

ENGINEERS CAREER GROUP[™]

Leaders in IES & GATE Since 2009

Electrical Engineering

Sample Paper-2

Q.1- A cable has following characteristics L=0.201 $\mu H/m$ & C=196.2 pF/m. The velocity of wave propagation through the cable is

(a) 32 m/s	(b)159.24 uH/m`	(c) 0.0312 m/s	(d) 159.24 m/us
(u) 52 m 5	(0)157.21 µ11/11	(0) 0.0512 m/s	(u) 159.2 m µs

Q.2- An Industrial consumer has a daily load pattern of 2000 kW, 0.8 leg for 12 Hrs ., and 1000 kW UPF for 12 Hrs the load factor is

(a) 0.5 (b)0.75 (c)0.6 (d) 2.0

Q.3- In the Signal flow graph shown below. The correct relationship is

(a) w= au+bx+cy-dv(c) w= au+bx+dv

(b) w=au+bx+cy(d) w=au+cy+bx-dw

Q.4- The close loop transfer fxn of a control system is given by

$$\frac{C(s)}{R(s)} = \frac{1}{1+S}$$

For input $r(t) = \sin t$, the steady state volume c(t) is give by:-(a) $\frac{1}{\sqrt{2}} \cos t$ (b)1 (c) $\frac{1}{\sqrt{2}} \sin t + \frac{1}{2} e^{-t}$ (d) $\frac{1}{\sqrt{2}} \sin (t - \frac{\pi}{2}) + \frac{1}{2} e^{-t}$

Q.5- Match the following

List-1	List-2
A. No load and blocked rotor	1. Transformer
B. Sumpner's test	2. Induction Machine
C. Swinbum's test	3. Synchronous Machine
	4.DC machine Function

CODES:

(a)	A2	B1	C4
(b)	A1	B2	C3
(c)	A3	B2	C1
(d)	A4	B1	C2

Q.6- A 220 V, 15 kW, 1000 rpm shunt motor with armature resisitance of 0.25Ω , has a rated line current of 68 A and a rated field current of 2.2 A. The change in field flux required to obtain a speed of 1600 rpm while drawing a line current of 52.8 Amp and a field current of 1.8 Amp is

- (a) 18.18% increase
- (c) 36.36% increase

- (b) 18.18% Decrease
- (d) 36.36% decrease

Q.7- In the following linear circuit, it is given that $V_{AB}{=}4v$ and $R_{L\,{=}}$ 10k, and $V_{AB}{=}$ 1V, & $R_L=2k$

The value of thevnin resistance and voltage for the network "N" is given by

(a) $16 \,^{\circ}\Omega, 30v$ (b) $30k \,^{\circ}\Omega, 16v$ (c) $3k \,^{\circ}\Omega, 6v$ (d) $50k \,^{\circ}\Omega, 30v$

Q.8- A 800 kV transmission line is having per phase line inductance of 1.1 mH/km and per phase line capacitance of 11.78 nF/km. Ignoring the length of line its ideal power transfer capability in MW is

(a) 1204 MW (b) 1504 MW (c) 2085MW (d) 2606 MW

Q.9- An EHV transmission line of length 300 km can be approximate by a loss less line having propagation constant β =0.00127 rad/km. then the percentage ratio of line length to the wave length will be given by

Q.10- state equation are represented by

$$X = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} X + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} u$$

The Eigen value are
(a) 1, -1 (b) -0.5± j 1.323 (c)-1, -1 (d) +1, +1

Q.11- A system is having a damping ratio of 1.25 and ω_n (natural frequency) of 200 rad/see and D.C gain of "1".

The response of system to a unit step input is

(a) $1 + \frac{5}{3}e^{-50t} - \frac{2}{3}e^{-150t}$	(b) $1 + \frac{1}{3} e^{-100t} - \frac{4}{3} e^{-400t}$
(c) $1 - \frac{4}{3}e^{-100t} + \frac{1}{3}e^{-400t}$	(d) $1 + \frac{2}{3}e^{-50t} - \frac{5}{3}e^{-150t}$

Q.12- The surge impedance of 400 km long overhead transmission line is 400 ohm. For a 200 km length of the same line, the surge impedance will be

(a) 200 ohm (b) 800 ohm (c) 400 ohm (d) 100 ohm

Q.13- The closed loop transfer function of a system is given by

$$\frac{C(S)}{R(S)} = \frac{50}{S(1+ST)(1+0.5S)+50}$$

Find the value of 'T' such that the system is driven on to verge of instability and find Resulting frequency of oscillation.

