MADHAVA MATHEMATICS COMPETITION

Date: January 5, 2014

Time: 12 noon- 3 p.m.

Part I

N.B. Each question in Part I carries 2 marks.

1. If $x^3 - x + 1 = a_0 + a_1(x - 2) + a_2(x - 2)^2 + a_3(x - 2)^3$, then (a_0, a_1, a_2, a_3) equals **A.** (1, -1, 0, 1) **B.** (7, 6, 10, 1) **C.** (7, 11, 12, 6) **D.** (7, 11, 6, 1)

2. Suppose f(x) and g(x) are real-valued differentiable functions such that f'(x) ≥ g'(x) for all x in [0, 1]. Which of the following is necessarily true?
A. f(1) ≥ g(1)
C. f(1) - g(1) ≥ f(0) - g(0)

- **B.** f g has no maximum on [0, 1] **D.** f + g is a non-decreasing function on [0, 1]
- 3. The equation x⁴ + x² 1 = 0 has
 A. two positive and two negative roots
 C. one positive, one negative and two non-real roots
 - **B.** all positive roots **D.** no real root
- 4. Let n be a natural number. Let A and B be $n \times n$ matrices. If A is invertible, then which of the following is necessarily true?
 - $\textbf{A.} \ rank(AB) < rank(B) \qquad \textbf{C.} \ rank(AB) = rank(B)$
 - $\textbf{B.} \ rank(AB) > rank(B) \qquad \textbf{D.} \ rank(AB) < rank(A)$
- 5. Let X be a set and A, B, C be its subsets. Which of the following is necessarily true? **A.** A - (A - B) = B**C.** $A - (B \cup C) = (A - B) \cup (A - C)$

B.
$$A - (B \cap C) = (A - B) \cap (A - C)$$
 D. $B - (A - B) = B$

- 6. For a real number x we let [x] denote the largest integer not exceeding x. For a natural number n, let a_n = ^[n√2]/_n. The limit lim a_n
 A. equals 0 B. equals [√2] C. equals √2 D. does not exist
- 7. Let M be a two-digit natural number. Let N be the natural number whose digits are that of M but are in the reverse order. Which of the following CANNOT be the sum of M and N?
 - **A.** 181 **B.** 165 **C.** 121 **D.** 154
- 8. The value of $\lim_{x \to 1} \frac{\int_{1}^{x} e^{t^{2}} dt}{x^{2} 1}$ is **A.** 0 **B.** 1 **C.** *e* **D.** *e*/2
- 9. Let n be any positive integer and $1 \le x_1 < x_2 < \cdots < x_{n+1} \le 2n$, where each x_i is an integer. Which of the following must be true?
 - (I) There is an i such that x_i is a square of an integer.
 - (II) There is an *i* such that $x_{i+1} = x_i + 1$.
 - (III) There is an i such that x_i is prime.
 - A. I only B. II only C. I and II only D. II and III only
- 10. Two real numbers x and y are chosen uniformly at random from the interval [0, 1]. Find the probability that 2x > y.

A. 1/4 **B.** 1/2 **C.** 2/3 **D.** 3/4

[20]

Part II

N.B. Each question in Part II carries 6 marks.

- 1. Let A be an 8×3 matrix in which every entry is either 1 or -1, and no two rows are identical. Find the rank of A.
- 2. Find all pairs (x, y) of integers such that $y^2 = x(x+1)(x+2)$.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f' is a decreasing function. If a, b, c are real numbers with a < c < b, prove that $(b c)f(a) + (c a)f(b) \le (b a)f(c)$.
- 4. Let $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ be a polynomial with integer coefficients such that a_0, a_3 and f(1) are odd. Show that f has no rational root.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f(x-y) = f(x)f(y) and $f(x) \neq 0$ for all x. Find f(3).

Part III

- 1. Prove that the equation $e^x ln(x) 2^{2014} = 0$ has exactly two positive real roots. [12]
- 2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a non-constant function satisfying f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$. Show that
 - (a) $f(x) \neq 0$ for all $x \in \mathbb{R}$;
 - (b) f(x) > 0 for all $x \in \mathbb{R}$;
 - (c) if f is differentiable at 0, then f is differentiable on \mathbb{R} and there exists some real number β such that $f(x) = \beta^x$ for all $x \in \mathbb{R}$. [12]
- 3. Let n be a natural number. Suppose P_1, P_2, \dots, P_n are points on a circle of radius 1. Prove that

$$\sum_{1 \le i < j \le n} d(P_i, P_j)^2 \le n^2$$

where for points X and Y in the plane, we denote by d(X, Y) the distance between them. Prove that equality can hold for every natural number n. [13]

4. Let $f : \mathbb{C} \to \mathbb{C}$ be a function such that f(0) = 0. Suppose that |f(z) - f(w)| = |z - w| for any $w \in \{0, 1, i\}$ and $z \in \mathbb{C}$. Prove that $f(z) = \alpha z$ or $f(z) = \alpha \overline{z}$ for some $\alpha \in \mathbb{C}$ with $|\alpha| = 1$. [13]