ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (APPLIED GEOLOGY)

COURSE CODE: 367

Register Nu	mber:	
		Signature of the Invigilator (with date)

COURSE CODE: 367

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	By t		c proce	esses, magma ge	enerat	ion is highest in t	he fol	lowing tectonic
	(A)	Convergent pla	ate bou	ındaries		•		
	(B)	Continental in					·	
	(C)	Oceanic intra-	_					
	(D)	Oceanic ridges	•					
2.		last mineral t	o crys	stallize from m	agma	, according to th	ie Bo	wen's reaction
	(A)	Plagioclase	(B)	Olivine	(C)	Quartz	(D)	Pyroxene
3.	The	plutonic equiva	lent of	f andesite is				
	(A)	Granite	(B)	Gabbro	(C)	Diorite	(D)	Tonalite
4.	Oph	itic texture iș th	e key	characteristics	of wh	ich one of followin	g roc	ks
	(A)	Gabbro	(B)	Basalt	(C)	Dolerite	(D)	Peridotite
5.	Majo	ority of world's c	oal res	sources are rest	ricted	to the following go	eologi	ical time period
	(A)	Triassic	•		(B)	Permo-Carbonife	erous	
-	(C)	Cambro-Ordov	ician		(D)	Eocene	٠.	
6.	Whi	ch one of the fol	lowing	facies represen	t high	est grade of meta	morp.	hism?
	(A)	Zeolite facies			(B)	Granulite facies		
	(C)	Green schist fa	acies		(D)	Amphibolite faci	es	• .
7.	The	average thickne	ss of t	he continental c	rust i	s about		
	(A)	35-40 km	(B)	100 – 200 km	(C)	1000 - 2000 km	(D)	5-10 km
8.		ch one of the fo amorphism?	llowin	g index minera	ls rep	resents the highe	st gr	ade of regional
	(A)	Chlorite	(B)	Sillimanite	(C)	Biotite	(D)	Garnet
9.		ch of the follow lition?	ing se	edimentary stru	cture	s represents the	highe	est flow energy
	(A)	Trough cross b	ed	•				
•	(B)	Planar Cross b	ed	•				
	(C)	Wavy bedding						
	(D)	Plane bedding	with p	arting lineation				

10.	The	tendency of water	er to p	ass directly fr	om solie	d state to vapor	state is	known as	
	(A)	Sublimation	(B)	Oxidation	(C)	Dissolution	(D)	Dissociation	
11.		average amount re transferring t					a parti	cular reservoir	
	(A)	Residence time			(B)	Infiltration			
	(C)	Ion exchange			(D)	Base exchange	e		
12.		measure of susp ter and microsco	-			er in water suc	h as cla	y, silt, organic	
	(A)	Conductivity		•	(B)	Turbidity			
	(C)	Biochemical ox	ygen d	lemand	(D)	Total dissolve	d load		
13.	Exog	genic geomorphic	proce	esses are prim	arily dr	iven by			
	(A)	earth's internal	l heat		(B)	only gravity			
	(C)	only solar energ	gy		(D)	solar energy a	nd grav	ity	
14.	Whi clim	ch of the follow ate?	ing m	ninerals is the	e most	susceptible to	weathe	ring in humid	
	(A)	Quartz	(B)	K-feldspar	(C)	Biotite	(D)	Olivine	
15.	'Gla	cial clay' is domi	nantly	7			-		
	(A)	Kaolinite	(B)	Illtite	(C)	Feldspar	(D)	Quartz	
16.	Whi	ch of the followin	ng is a	n erosional laı	ndform?	?			
	(A)	Barrier island	(B)	Barchan	(C)	Cirque	(D)	Floodplain	
17.	Haw	vaii is an exampl	e of					·	
	(A)	Shield volcano			(B)	Strato volcano)		
	(C)	Tephra cone	•		(D)	Pyroclastic do	me	•	
18.	Shu	tter ridges and S	ag po	nds are associ	ated wi	th	·		
	(A)	Strike slip faul	ts	e *	(B)	Thrust faults			
	(C)	Grabens		•	(D)	Volcanoes			
19.	The movement of water from the ground surface into the soil is termed as								
•	(A)	Percolation	(B)	Infiltration	(C)	Seepage	(D)	Gravity Flow	

