RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah – 711 202

ADMISSION TEST – 2017

MATHEMATICS (Honours)

Date : 14-06-2017

Full Marks : 50

Time: 11.00 a.m. - 12.00 noon

Instructions for the candidate

Answer all the questions given below. Each question carries 2 marks for correct answer and -1 mark for wrong answer. Tick (\checkmark) the correct option. The tick must be very clear — if it is smudgy or not clear, no marks will be awarded. Calculator is not allowed.

Name of the student : _____

Application No. : _____

Signature of the invigilator : _____

1. Equation of the ellipse with x and y axes as its major and minor axes respectively, passing through the point (-3, 1) and with eccentricity $\sqrt{\frac{2}{5}}$ is

a) $3x^2 + 5y^2 = 32$, b) $6x^2 + 10y^2 = 32$, c) $5x^2 + 3y^2 = 32$, d) none of these.

2. The locus of the point of intersection of the straight lines $\frac{tx}{a} + \frac{y}{b} - t = 0$ & $\frac{x}{a} - \frac{ty}{b} + 1 = 0$ is

a) a circle, b) a parabola, c) an ellipse, d) none of these.

- 3. If one of the diameters of the circle A with equation $x^2 + y^2 2x 6y + 6 = 0$ is a chord to the circle B with centre (2, 1) then the radius of the circle B is
 - a) $\sqrt{3}$, b) $\sqrt{2}$, c) 3, d) 2.
- 4. 99th term of the series 2 + 7 + 14 + 23 + 34 + is
 a) 9999, b) 9998, c) 10000, d) none of these.

5. The sum of all natural numbers between 0 and 100 which are not divisible by 5 is
a) 4000, b) 4050, c) 1050, 4005.

6. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are unit vectors such that $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1$ and $\vec{a} \cdot \vec{c} = \frac{1}{2}$ then

- a) $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, b) $\vec{b}, \vec{c}, \vec{d}$ are non-coplanar,
- c) \vec{b}, \vec{d} are non-parallel, d) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel.

7. If $I = \int_{-1}^{2} |x \sin \pi x| dx$ then I equals a) $\frac{1}{\pi}$, b) $\frac{2}{\pi}$, c) $\frac{4}{\pi}$, d) $\frac{5}{\pi}$.

8.	Let f be a non-negative function defined on the interval [0,1]. If $\int_{0}^{x} \sqrt{1 - \{f'(t)\}^2} dt = \int_{0}^{x} f(t) dt$, $0 \le x \le 1$ and						
	f(0) = 0 then a) f $\left(\frac{1}{2}\right) < \frac{1}{2}$ and f $\left(\frac{1}{3}\right) >$	$\frac{1}{3}$,	b) $f\left(\frac{1}{2}\right) > \frac{1}{2}$ and $f\left(\frac{1}{3}\right) > \frac{1}{3}$,				
	c) $f\left(\frac{1}{2}\right) < \frac{1}{2}$ and $f\left(\frac{1}{3}\right) < \frac{1}{2}$	$\{\frac{1}{3},$	d) $f\left(\frac{1}{2}\right) > \frac{1}{2}$ and $f\left(\frac{1}{3}\right) < \frac{1}{3}$.				
9.	If $I = \int_{\frac{1}{e}}^{e} \log x \frac{dx}{x^2}$, then I	equals					
	a) $2\left(1-\frac{1}{e}\right)$,	b) 2,	c) $\frac{2}{e}$,	d) 0.			
10.	. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 2x + \sin x$ for $x \in \mathbb{R}$. Then f is						
	a) one-one and onto,		b) one-one but not onto,				
	c) onto but not one-one,		d) neither one-one nor onto.				
11.	For the circle $x^2 + y^2 = r^2$, the value of r for which the area enclosed by the tangents drawn from the point (6,8) to the circle and the chord of contact is maximum is						
	a) 10,	b) 5,	c) $5\sqrt{2}$,	d) none of these.			
12.	Which of the following function is differentiable at $x = 0$?						
	a) $\cos(x) + x $,	b) $\cos(x) - x $,	c) $\sin(x) + x $,	d) $\sin(x) - x $.			
13.	Let $\mathbb{Q}, \mathbb{R}, \mathbb{R} - \mathbb{Q}$ denote respectively the set of all rational numbers, real numbers and irrational numbers. Suppose $p \in \mathbb{R} - \mathbb{Q}$ and $\mathbb{Q} + p = \{x + p : x \in \mathbb{Q}\}$. Then						
	a) $\mathbb{Q} \cup (\mathbb{Q} + p) = \mathbb{R}$,		b) $\mathbb{Q} + p = \mathbb{R} - \mathbb{Q}$ if p is transcendental,				
	c) $\mathbb{Q} + p = \mathbb{R} - \mathbb{Q}$ if p is algebraic,		d) $\mathbb{Q} + p$ is a proper subset of $\mathbb{R} - \mathbb{Q}$.				
14.	14. Let $ X = 4$, $ Y = 3$. The number of surjective maps from X to Y is						
	a) 24,	b) 30,	c) 36,	d) none of these.			
15.	. Let the relation ρ be defined on \mathbb{Z} (the set of all integers) by 'a ρ b iff ab ≥ 0 ; a, b $\in \mathbb{Z}$ '. Then ρ is						
	a) Reflexive but neither	Reflexive but neither symmetric nor transitive, b) Reflexive and symmetric but not transitive,					
	c) Reflexive and transitiv	e but not symmetric,	d) An equivalence relation.				
16.	Let A be any 2×2 matrix and B be its adjoint. Then the determinant of the product matrix AB is						
	a) 1,	b) det A,	c) $(\det A)^2$,	d) none of these.			

