RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah – 711 202

ADMISSION TEST – 2013

CHEMISTRY (Honours)

Date : 18-06-2013

Time : $1 \cdot 30 \text{ p.m} - 3 \cdot 30 \text{ p.m}$

Name : _

____ Regn. No. : ___

Full Marks: 50

[1×50]

Give tick mark(s) on appropriate answer(s) :(*No negative marking*)

What is the product of following reaction? 1. CH₂OH $\frac{\text{conc. H}_2\text{SO}_4}{\text{heat}}$ - CH₃ - CHO ·CH₃ $= CH_2$ a) b) d) 2. What is the number of primary alcohols possible with the molecular formula $C_5H_{12}O$? a) 5 b) 4 c) 3 d) 2 The compound 1,2-butadiene has 3. b) only sp² hybridized carbon atom a) onlysp hybridized carbon atoms c) bothsp and sp² hybridized carbon atoms d) sp, sp^2 and sp^3 hybridized carbon atoms The C–H bond distance is the longest in 4. c) C_2H_6 a) C_2H_2 b) C_2H_4 d) $C_2H_2Br_2$ 5. The two enantiomers of a compound can be separated by a) fractional distillation b) fractional crystallization c) chromatographic technique d) the use of suitable optically active reagent 6. Which of the following statements is correct? a) +I Group stabilizes a carbocation b) +I Group stabilizes a carbanion c) –I Group stabilises a carbocation d) –I Group destabilises a carbanion Bromination of n-butane produces 7. a) 1-bromobutane as the major product b) 2-bromobutane as the major product c) both 1-bromo and 2-bromo products with equal percentages d) both 1-bromo and 2-bromo products whose percentages depend upon temperature The treatment of propene with Cl_2 at 500 – 600°C produces 8. a) 1,2 – dichloropropene b) allyl chloride c) 2,3 – dichloropropene d) 1,3 – dichloropropene 9. Consider the following reactions $HC \equiv CH + LiNH_2 \implies NH_3 + HC \equiv CLi$ $HC \equiv CLi + H_2O \rightarrow HC \equiv CH + LiOH$ Now, predict which of the following orders regarding base strength is correct? b) $HC \equiv C^{-} < NH_{2}^{-} < OH^{-}$ a) $HC \equiv C^{-} < OH < NH_{2}^{-}$ d) $OH^{-} < HC \equiv C^{-} < NH_{2}^{-}$ c) $OH^{-} < NH_{2}^{-} < HC \equiv C^{-}$ 10. The electrophile in aromatic nitration is a) nitronium ion b) nitrinium ion c) nitrite ion d) nitrate ion