20	Urb	anisation can ca	use	•						
	(A)	increase in net	infiltr	ation		•				
•	(B)	decrease in ba	se flow							
	(C)	decrease in am	plitude	e of stream l	nydrograp	oh	•			
	(D)	decrease in ove	erland	flow			•	•		
21.	The	linear zone sepa	arating	two adjacen	it offset s	egments of a	mid-ocea	nic ridge is		
	(A)	gravity fault	٠		(B)	detachment	zone			
	(C)	transform faul	.t		(D)	thrust fault				
22.		black and whit sand) will appea		al photograp	h, a total	ly reflecting	object on	earth (example		
	(A)	black	(B)	white	(C)	dark gray	(D)	medium gray		
23.	Blue	e colour of sky is	due to		of light	by the aeroso	ols.			
	(A)	absorption	(B)	adsorption	. (C)	scattering	(D)	emission		
24.	Whi	ch of the followi	ng rocl	k has high po	orosity an	nd high perme	eability?			
٠	(A)	shale	(B)	greywacke	(C)	sandstone	(D)	quartzite		
25 .	A dike measures 10 cm in length on a geological map prepared in 1:50,000 scale. What is the actual length of the dike?									
ē			_		(0)		· (D)	E 1		
÷	(A)	10 cm	(B)	50 m	(C)	500 m	(D)	5 km		
26.	GPS	is acronym for			÷	•	•			
•	(A)	Global Position	ning Sy	stem	(B)	Global Pola	r System			
	(C)	Global Position	n Satel	lite	(D)	Global Pola	r Satellite	9		
27.	In a	toposheet, a ser	ries of '	V' shaped co	ntours re	present				
	(A)	ridge	(B)	valley	(C)	mountain	(D)	road		
28.	The rays	ultraviolet rays	s do no	ot reach ear	th's surfa	ce. This is b	ecause ab	osorption of the		
	(A)	Özone			(B)	carbon mon	oxide			
	(C)	Water vapour			(D)	oxygen				
29.		bserve interfere ings are	ence col	lour of a mir	neral und	er petrologica	al microso	cope, the correct		
	(A)	polarizers cros	sed an	d rotate 90°	off extinc	etion		•		
	(B)	parallel polari	zers an	nd rotate 45°	off extine	ction				
	(C)	polarizers cros	sed an	d rotate 45°	off extino	ction				
	(D) parallel polarizers and rotate 90° off extinction									

30.	Olde	est backboned an	imals	are				
	(A)	Pisces	(B)	Reptilia	(C)	Amphibia	(D)	Aves
31.	Gan	gamopteris can l	be diff	erentiated from	ı Gloss	opteris by		
	(A)	Presentation of			(B)		lrib .	
	(C)	Acute leaf mar	gin		(D)	Size of the leav	es es	
32.	The	bivalvia shells a	re joir	nted together at	dorsa	l side by		
	(A)	adductor musc	le		(B)	hinge plate		
	(C)	ligament		•	(D)	delthyrium		,
33.	Whi	ch is the oldest f	ossil?			• • • • • • • • • • • • • • • • • • •		
	(A)	trilobita	(B)	algae	(C)	fish	(D)	graptoloidea
34.	Gas	tropod exhibit —	-	symmetry				
	(A)	bilateral	(B)	-	(C)	biradial	(D)	lack of
35.	Echi	inoidea are ——		– water animal	ls.			
	(A)	marine	(B)	brackish	(C)	fresh	(D)	terrestrial
36.	Lam	iellibranches wit	h two	unequal adduc	tors ar	:e	٠	
	(A)	isomyaria	(B)	· · · · ·	(C)	monomyria	(D)	dimyaria
37.	Of t	he following whi	ch gro	up consists of t	he fast	test moving inve	rtebra	tes?
		Cephalopoda	•	-		-	(D)	Trilobita
38.	Whi	ch combination	repres	ents the Phane	rozoic'	?		·
	(A)	Cenozoic, Prec		•	(B)	Eocene, Cretac	eous, A	Archean
	(C)	Precambrian, (Cenozo	oic, Eocene	(D)	Cenozoic, Meso	ozoic, F	aleozoic
39.	Cop	per Belt Thrust ((CBT)	also known as				
	(A)	Singhbhum Sh			(B)	Great Boundary Fault		
	(C)	Older Metamor			(D)	Main Boundar	-	
40.	Arcl	haean rocks in K	ashmi	ir-Hazara area	are kn	own as		
	(A)	Salkhala Serie			(B)	Champian Gne	eiss	
	(C)	Buxa Series		•	(D)	Darjeeling Ser		