17.	Let A and B be two matrices of order 2×2 . If they have a common row and same determinant, then which one of the following statements is true?							
	a) $A = B$,		b) adjoint of $A = adjoint of B$,					
	c) det (AB) = $(det(A))^2$,		d) det $(A+B) = det A + det B$.					
18.	The smallest number whose square exceeds the number by 2 is							
	a) 1,	b) 2,	c) –1,	d) –2.				
19.	The sum of two prime numbers is 61. The sum of their squares is							
	a) 2195,	b) 2875,	c) 3485,	d) none of these.				
20.	The determinant of the m	atrix A = $\begin{bmatrix} x^2 + x & x^3 + x^2 \\ x^2 & x^3 \\ x^2 - x & x^3 - x^2 \end{bmatrix}$	$\begin{bmatrix} x^4 + x^3 \\ x^4 \\ x^4 - x^3 \end{bmatrix}, x \in \mathbb{R} \text{ is }$					
	a) a polynomial in x of de	egree 7,	b) 0,					
	c) a polynomial in x of de	egree 9,	d) none of these.					
21.	If E_1 and E_2 are the events associated to a random experiment and if E_1 implies E_2 , then							
	a) $P(E_1) < P(E_2)$,	b) $P(E_1) \le P(E_2)$,	c) $P(E_1) \ge P(E_2)$,	d) $P(E_1) > P(E_2)$.				
22.	2. The probability of drawing a card which is either a spade or a king from a well-shuffled pack of cards is							
	a) $\frac{1}{26}$,	b) $\frac{17}{52}$,	c) $\frac{1}{52}$,	d) $\frac{4}{13}$.				
	20	52	52	13				
23.	. The area of the region bounded by the curves $y = x^2$ and $x = y^2$ is							
	a) $\frac{1}{2}$,	b) $\frac{1}{3}$,	c) $\frac{1}{4}$,	d) none of these.				
24.	The curves $x^2 - y^2 = 8$, $xy = 3$ intersect at an angle							
	a) $\frac{\pi}{3}$,	b) $\frac{\pi}{2}$,	c) $\frac{\pi}{4}$,	d) none of these.				
25.	The maximum value of ($\left(\frac{1}{x}\right)^x$ is						
	a) $\left(\frac{1}{e}\right)^e$,	b) e ^e ,	c) $e^{\frac{1}{e}}$,	d) none of these.				
	×							