RAMAKRISHNA MISSION VIDYAMANDIRA
 Belur Math, Howrah - 711202

ADMISSION TEST - 2013
MATHEMATICS (Honours)
Date : 17-06-2013
Full Marks : 50
Time : 1.30 p.m-3.30 p.m

$\mathbf{2}$ marks for a correct answer $\boldsymbol{\&} \mathbf{- 1}$ for a wrong answer (Calculator, Cell Phones are not allowed)

Candidates have to select the correct choice by black/ blue pen only in the Optical Mark Recognition (OMR) to be provided during the written test. Marking should be dark and should completely fill one blank box against the corresponding question number. Incomplete filling or multiple filling of boxes will reject the answer to that question. Once an answer is marked in OMR, there is no scope to alter the choice. Doing rough work or using erasers, blades, whiteners etc. on the Optical Mark Recognition (OMR) is strictly prohibited.

1. The value of ${ }^{47} \mathrm{C}_{4}+\sum_{\mathrm{r}=1}^{5} 52-{ }^{\mathrm{r}} \mathrm{C}_{3}$ is
a) 277025
b) 270725
c) 507227
d) 275027
2. If $\sin ^{-1}\left(\frac{2}{3}\right)=\frac{\alpha}{2}$ and $\tan ^{-1} 9=\frac{\beta}{2}$ then the value of $\sin ^{-1} \frac{4 \sqrt{5}}{9}+\tan ^{-1} \frac{9}{40}$ is
a) $\alpha+\beta$
b) $\quad \alpha-\beta$
c) $\pi+(\alpha-\beta)$
d) none of those
3. In a triangle $\mathrm{PQR}, \angle \mathrm{R}=\frac{\pi}{4}$. If $\tan (\mathrm{P} / 3)$ and $\tan (\mathrm{Q} / 3)$ are the roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ then
a) $a+b=c$
b) $\mathrm{b}+\mathrm{c}=0$
c) $a+c=b$
d) $\mathrm{b}=\mathrm{c}$
4. Four dice are rolled. The number of possible outcomes in which at least one die shows 2 is
a) 1296
b) 625
c) 671
d) 1023
5. Let $f(x)=\log _{2}(|\sin x|+|\cos x|)$. The range of $f(x)$ is
a) $[-1,0]$
b) $\left[0, \frac{1}{2}\right]$
c) $\left[-\frac{1}{2}, 0\right]$
d) $[0,1]$
6. Which of the following functions have inverse defined on their ranges?
a) $f(x)=x^{2}, x \in \mathbb{R}$
b) $\quad \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}, \mathrm{x} \in \mathbb{R}$
c) $f(x)=\sin x, 0<x<2 \pi$
d) none of these
7. $(2 \sqrt{3}+4) \sin x+4 \cos x$ lies in the interval
a) $(-4,4)$
b) $(-2 \sqrt{5}, 2 \sqrt{5})$
c) $(-2+\sqrt{5}, 2+\sqrt{5})$
d) $(-2(2+\sqrt{5}), 2(2+\sqrt{5}))$
8. The number of ways can you divide a pack of 52 cards into 4 sets, three of them having 17 cards each and the fourth just one card is
a) $\frac{52!}{(17!)^{2}}$
b) $\frac{52!}{17!3!}$
c) $\frac{52!3!}{(17!)^{3}}$
d) $\frac{52!}{(17!)^{3} 3!}$
9. If ABCDEF be a regular hexagon then $\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{EB}}+\overrightarrow{\mathrm{FC}}$ is equal to
a) $\overrightarrow{0}$
b) $2 \overrightarrow{\mathrm{AB}}$
c) $3 \overrightarrow{\mathrm{AB}}$
d) $4 \overrightarrow{\mathrm{AB}}$
10. If $A_{n}=\left\{x: 2+\frac{1}{n} \leq x \leq 10-\frac{1}{n}, n \in N\right\}$, then the set $A_{1}{U A_{2}}^{U A A_{3}} U . \ldots U A_{n} U \ldots \ldots$. is
a) $\{x: 2<x<10\}$
b) $\quad\{x: 2 \leq x<10\}$
c) $\{x: 2<x \leq 10\}$
d) $\{x: 2 \leq x \leq 10\}$
11. A line cuts the x-axis at $A(7,0)$ and the y-axis at $B(0,-5)$. A variable line $P Q$ is drawn perpendicular to $A B$ cutting the x-axis at P and the y-axis at Q. If $A Q$ and $B P$ intersect at R, the locus of R is
a) $x^{2}+y^{2}+7 x-5 y=0$
b) $x^{2}+y^{2}-7 x+5 y=0$
c) $5 x-7 y=35$
d) none of these
12. If $\mathrm{K}>0,|\mathrm{Z}|=|\mathrm{W}|=\mathrm{K}$ and $\alpha=\frac{\mathrm{Z}-\overline{\mathrm{W}}}{\mathrm{K}^{2}+\mathrm{Z} \overline{\mathrm{W}}}$ then $\operatorname{Re}(\alpha)$ equals
a) 0
b) $\frac{K}{2}$
c) K
d) none of these
13. If $f(x)=\frac{\sin [x]}{[x]},[x] \neq 0$