41.	Who	proposed the Pr	incipl	e "the present	is the l	key to the past"?		
	(A)	William Smith			(B)	James Hutton		
	(C)	d'Orbingy			(D)	Carl von Linnae	us	
42.	The	first fundamenta	al gen	eralization of	stratigr	aphy is	•	
·.	(A)	Order of superp	ositio	on .	(B)	Principle of unit	ormat	tarianism
	(C)	Stratigraphic a	nalys	is	(D)	Law of faunal s	access	ion
43.	Coa	l is absent from -		—— Formati	on.	•		
	(A)	Raniganj			(B)	Panchet		
	(C)	Mahadeva			(D)	Motur / Barren	Meası	ures
44.	Neo	gene period inclu	.des					
	(A)	Paleogene and	Eocen	e ,	(B)	Paleogene, Eoce	ne an	d Oligocene
	(C)	Oligocene, Mioc	ene a	nd Pliocene	(D)	Miocene and Pli	ocene	
4 5.	The	discontinuity wh	ich re	epresents the b	ooundar	ry between crust :	and m	antle is terme
٠	(A)	Moho	(B)	Conrad	(C) ,	Gutenberg	(D)	Lehman
46.	Ben	ioff zone is associ	ated	with				
	(A)	subducted slab			(B)	mid ocean ridge	S	
	(C)	transform fault	s		(D)	mountains		
47.	Whi	ch of the followin	ıg is s	eismic surface	wave			
	(A)	P wave	(B)	S wave	(C)	Rayleigh wave	(D)	PKP wave
48.	The	transfer of heat	by the	physical mov	ement o	of material is call	ed	
	(A)	conduction	(B)	convection	(C)	radiation	(D)	scattering
49.	Him	alayan mountair	ıs hav	e formed prim	arily a	s a result of		
-	(A)	compressive de	forma	tion between I	ndian a	and Asian tectoni	c plate	es
	(B)	relative uplift o	f sedi	ments in the T	ethys (Ocean in an exten	sional	l setting
	(C)	strike- slip defo	rmati	on between In	dian ar	nd Eurasian plate	s	
	(D)	extrusion of vo	lcanio	: material ove	r a lon	g period of time	on the	e Tethys ocean
50.	The	average density	of the	Earth is				
-	(A)		(B)	4.5 g/cm ³	(C)	5.5 g/cm ³	(D)	$6.5~\mathrm{g/cm^3}$

51.	The	value of gravity	becom	ies zero at					
	(A)	the surface of t	he ear	th	(B)	the centre of the	earth e	r	
	(C)	equator			(D)	poles			
52.	Ear	thquakes are gei	nerate	d due to					
	(A)	plastic flow of	rocks a	and release of p	plastic	strain energy			
	(B)	folding of rock	layers				1		
	(C)	sudden release	of ela	stic strain ene	rgy dur	ing fracture prop	agatio	n	
	(D)	sudden release	of vis	cous strain acc	cumula	ted in rocks			
53.	Which of the following statements about Earth's core is true?								
	(A)	entire core is in	n liqui	d state		•			
	(B)	entire core is i	n solid	state					
	(C)	outer core is in	solid	state and inne	r core i	s in liquid state			
	(D)	outer core is in	liquid	l state and inn	er core	is in solid state	-		
54.	Onte	er planets in our	solar	system are gas	seous h	ecause			
01.	(A)	In rotating neb		_					
	(B)	gases experien		•		•			
	(C)	gases are drive		. –		,			
	(D)	-	•	· · · · · · · · · · · · · · · · · · ·		by the Sun's grav	ity		
55.	Which one of the followings is a sulphide ore mineral?								
	(A)	Scheelite	(B)	Siderite	(C)	Sphalerite	(D)	Celestite	
56.	Whi	ch one of the foll	lowing	minerals has	the hig	hest specific grav	ity?		
	(A)	Galena	(B)	Diamond	(C)	Native silver	(D)	Native gold	
57.		ch one of the f matic deposits?	ollowi	ng economic n	nineral	s does not belor	ig to t	he category of	
	(A)	Chromite			(B)	Titaniferous ma	agnetit	ce · ·	
	(C)	Cu-Ni sulphide	9	•	(D)	Magnesite			
58.		phyry copper decess?	eposits	are formed	by whi	ch one of the fo	ollowir	ng ore forming	
	(A)	magmatic			(B)	magmatic hydro	othern	nal	
	(C)	sedimentary			(D)	metamorphic	.•		

