Part I

N.B. Each question in Part I carries 2 marks.

- If N = 1! + 2! + 3! + · · · + 2011!, then the digit in the units place of the number N is

 (a) 1
 (b) 3
 (c) 0
 (d) 9.
- 2. The set of all points z in the complex plane satisfying $z^2 = |z|^2$ is a (a) pair of points (b) circle (c) union of lines (d) line.
- 3. If the arithmetic mean of two numbers is 26 and their geometric mean is 10, then the equation with these two numbers as roots is (a) $x^2 + 52x + 100 = 0$ (b) $x^2 - 52x - 100 = 0$ (c) $x^2 - 52x + 100 = 0$ (d) $x^2 + 52x - 10 = 0$.
- 4. All points lying inside the triangle with vertices at the points (1,3), (5,0)and (-1,2) satisfy (a) $3x + 2y \ge 0$ (b) $2x + y - 13 \ge 0$ (c) $2x - 3y - 12 \ge 0$ (d) $-2x + y \ge 0$.
- 5. For n ≥ 3, let A be an n × n matrix. If rank of A is n − 2, then rank of adjoint of A is
 (a) n − 2
 (b) 2
 (c) 1
 (d) 0.
- 6. Suppose $f : \mathbb{R} \to \mathbb{R}$ is an odd and differentiable function. Then for every $x_0 \in \mathbb{R}$, $f'(-x_0)$ is equal to (a) $f'(x_0)$ (b) $-f'(x_0)$ (c) 0 (d) None of these.
- 7. If S = {a, b, c} and the relation R on the set S is given by R = {(a, b), (c, c)}, then R is
 (a) reflexive and transitive
 (b) reflexive but not transitive
 (c) not reflexive but transitive
 (d) neither reflexive nor transitive.
- 8. Let $a_1 = 1$, $a_{n+1} = \left(\frac{1+n}{n}\right)a_n$ for $n \ge 1$. Then the sequence $\{a_n\}$ is (a) divergent (b) decreasing (c) convergent (d) bounded.
- 9. The coefficient of x^{2n-2} in $(x-1)(x+1)(x-2)(x+2)\cdots(x-n)(x+n)$ is (a) 0 (b) $\frac{-n(n+1)(2n+1)}{6}$ (c) $\frac{n(n+1)(2n+1)}{6}$ (d) $\frac{-n(n+1)}{2}$.
- 10. The number of roots of $5x^4 4x + 1 = 0$ in [0, 1] is (a) 0 (b) 1 (c) 2 (d) 3.

Part II

N.B. Each question in Part II carries 5 marks.

- 1. If $n \ge 3$ is an integer and k is a real number, prove that n is equal to the sum of n^{th} powers of the roots of the equation $x^n kx 1 = 0$.
- 2. Find all positive integers n such that $(n2^n 1)$ is divisible by 3.
- 3. Start with the set $S = \{3, 4, 12\}$. At any stage you may perform the following operation: Choose any two elements $a, b \in S$ and replace them by $\left(\frac{3a-4b}{5}\right)$ and $\left(\frac{4a+3b}{5}\right)$. Is it possible to transform the set S into the set $\{4, 6, 12\}$ by performing the above operation a finite number of times?
- 4. Let a < b. Let f be a continuous function on [a, b] and differentiable on (a, b). Let α be a real number. If f(a) = f(b) = 0, show that there exists $x_0 \in (a, b)$ such that $\alpha f(x_0) + f'(x_0) = 0$.

Part III

N.B. Each question in Part III carries 12 marks.

1. Let M_n be the $n \times n$ matrix with all 1's along the main diagonal, directly above the main diagonal and directly below the main diagonal and 0's everywhere else. For example,

$$M_3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \ M_4 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}. \quad \text{Let } d_n = \det M_n.$$

- (a) Find d_1, d_2, d_3, d_4 .
- (b) Find a formula expressing d_n in terms of d_{n-1} and d_{n-2} , for all $n \ge 3$.
- (c) Find d_{100} .
- 2. Let $p(x) = x^{2n} 2x^{2n-1} + 3x^{2n-2} 4x^{2n-3} + \dots 2nx + (2n+1)$. Show that the polynomial p(x) has no real root.
- 3. Let $f(x) = x^{10} + a_1 x^9 + a_2 x^8 + \dots + a_{10}$ where a_i 's are integers. If all the roots of f(x) are from the set $\{1, 2, 3\}$, determine the number of such polynomials. Further, if g(x) is the sum of all such polynomials f(x), then show that the constant term of g(x) is $\frac{1}{2}(3^{12}+1)-2^{12}$.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that

$$f(x+h) - f(x) = hf'(x+\frac{1}{2}h),$$

for all real x and h. Prove that f is a polynomial of degree atmost 2.

- 5. (a) Let n = 9. Express n as a sum of positive integers such that their product is maximum. Find the value of the maximum product.
 - (b) Repeat part (a) for n = 10 and n = 11.
 - (c) Given a positive integer $n \ge 6$, express n as a sum of positive integers such that their product is maximum. Find the value of the maximum product.