(g)$ . If equilibrium pressure is 3 atm for the above reaction,  $K_p$  for the reaction is

(a) 4 (b) 27 (c) 
$$\frac{4}{27}$$
 (d)  $\frac{1}{27}$ 

2. Chile saltpetre is:

| a) | $NaNO_2$          | b) | $KNO_2$ |
|----|-------------------|----|---------|
| c) | NaNO <sub>3</sub> | d) | $KNO_3$ |

3. M g of a substance when vaporised occupy a volume of 5.6 litre at NTP. The molecular mass of the substance will be:

| a) | Μ  | b) | 2M |
|----|----|----|----|
| c) | 3M | d) | 4M |

| 4.                                                                                           | If 4 g of oxygen difuse through a very narrow hole, how much hydrogen would have diffused                                   |                                                                                      |  |  |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
|                                                                                              | under identical conditions?<br>a) 16 g                                                                                      | b) 1 g                                                                               |  |  |  |
|                                                                                              | 1                                                                                                                           |                                                                                      |  |  |  |
|                                                                                              | $\frac{1}{4}g$                                                                                                              | d) 64 g                                                                              |  |  |  |
|                                                                                              |                                                                                                                             |                                                                                      |  |  |  |
| 5.                                                                                           | The stability of compounds:                                                                                                 |                                                                                      |  |  |  |
| $ \bigwedge_{(I)}  \bigwedge_{(ii)}  \bigwedge_{(iii)}  \bigwedge_{(iv)}  \bigwedge_{(iv)} $ |                                                                                                                             |                                                                                      |  |  |  |
|                                                                                              | a) $(iv) > (iii) > (i) > (ii)$                                                                                              | b) (i) > (iii) > (ii) > (iv)<br>d) (iv) > (i) > (iii) > (ii)                         |  |  |  |
|                                                                                              | c) $(ii) > (iii) > (i) > (iv)$                                                                                              | d) $(iv) > (i) > (iii) > (iii)$                                                      |  |  |  |
|                                                                                              | PART-3 (                                                                                                                    | (MATHS)                                                                              |  |  |  |
|                                                                                              |                                                                                                                             |                                                                                      |  |  |  |
| 11.                                                                                          | The domain of the function $f(x) = \cos^{-1}(\sec(x))$                                                                      | $(\cos^{-1} x)$ + $\sin^{-1} (\cos ec (\sin^{-1} x))$ is                             |  |  |  |
|                                                                                              | (a) $x \in R$ (b) $x = 1, -1$                                                                                               | (c) $-1 \le x \le 1$ (d) $x \in \phi$                                                |  |  |  |
| 12.                                                                                          | 12. If $\omega$ is a complex cube root of unity and $(1 + \omega)^7 = A + B\omega$ , then A and B are respectively equal to |                                                                                      |  |  |  |
| 12.                                                                                          |                                                                                                                             | (c) $1, 0$ (d) $-1, 1$                                                               |  |  |  |
|                                                                                              |                                                                                                                             |                                                                                      |  |  |  |
| 13.                                                                                          | The number of real solutions of the system of                                                                               | f equations $x = \frac{2z^2}{1+z^2}, y = \frac{2x^2}{1+x^2}, z = \frac{2y^2}{1+y^2}$ |  |  |  |
|                                                                                              |                                                                                                                             | (c) 3 (d) 4                                                                          |  |  |  |
| 14.                                                                                          | The total number of numbers that can be form                                                                                | ned by using all the digits 1, 2, 3, 4, 3, 2, 1, so that the                         |  |  |  |
| 11.                                                                                          | odd digits always occupy the odd places, is                                                                                 |                                                                                      |  |  |  |
|                                                                                              | (a) 3 (b) 6                                                                                                                 | (c) 9 (d) 18                                                                         |  |  |  |
| 15.                                                                                          | 15. The number of terms with integral coefficient in the expansion of $(\sqrt[4]{9} + \sqrt[6]{8}x)^{500}$ is               |                                                                                      |  |  |  |
|                                                                                              |                                                                                                                             | (c) $253$ (d) $251$                                                                  |  |  |  |
|                                                                                              |                                                                                                                             |                                                                                      |  |  |  |
|                                                                                              |                                                                                                                             |                                                                                      |  |  |  |
|                                                                                              |                                                                                                                             |                                                                                      |  |  |  |
|                                                                                              |                                                                                                                             |                                                                                      |  |  |  |