(A) cassiterite (B) hematite (C) ilmenite (D)60. Which one of the following metals occurs as native metal, oxide and earth's crust?	magnetite
	sulphide in the
(A) iron (B) copper (C) uranium (D)	gold
61. Identify the odd pair of minerals among the following	
(A) Goethite - siderite (B) Pyrite - marcasite	
(C) Pyrite - pyrrhotite (D) Hematite - magnetic	te
62. In which one of the following lists, minerals are arranged in ord temperature of crystallization?	er of increasing
(A) Galena – gibbsite - chromite (B) Gibbsite – galena – c	hromite
(C) Gibbsite - chromite - galena (D) Galena - chromite -	gibbsite
63. Which one of the following isotopes is the naturally occurring fissile in nuclear reactors?	atom of interest
(A) ^{238}U (B) ^{235}U (C) ^{234}U (D)	²³² Th
64. Petroleum and Natural gas are chiefly composed of	
(A) Hydrogen (B) Hydrogen and Carbo	o n
(C) Nitrogen (D) Oxygen	
65. The general trend of the Aravalli mountain range is	
(A) North – South (B) East – West	* .
(C) Northeast – Southwest (D) Northwest – Souther	ıst.
(0) 2.02.000	
66. Fossilised contents of alimentary canal of animals are known as	
(A) burrows (B) mould (C) trails (D)	coprolites
67. Flat topped sea mounts are termed as	
(A) Guyots (B) Mesa (C) Inselberg (D)	Monodnock
68. The drainage pattern which signifies an area lacking structural contr	ol is
(A) radial (B) rectangular (C) dendritic (D)	

69.	Hero	cynian or Varisca	n ord	geny took plac	e durn	ng _.				
	(A)	Silurian			(B)	Devonian				
	(C)	Permo carbonife	erous		(D)	Jurassic				
70.	The	two words in Bin	omia	l nomenclature	of org	organisms designate				
	(A)	order and famil	y .		(B)	family and genu	s			
	(C)	genus and speci	ies	·	(D)	phylum and clas	88			
71.	Whe	n did the Trilobi	te dis:	appear from th	ne Eart	h ?				
	(A)	end of Ordovicia	an		(B)	end of Devonian		•		
	(C)	end of Permian			(D)	end of Jurassic				
72.	Foss	sils of Archean lif	e fori	ms is widely re	presen	ted by		. :		
	(A)	Graphite			(B)	Stromotolites		·		
	(C)	Porifera			(D)	Echinodermata				
73.	High	n pressure polym	orph (of quartz is	•					
	(A)	tridymite	(B)	cristloblite	(C)	coesite	(D)	$oldsymbol{eta}$ -quartz		
74 .	Mus	covite and biotite	e are	distinguished	based o	on '				
	(A)	lustre	(B)	cleavage	(C)	habit	(D)	color	•	
75 .		rsection of two served in	sets o	f cleavages at	87° a	nd 93° in basal s	section	n of crystals	3 is	
	(A)	calcite	(B)	pyroxene	(C)	hornblende	(D)	kyanite		
76.	Thre	ee fold axis of rot	ationa	al symmetry is	presen	ıt in	٠			
	(A)	Only in hexago	nal sy	stem	•			•		
•.	(B)	Only in cubic sy	stem			,		•		
• • • • • • • • • • • • • • • • • • • •	(C)	Hexagonal and	cubic	systems						
, s	(D)	Tetragonal, hex	agona	al and cubic sy	stems					
77.	Clas	ssification of mine	erals :	into various gr	oups is	based on				
.*	(A)	anion or anioni	c com	plex	(B)	cation or cationi	.c com	plex		
	(C)	abundance in tl	he cru	ıst	(D)	hardness				