$$
=0, \quad[x]=0
$$

where $[x]$ is the greatest integer function, then $\lim _{x \rightarrow 0} f(x)$ is equal to
a) 1
b) 0
c) -1
d) none of these
14. Let $f(x)=\frac{\log _{e}(1+a x)-\log _{e}(1-b x)}{x}, x \neq 0$. The value to be assigned to $f(x)$ at $x=0$ so that $f(x)$ is continuous at $x=0$, is
a) $\mathrm{a}-\mathrm{b}$
b) $a+b$
c) $\quad \log _{e}(a b)$
d) none of these
15. If $f(x)=\log \left(x+\sqrt{1+x^{2}}\right)$ then $f(x)$ is
a) periodic
b) even function
c) odd function
d) none of these
16. Let $f(x)=\left|\begin{array}{ccc}x^{3} & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^{2} & p^{3}\end{array}\right|$, where p is a constant. Then $\frac{d^{3}}{\mathrm{dx}^{3}}\{\mathrm{f}(\mathrm{x})\}$ at $\mathrm{x}=0$ is
a) p
b) $\mathrm{p}+\mathrm{p}^{2}$
c) $\mathrm{p}+\mathrm{p}^{3}$
d) independent of p
17. The angle between the tangents to the curves $y=\sin x$ and $y=\cos x$ at a point of intersection is
a) $\frac{\pi}{4}$
b) $\tan ^{-1}(2 \sqrt{2})$
c) $\tan ^{-1}\left(\frac{1}{2 \sqrt{2}}\right)$
d) none of these
18. If $p(x)=a_{0}+\mathrm{a}_{1} \mathrm{x}^{2}+\mathrm{a}_{2} \mathrm{x}^{4}+\ldots .+\mathrm{a}_{n} \mathrm{x}^{2 \mathrm{n}}$ be a polynomial in $\mathrm{x} \in \mathbb{R}$ with $0<\mathrm{a}_{1}<\mathrm{a}_{2}<\ldots .<\mathrm{a}_{\mathrm{n}}$, then $\mathrm{p}(\mathrm{x})$ has
a) exactly one minimum
b) exactly one maximum
c) one minimum and one maximum
d) none of these
19. If $\phi(x)=f(x)+x f^{\prime}(x)$ then $\int \phi(x) d x$ is equal to
a) $(x+1) f(x)+c$
b) $(x-1) f(x)+c$
c) $x f(x)+c$
d) none of these
20. $\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{\mathrm{r}=1}^{2 \mathrm{n}} \frac{\mathrm{r}}{\sqrt{\mathrm{n}^{2}+\mathrm{r}^{2}}}$ equals to
a) $\sqrt{5}+1$
b) $\sqrt{5}-1$
c) $\sqrt{2}-1$
d) $\sqrt{2}+1$
21. If the line $y=m x$ bisects the area enclosed by the lines $x=0, y=0, x=\frac{3}{2}$ and the curve $y=1+4 x-x^{2}$, then m is equal to
a) $\frac{13}{6}$
b) $\frac{6}{13}$
c) 2
d) none of the these
22. If $y\left(x+y^{3}\right) d x=x\left(y^{3}-x\right)$ dy be the differential equation of a curve which passes through the point $(1,2)$, then the equation of the curve is
a) $y^{2}+2 x-5 x y=0$
b) $y^{3}+2 x^{2}-5 x y=0$
c) $y^{3}+2 x-5 x^{2} y$
d) none of these
23. If $x \frac{d y}{d x}+y=x \frac{\phi(x y)}{\phi^{\prime}(x y)}$, then $\phi(x y)$ is equal to (k is an arbitrary constant)
a) $k e^{x^{2} / 2}$
b) $\mathrm{ke}^{\mathrm{y}^{2} / 2}$
c) $\mathrm{ke}^{\mathrm{xy} / 2}$
d) none of these
24. Three identical dice are rolled. The probability that the same number will appear on each of them is
a) $\frac{1}{6}$
b) $\frac{1}{36}$
c) $\frac{1}{18}$
d) $\frac{3}{28}$
25. The letters of the word ASSASSIN are written down at random in a row. The probability that no two S occur together is
a) $\frac{1}{35}$
b) $\frac{1}{15}$
c) $\frac{1}{14}$
d) none of these