11.	Butanenitrile may be pre	pared by				
	a) propyl alcohol with K	CN	b) butyl alcohol with KCN			
	c) butyl chloride with KC	CN	d) propyl chloride with KC	CN		
12.	m-chlorobenzaldehyde on reaction with conc. KOH at room temperature gives					
	i) potassium m-chlorobenzoate and m-hydroxybenzaldehyde					
	c) m-chlorobenzyl alcoho	and m-bydroxybenzyl alco	hol			
	d) potassium m-chlorobe	nzoate and m-chlorobenzyl a	alcohol			
13	The treatment of CH ₂ CH ₂ COOH with chloring in the presence of phosphorus gives					
10.	a) CH ₃ CH ₂ COCl	b) CH ₃ CH ₂ CH ₂ Cl	c) CH ₃ CH(Cl)COOH	d) CH ₂ (Cl)CH ₂ COOH		
14.	Chlorobenzene can be pr	epared by reacting aniline w	ith			
	a) hydrochloric acid	e of anhydrous aluminium c	b) cuprous chloride			
	d) nitrous acid followed l	c) chiefine in the presence of annyarous aluminium chiefide d) nitrous acid followed by heating with cuprous chloride				
15.	The treatment of phenol	with phthalic anhydride in th	ne presence of concentrated s	sulphuric acid produces		
10.	a) aspirin	b) methyl red	c) methyl orange	d) phenolphthalein		
16.	Electronegativity values	of Fe, Fe^{+2} and Fe^{+3} are in th	ne order			
	a) $Fe > Fe^{+2} > Fe^{+3}$	b) $Fe^{+2} > Fe > Fe^{+3}$	c) $Fe^{+3} > Fe > Fe^{+2}$	d) $Fe^{+3} > Fe^{+2} > Fe$		
17.	Bohr orbit radius of H ate	om is approximately 0.53Å.	The radius for the first excit	ed orbit is (in Å)		
	a) 0·265	b) 1·06	c) 1.59	d) 2·12		
18.	The total number of electrons, protons and neutrons in the product formed by the loss of one α -particle from ${}_{92}U^{238}$ is					
	a) 326	b) 333	c) 324	d) 332		
19.	The ratio of the number that all the lead has come	of g.atoms of Pb to the num from uranium, the age of th	the mineral is $(k = 1.5 \times 10^{-10})$	mineral is 0.33. Assuming rs^{-1})		
	a) 1.9×10^9 years	b) 19×10^9 years	c) 0.19×10^9 years	d) 0.019×10^9 years		
20.	Which of the following h	as the highest dipole momen	nt?			
	a) NH ₃	b) PH ₃	c) SbH ₃	d) AsH ₃		
21.	Which of the following species has the lowest first Ionisation energy?					
	a) O_2^{-2}	b) O ₂	c) O_2^+	d) O_2^-		
22.	The molecule that has lin	ear structure is				
	a) NO_2	b) SiO ₂	c) SO_2	d) CO_2		
23.	Each carbon atom in CaC	C_2 is	3	3		
	a) sp hybridised	b) sp ² hybridised	c) sp ³ hybridised	d) dsp ³ hybridised		
24.	In the extraction of Iron f	From Haematite ore, lime sto	ne is added to act as			
	a) flux	b) slag	c) a reducing agent	d) an oxidising agent		
25.	Amongst the followings	which one is most stable?				
0.0	a) BaCO ₃	b) $CaCO_3$	c) MgCO ₃	d) Na_2CO_3		
26.	Which of the following h	alogens has the lowest bond	dissociation energy?	1) I		
27	a) Γ_2	$0) Cl_2$	$C) BI_2$	(1) (1)		
21.	r_2 reacts with cold dilute a) NaF. Opand H ₂ O ₂	(2%) NaOH solution to give b) NaF. OF ₂ and H ₂ O	c) NaF. NaOF and H ₂ O	d) NaF. O_2 and H_2O		
28	A red crystalline solid Λ	reacts with HNO ₂ to form	vellow powder R which is i	nsoluble in water Roth A		
<i>2</i> 0.	and B react with HCl to form PbCl ₂ , A and B are respectively					
	a) PbO, PbO ₂	b) Pb_3O_4 , PbO_2	c) PbO_2 , Pb_3O_4	d) PbO ₂ , PbO		

29.	A white sublimable s	substance that turns bl	lack on treatment with a NH ₃ sol	ution can be
	a) Hg ₂ Cl ₂	b) HgCl ₂	c) As_2O_3	d) ZnCO ₃

30. A mixture of NH₄Cl and NH₄I on being heated with solid K₂Cr₂O₇ and conc. H₂SO₄, the solid mixture gives vapours of a dark colour which forms a yellow solution with aqueous NaOH. On acidification with acetic acid followed by treatment with lead acetate, the yellow solution gives a yellow precipitate. The dark colour vapours obtained in the above mentioned reaction is

a) CrOala onl	$v = b CrO_2Cl_2$ or	\mathbf{v} c) C	$rO_{2}Cl_{2}$ and l_{2} d)	CrOals and Cla
u = 0	b) Cl C 2 Cl 2 Ol	iy 0,01	$10_2 c_1 u u u u u u u u u u u u u u u u u u u$	

<u>Statement for Q31, 32 and 33</u>: The hydrogen like species Li^{+2} is in a spherically symmetric state S_1 with one radial node. Upon absorbing light the ion undergoes transition to a state S_2 , which has one radial node and energy equal to that of ground state hydrogen atom.

- 31. The state S₁ is

 a) 1s
 b) 2s
 c) 2p
 d) 3s

 32. Energy of the state S₁ in unit of hydrogen atom ground state energy is

 a) 0.75
 b) 1.50
 c) 2.25
 d) 4.50
- 33. The orbital angular momentum quantum number of the state S₂ is
 a) 0
 b) 1
 c) 2
 d) 3
- 34. Assuming that Hund's rule is violated, the bond order and the magnetic nature of a homonuclear diatomic molecule is
 - a) 1 and diamagnetic b) 1 and paramagnetic c) 0 and diamagnetic d) 0 and paramagnetic

<u>Statement for Q35 and 36</u>: Two containers are connected through a tap (initially the tap was closed). Container A contains some gas at a volume V_1 and pressure P_1 while the container B (which has a volume V_2) is completely empty. Suddenly the tap is opened, adiabatically. As a consequence the gas in A starts moving towards B. The process continues till both the containers get uniformly filled up by gas. The final volume and pressure of the gas is V_1+V_2 and P.