78.	Complete solid solution is observed between the minerals									
	(A)	tremolite - cummingtonite	(B)	calcile – magnesite						
	(C)	forsterite - fayalite	(D)	diopside - enstatite						
79.	Basa	alt is mainly made up of								
	(A)	pyroxene, calcic plagioclas	se and olivine		•					
	(B)	amphibole, orthoclase and	leucite							
	(C)	albite, orthoclase and quar	etz		•					
	(D)	albite, hornblende and ner	heline	·						
80.	•	gneous rock is fully crystall m in size. What are the con			-					
	(A)	Surface of continental crus	st, sudden coolin	ıg						
	(B)	Shallow depth in crust, fas	st cooling		•					
	(C)	Moderate depth in crust, s	low cooling							
	(D)	On ocean floor, sudden coo	ling							
81.	A Co	omposition of magma erupte	ed along the mid	-Ocean ridges is						
	(A)	andesite (B) base	_	syenite (D)	granoiorite					
82.	A suite of igneous rocks with gradual changes in composition found at Island arc is known as									
	(A)	calc-alkaline series	(B)	alkaline series	•					
	(C)	tholeitic series	(D)	syenitic series						
83.	Whe	ere do komatiites usually occ	eur?							
	(A)	Recent island-arc belts	(B)	Cretaceous basins						
	(C)	Gondwana basins	(D)	Archean greenstone be	elts					
84.		following sequence of rocks oro and peridotite. This is ca		ontinent: pillow basalt,	sheeted dykes,					
•	(A)	greenstone belt	(B)	ophiolite						
	(C)	layered igneous complex	(D)	volcanic flows						

Study the phase diagram and answer the following four questions

85.	What was the	degree of freedom	when magma ma	rked '•' read	ched the liquidu	ıs curve?
-----	--------------	-------------------	---------------	---------------	------------------	-----------

- (A) 0
- (B) 1
- (C) 2

(D) 3

(A) only anorthite

- (B) only diopside
- (C) diopside and anorthite
- (D) quartz, anorthite and diopside

- (A) 1350
- (B) 1278
- (C) 1500
- (D) 1225

- (A) 40 % diopside and 60 % anorthite
- (B) 60 % diopside and 40 % anorthite
- (C) 18 % diopside and 82 % anorthite
- (D) 82 % diopside and 18 % anorthite

- (A) <u>1</u>
- (B) 1
- (C) m
- (D) m/1

90. The relative displacement between two adjacent points on either side of the fault plane is known as

- (A) offset
- (B) separation
- (C) net slip
- (D) throw

91. Hangingwall anticline structure is a feature associated with

(A) thrust fault

(B) normal fault

(C) strike-slip fault

(D) scissor fault

92 .	Whi	ch of the followin	g line	ation cannot be	used	for stress analy	sis?	×
	(A)	. mineral lineation	n		(B)	boudin axis		
	(C)	slickensides		. ,	(D)	stretching line	eation	
93.		true dip directi						to the line of
	(A)	parallel	(B)	perpendicular	(C)	at 45°	(D)	oblique
94.	Shea	ar strain is meası	ured b	oy '				
	(A)	change in lengtl	h of a	line	(B)	change in ang	le betwe	en two lines
	(C)	displacement of	a line	e	(D)	distortion of a	plane.	
95.	The	crystal with the p	point	group 222 belon	gs to			
	(A)	Triclinic system	i.		(B)	monoclinic sys	stem	
	(C)	Orthorhombic s	ystem	· · · · · · · · · · · · · · · · · · ·	(D)	cubic system		
96.	A M	iller index of a fa	ce, wł	nose Weiss symb	ool is	2a : 2b : 1c, is	4.	
,	(A)	(221)	(B)	(212)	(C)	(112)	(D)	(236)
97.		non-parallel face	es in a	crystal that car	n be r	elated to each o	other by	a mirror plane
	(A)	pinacoid	(B)	prism	(C)	pyramid	(D)	dome
98.	The	optical indicatrix	of an	isotropic miner	al is			•
		prolate ellipsoid		•	(B)	oblate ellipsoi	d	•
	(C)	spheroid		e ge		irregular in sh		
99.	Whi	ch of the followin	g is n		eral?			
	(A)	Garnet	(B)	Magnetite	(C)	Mica	(D)	Olivine
100.	Whi	ch of the followin	g min	erals is a chain	silica	te		
	(A)	Feldspar	(B)	Olivine	(C)	Pyroxene	(D)	Quartz