

1st Time in Gujarat Prime Education with Prime Features

Time: 90 Minutes

PST-2018

Maximum Marks: 50

Read the following instructions carefully

- (1) This question paper contains MCQ and numerical type questions divided into two sections:
 - (i) Section I Question number 01 to 10 (10 Questions) will carry one mark each.
 - (ii)Section II Question number 11 to 30 (20 Questions) will carry two mark each.
- (2) Answer all the questions.
- (3) Question must be answered on special machine gradable Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using black ink ball pen against the question number on the ORS. Each question has only one correct answer.
- (4) Wrong answer carries negative marks. For one mark, there is one-third negative mark. For, two mark two-third negative mark. No negative marking for numerical type questions.
- (5) More than one answer bubbled against the question will be deemed as an incorrect response.
- (6) Write your registration number and other details at the specified locations on the ORS.
- (7) Calculator is allowed in the examination hall but the programmable calculator is not permitted.
- (8) Charts, graph sheets or tables are not allowed.
- (9) Choose the closest numerical answer among the choice given.
- (10) Use the blank pages given at the end of the question paper for rough use.
- (11) Cellphones, mobile phones are prohibited in the examination hall.
- (12) This question paper contains 12 printed pages including pages for rough work.
- (13) Please check all pages and report if there is any discrepancy.

Candidate Name:

Registration Number:_____

Branch: ME, AE, PI

Paper Code: 102

PRIME GATE INSTITUTE

306, Vihang Trade Center, Near Mota Bazar Circle, V.V.Nagar, Anand-388120 (M)+91 7622009891 www.primegateinstitute.com

[Q-18] Steam at an initial enthalpy of 100 kJ/kg and inlet velocity of 100 m/s, enters an insulated horizontal nozzle. It leaves the nozzle at 200 m/s. the exit enthalpy (in kJ/kg)							
IS [GATE-2016]							
[Q-19] The $\lim_{x \to 0} \frac{\sin[\frac{2}{3}x]}{x}$ is [GATE-2010]							
(a) 2/3 (b) 1 (c) 3/2 (a)							
 [Q-20] A container originally contains 10 litres of pure spirit. From this container 1 litre of spirit is replaced with 1 litre of water. Subsequently, 1 litre of the mixture is again replaced with 1 litre of water and this processes is repeated one more time. How much spirit is now left in the container? (a) 7.58 litres (b) 7.84 litres (c) 7 litres (d) 7.29 liters 							
[0.21] The state of plane stress at a point is given by $\sigma = 200$ MPa $\sigma = 100$ MPa and							
[Q-21] The state of plane-stress at a point is given by $\delta_x = 200$ k/Pa, $\delta_y = 100$ k/Pa and							
$\tau_{xy} = 100$ MPa. The maximum shear stress (in MPa) is [GATE-2010]							
(a) 111.8 (b) 150.1 (c) 180.3 (d) 223.6							
[Q-22] If the index crank of a dividing head is turned through one complete revolution and							
10 holes in a 30 hole circle plate, the workpiece turns through (in degrees)							
(a) 6 (b) 12 (c) 240 (d) 480 [GATE-1992]							
GAILINDIUL							
[Q-23] Hot hardness in an essential property for [GATE-1995]							
(a) Gear materials (b) Shaft materials (c) Welding electronics (d) Tool materials							
[Q-24] With initial condition x(1) = 0.5, the solution of the differential equation. $t \frac{dx}{dt} + x = t$ is							
(1) (1) (1) (2) (1)							
(a) $x = t - \frac{1}{2}$ (b) $x = t^2 - \frac{1}{2}$ (c) $x = \frac{1}{2}$ (d) $x = \frac{1}{2}$ [GATE-2012]							
[Q-25] The salaries of A and B together amount to Rs. 2000. A spends 95% of his salary and							
B, 85% of his salary. If now, their savings are same, what is A's salary?							
(a) Rs. 1500 (b) Rs. 1250 (c) Rs. 750 (d) Rs. 1600							
[Q-26] Consider a refrigerator and a heat pump working on the reversed Carnot cycle							
between the same temperature limits. Which of the following is correct?							
between the same temperature limits. Which of the following is correct? (a) COP of refrigerator = COP of heat pump							
between the same temperature limits. Which of the following is correct? (a) COP of refrigerator = COP of heat pump (b) COP of refrigerator = COP of heat pump +1							
between the same temperature limits. Which of the following is correct? (a) COP of refrigerator = COP of heat pump (b) COP of refrigerator = COP of heat pump +1 (c) COP of refrigerator = COP of heat pump – 1							
 between the same temperature limits. Which of the following is correct? (a) COP of refrigerator = COP of heat pump (b) COP of refrigerator = COP of heat pump +1 (c) COP of refrigerator = COP of heat pump - 1 (d) COP of refrigerator = Inverse of the COP of heat pump 							
 between the same temperature limits. Which of the following is correct? (a) COP of refrigerator = COP of heat pump (b) COP of refrigerator = COP of heat pump +1 (c) COP of refrigerator = COP of heat pump - 1 (d) COP of refrigerator = Inverse of the COP of heat pump 							
between the same temperature limits. Which of the following is correct? (a) COP of refrigerator = COP of heat pump (b) COP of refrigerator = COP of heat pump +1 (c) COP of refrigerator = COP of heat pump – 1 (d) COP of refrigerator = Inverse of the COP of heat pump [GATE-1995] PRIME GATE INSTITUTE							