35. The assumptions made during the process is/are

a) the collisions are elastic and interaction is there among the gas molecules

- b) gas molecules are point mass and walls are rigid
- c) the distance covered in between two successive collisions is free path

d) no heat enters or exits the chamber

36. The amount of net work done is

```
a) -P.V_2 b) -P(V_1+V_2) c) zero d) P.V_2
```

37. Which of the following statements is/are **incorrect**?

a) Energy of a system always decreases in a spontaneous process

b) Entropy of a system always decreases in a spontaneous process

c) Entropy of a system always increases in a spontaneous process

d) Entropy of the universe always increases in a spontaneous process

38. Which of the following processes is/are associated with increase of enthalpy?

a) the boiling of water

a) urea

b) the condensation of water vapor

- c) the dissociation of water into hydrogen and oxygen
- d) the conversion of acetylene to benzene

39. Which of the following 0.1 molar aqueous solution has the highest boiling point?

b) $BaCl_2$ c) KCl d) Na_2SO_4

40. A law that relates the solubility of a gas to its pressure called—a) the distribution lawb) Raoult's lawc) Henry's lawd) Ostwald's law

41. The polymerization of ethylene to linear polyethylene is represented by the reaction

 $n CH_2 = CH_2 \rightarrow (-CH_2 - CH_2 -)_n$

'n' being large integral value. Given that the average enthalpies of bond dissociation for C=C and C-C at 298 K are 590 and 331 kJ mole⁻¹, respectively. The enthalpy of polymerization per mole of ethylene at 298 K is

- a) -72 kJ b) +921 kJ c) 0 d) -195 kJ
- 42. In FCC metal, the no. of atoms per unit cell is a) 8 b) 14 c) 6 d) 4
- 43. In a reaction

 $ClO_2 + I^- \rightarrow ClO_2^- + I_2$

the order of the reaction with respect to ClO_2 was determined by starting with a large excess of Γ , so that its concentration was essentially constant. The rate = k $[\text{ClO}_2]^m$ and k includes Γ as constant. The following data was observed

		time/sec	$[ClO_2] \ge 10^4 / (mol lit^4)$		
		1.0	4.77		
		2.0	4.31		
		3.0	3.91		
		4.0	3.53		
	What will be the order of	the reaction?			
	a) 2	b) 0	c) 1	d) fractional order	
44.	Which of the following s a) cathode is the positive b) cathode is the negative c) electrons flow from an d) reduction occurs at cat	tatements is wrong about g electrode e electrode ode to cathode in the exter hode	galvanic cells? nal circuit		
45.	With increasing temperat a) 0	cure the equillibrium constants b) 1	ant of a reversible reaction ter $c) -1$	nds towards— d) ∞	
46.	How much will the poten a) increase by 0.03 V	ntial of Zn/Zn ⁺² change if th b) decrease by 0.03 V	ne solution of Zn ⁺² is diluted c) increase by 0.059 V	10 times? d) decrease by 0.059 V	
47.	 In a compound A_xB_y, a) mole of A = mole of B = mole of A_xB_y b) equivalent of A = equivalent of B = equivalent of A_xB_y c) y times mole of A = x times mole of B = (x+y) times mole of A_xB_y d) y times mole of A = x times mole of B 				
48.	The number of moles of KmnO_4 that will be required to react completely with one mole of ferrous oxalate in acidic solution is				
	a) 3/5	b) 2/5	c) 4/5	d) 1	
49.	Solubility product constate 10^{-8} , 3.2 x 10^{-14} and 2.7 x	ubility product constants (K_{sp}) of salts of types MX, MX ₂ and M ₃ X at temperature T are given a ⁸ , 3.2 x 10 ⁻¹⁴ and 2.7 x 10 ⁻¹⁵ , respectively. Solubilities of the salt at T are in the order			
	a) $MX > MX_2 > M_3X$	b) $M_3X > MX_2 > MX$	c) $MX_2 > M_3X > MX$	d) $MX > M_3X > MX_2$	
50.	An element retains 1/10 th is—	^h of its original radio-activ	ity after 2.303 time-unit. Th	e half life in the same unit	
	a) 2·303	b) 0.0693	c) 0.693	d) 0·2303	