$(a)T = \frac{1}{48}$, w=9.8rad/see	(b) $T = \frac{1}{41}$, w=19.7rad/see
(c) $T = \frac{2}{41}$, w=7.8rad/see	(d) None of these

Q.14- The forward transfer function of a unity feedback "type 1", 2^{nd} order system has a pole at -2 the nature of Gain K is so adjusted that the damping ratio is 0.4. The above equation is subjected to the input r(t)=1+4t

Find steady state error?

(a)
$$e_{ss}=1.28$$
 (b) $e_{ss}=2.94$ (c) $e_{ss}=1.12$ (d) $e_{ss}=1.02$

Q.15- $L(t) = 2 \sin 2t$ in the following circuit

Q.16- In the given circuit below, e, and "i" are in phase calculate phase angle between "e" and " i_1 ",

Q.17- Construct the dual network for curves circuit diagram.

ENGINEERS CAREER GROUP[™] Head Office: S.C.O-80-81-82,3rd and 4th floor, Sector-34/A, Chandigarh TOLL FREE: 1800-270-4242 WEB: www.engineerscareergroup.in

Q.18- The Impedance of following network consists of

Q.19- The step response of RLC series ckt. Is given by

$$\frac{d^2 I(t)}{dt^2} + \frac{2dI(t)}{dt} + 5I(t) = 10$$
$$I(o+) = 2, \frac{dI^{(o)+}}{dt} = 4$$

Find I(t) = ?

(a) $1+\overline{e}^{4t}\cos 4t$ amp (c) $2+\overline{e}^{4t}\sin 4t$ amp (b) $4-2\bar{e}^{4t} \cos 4t$ amp (d) $10+\bar{e}^{4t} \sin 4t$ amp

Q.20- In the given ckt. Of fig. below V(t) is

 $V_c(t)$ is

Q.21- The Integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} \sin(t-\tau) \cos\tau \ d\tau \ equals$$
(a) sint cost
(b) 0
(c) $\frac{1}{2} \cos t$
(d) $\frac{1}{2} \sin t$

Q.22- Let
$$A = \begin{pmatrix} 2 & -0.1 \\ 0 & 3 \end{pmatrix}$$
 and $A^{-1} = \begin{pmatrix} \frac{1}{2} & a \\ 0 & b \end{pmatrix}$ then a+b is equal to
(a) 7/20 (b) 3/20 (c) 19/60 (d) 11/20

Q.23- The area in first quadrant under curve

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{4}$ -tan⁻¹ 3 (c) $\frac{\pi}{2}$ - tan⁻¹ 3 (d) $\frac{\pi}{2}$ - tan⁻¹ 3

Q.24-The Newton Raphson method

$$X_{n+1} = \frac{X_n}{2} + \frac{3}{2x_n}$$

Can be used to solve the equal

(a) $x^2=3$ (b) $x^3=3$ (c) $x^2=3$ (d) $x^{-3}=3$

Q.25- The solution of $x \frac{dy}{dx} + y = x^4$ with the condition

(a)
$$y = \frac{x^4}{5} + \frac{1}{x}$$
 (b) $y = \frac{4x^4}{5} + \frac{4}{5x}$ (c) $y = \frac{x^4}{5} + 1$ (d) $y = \frac{x^5}{5} + 1$

Q.26- Mamta had no _____about going the chairman's clerk and throwing her resignation letter to him.

(a) Apathy (b) Penchant (c) Computcion (d) Juxtaposition

Q.27- Make the correct word from the meaning given in the question:-To speak in an indirect manner to evade a point, to mislead

(a) Prevaricate
(b) Concede
(c) Relegate
(d) Remonstrate

Q.28- Three pipes of varying diameters can fill the vessels of 1,2,and 3 L in 4, 18, and 48 min respectively. What is the ratio of the diameters?

(a) 6:4:3
(b) 2:3:4
(c) 1:4:5
(d) 2:5:8

Q.29- $125^{x} + 45^{x} = 2.(27)^{x}$ has.....

(a) No solution (b) One solution (c) Two solution (d) More than two solution

Q.30- If X follows binomial distribution with parameter n=8 and p=1/2 then p (| x-4 | \leq 2) equals to

(a)
$$\frac{118}{128}$$
 (b) $\frac{119}{128}$ (c) $\frac{117}{128}$ (d) None of these