306, Vihang Trade Center, Near Mota Bazar Circle, V.V.Nagar, Anand-388120 (M)+91 7622009891 www.primegateinstitute.com

ANSWER KEY								
Q.	ANS	Q.	ANS	Q.	ANS	Q.	ANS	
Q-1	[D]	Q-9	[A]	Q-17	[B]	Q-25	[A]	
Q-2	[D]	Q-10	[A]	Q-18	85	Q-26	[C]	
Q-3	[D]	Q-11	[C]	Q-19	[A]	Q-27	[A]	
Q-4	[A]	Q-12	[A]	Q-20	[D]	Q-28	0.35 to 0.36	
Q-5	[C]	Q-13	[B]	Q-21	[A]	Q-29	42 L	
Q-6	0.3	Q-14	2	Q-22	[B]	Q-30	1.67	
Q-7	[C]	Q-15	[D]	Q-23	[D]	-	-	
Q-8	[B]	Q-16	[A]	Q-24	[D]	-	-	
[Q-4] $\frac{d^3y}{dx^3} + 4\sqrt{\left(\frac{dy}{dx}\right)^3 + y^2} = 0$ Removing radicals we get $\left(\frac{d^3y}{dx^3}\right)^2 = 16\left[\left(\frac{dy}{dx}\right)^3 + y^2\right]$ The order is 3 since highest differential is $\frac{d^3y}{dx^3}$ The degree is 2 since power of highet differential is 2.								
$[\mathbf{Q}\textbf{-5}] \ 3\mathbf{G} = 54 \times 2 = 108 \Rightarrow \mathbf{G} = 36$ $3\mathbf{P} = 36 \times 2 = 72 \Rightarrow \mathbf{P} = 24$ $3\mathbf{C} = 24 \times 2 = 48 \Rightarrow \mathbf{C} = 16$ $Cost \text{ of a cricket ball} = \mathbf{Rs. 16}$ $[\mathbf{Q}\textbf{-6}] \ v = -\frac{Lateral strain}{Longitudinal strain} = -\frac{\left(\frac{\Delta D}{D}\right)}{\left(\frac{\Delta L}{L}\right)}$ $v = \left(\frac{L}{D}\right) \left(-\frac{\Delta D}{\Delta L}\right)$ Given, L = 500 mm, D = 50 mm $\Delta \mathbf{P} = -0.015 \Delta L = \pm 0.5$								
$\therefore v = \frac{500}{50} \times \frac{0.015}{0.500} = 0.3$ $[Q-10] \frac{1}{5} - \frac{1}{10} - \frac{1}{20} = \frac{1}{20}$ This is C's one day work so 20 days are required for C alone to finish task $\frac{PRIME GATE INSTITUTE}{306, Vihang Trade Center, Near Mota Bazar Circle, V.V.Nagar, Anand-388120 (M)+91 7622009891 www.primegateinstitute.com}$								

[Q-11] Tensile load acting on the plate, P = 95 x 10 x t = 9500t N Maximum stress in the plate, $\sigma_{max} = \frac{P}{(b-d)t} = \frac{9500t}{(100-50)t}$ $=\frac{9500t}{50t}=190$ MPa. [Q-13] $V_3 = V_2$ Process 1 - 2: Cooling at p = C $T = \frac{3T_1}{4}$ given condition or $\frac{T_2}{T_1} = \frac{3}{4}$ According to Charl's law $\frac{V_2}{V_1} = \frac{T_2}{T_1} = \frac{3}{4}$ - 3 : Cooling at V = C $T_3 = \frac{T_2}{2}$ given condition Process 2 - 3: Cooling at V = C $\frac{Final \ volume}{Initial \ volume} = \frac{V_3}{V_1} = \frac{V_2}{V_1} \qquad \because V_3 = V_2$ $=\frac{3}{4}=0.75$ $\begin{bmatrix} \mathbf{Q-14} \end{bmatrix} \begin{bmatrix} 6 & 0 & 4 & 4 \\ -2 & 14 & 8 & 18 \\ 14 & -14 & 0 & -10 \end{bmatrix}$ $R_3 \rightarrow R_3 - 2R_1 + R_2$ $\begin{bmatrix} 6 & 0 & 4 & 4 \\ -2 & 14 & 8 & 18 \\ 14 - 2(6) + (-2) & -14 - 2(0) + (14) & 0 - 2(4) + 8 & -10 - 2(4) + (18) \end{bmatrix}$ $\begin{bmatrix} 6 & 0 & 4 & 4 \\ -2 & 14 & 8 & 18 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Determinant of matrix $\begin{bmatrix} 6 & 0 \\ -2 & 14 \end{bmatrix}$ is not zero, So Rank is 2 **PRIME GATE INSTITUTE**

306, Vihang Trade Center, Near Mota Bazar Circle,

V.V.Nagar, Anand-388120 (M)+91 7622009891 www.primegateinstitute.com

[Q-16]

