			Set :- A
Name of the Student:			
Enrolment No:	[12 th]	IIT - JEE	

Time :- 2 Hours

General Instructions

Full Marks :- 225

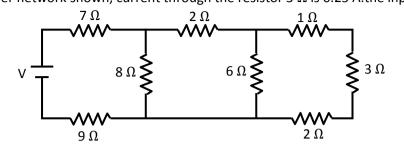
Cat .

- 1 This question booklet contains 75 questions. Divided into three sections Section A, Section B and Section C.
- 2 Each section contains 25 multiple choice questions as well as multiple choice question. Choose the most appropriate option.
- 3 Each question carrries 3 marks, for each correct answer the student will be awarded 3 marks, zero if not attempted and -1 in all other cases.
- 4 The OMR will be graded by machine so do not fold or make any stray marks on the OMR sheet.
- 5 The bubbles on the OMR sheet should be filled completely with black ball pen. Do not hard press the pen on the OMR sheet.
- 6 Fill the required details in the OMR sheet. Incomplete OMR sheets will not be considered for evaluation.
- 1. इस प्रश्न पुस्तिका में 75 प्रश्न शामिल हैं। जो तीन खंडों खड A, खंड B और खड C में विभाजित हैं।
- 2 प्रत्येक खंड में 25 प्रश्न शामिल हैं। केवल एक सही विकल्प और एक से अधिक वहुविकल्पीय प्रश्न शामिल हैं। सबसे उपयुक्त विकल्प चुनें।
- 3 प्रत्यकक प्रश्न के सही जबाब के लिए 3 अंक मिलेंगे, प्रश्न का हल नही करने पर शुन्य अंक और गलत विकल्प के लिए –1 अंक मिलेंगे।
- 4 OMR मशीन द्वारा मूल्यांकन किया जाएगा इसलिए OMR शीट पर किसी भी प्रकार का निशान या मोड़ नही बनाए।
- 5 OMR शीट पर बने गोले काले बॉल पेन के साथ पूरी तरह से भरा जाना चाहिए। OMR शीट पर कलम से हार्ड प्रेस न करें।
- 6 OMR शीट के दोनो पक्षों में आवश्यक फील्ड भरें। अधूरे OMR शीट का मूल्यांकन नहीं होगा।

Deposit the Question Booklet and OMR sheet both to the invigilator.

रिजल्ट व अन्य जानकारियाँ OMR शीट में भरे मोबाईल पर SMS से भेजी जाएगी।

<u>SECTION – A</u>


1.	The velocity of project (g=10 m/sec ²)	The velocity of projection of a projectile is $(6\hat{\iota} + 8\hat{j})$ m/sec. the horizontal range of the particle is (g=10 m/sec ²)			
	(a) 4.9 m	(b) 9.6 m	(c) 19.6 m	(d) 14 m	
2.	the block and the surf on the block is	ace is 0.6. if the accelera	ition of the truck is 5 m/	ent of static fuction between sec ² , the frictional force acting	
	(a) 5 N	(b) 6 N	(c) 10 N	(d) 15 N	
3.		a body of mass 2 kg and			
	(a) 1 J	(b) 2 J	(c) 3 J	(d) 4 J	
4.	•	nt radial and tangential a	•	e may be circular if	
	(a) $a_r = 0$, $a_t = 0$	(b) $a_r = 0, a_t \neq 0$	(c) $a_r \neq 0$, $a_t = 0$	(d) none of these	
5.	2 masses 1 g and 4 g a momentum is	re moving with equal K.	E. the ratio of the magn	itude of their linear	
	(a) 1 : 1	(b) 1 : 2	(c) 1 : 3	(d) 1 : 4	
6.	There are particles of same mass. If one of the particles is at rest always and the other has an acceleration \vec{a} . Acceleration of centre of mass is				
	(a) zero	(b) 1/	2 <i>ā</i>		
(c) \vec{a} (d) centre of mass for such a system can not be defined as the system can not be defined as the system can be defined as					
7.	The moment of inertia	a (I) for a uniform circula	r disc is		
	(a) MR ²	(b) MR ² /4	(c) MR ² /2	(d) 3/2 MR ²	
8.	A constant torque acting on a uniform circular what changes its angular momentum from A_0 to 4 A_0 in 4 sec. the magnitude of this torque is				
	(a) 4 A ₀	(b) A ₀	(c) 12 A ₀	(d) 3 A ₀ /4	

9.	In absence of external forces on a rigid system, which of the following quantities must remain constant?					
	(a) Angular moment (c) both (a) and (b)	um	(b) positive vector (d) none of these			
10.			on a plane moves with a sp e vertical, will be moving at	beed v. a particle on the lower speed		
	(a) zero	(b) v	(c) $\sqrt{2}$ v	(d) 2 v		
11.	frequency will			ant acceleration upward, then		
	(a) decrease	(b) increase	(c) remain constant	(d) none of these		
12.	In a SHM, if particle (a) v	oscillates with frequend (b) v/2	cy v the the frequency of os (c) 2v	scillation. Of its kinetic energy (d) 4v		
13.	Under similar condit sound will be largest	•	d pressure in which of the f	ollowing gasses, the velocity of		
	(a) H ₂	(b) N ₂	(c) He	(d) CO ₂		
14.	Let E be the electric	field and V_1 the electric	c potential at a point			
	(a) If E \pm O, cannot b	oe 0	(b)			
	(c) if v = 0, E must be	9 O	(d) none of these			
15.	The force between 2	short electric dipoles	separated by a distance r is	directly proportional to		
	(a) r ²	(b) r ⁴	(c) r ⁻²	(d) r ⁻⁴		
16.	Find the current through the 10 Ω resistor shown in the figure (a) zero					
	(b) 1 A			-wwL-ww		
	(c) 2 A			3 Ω 6 Ω		
	(d) 5 A					
				4.5V		

(d) 15/2 v

- 17. In the ladder network shown, current through the resistor 3 Ω is 0.25 A.the input voltage V is equal
 - to

(a) 10 v

18. The ammeter shown in the figure consists of a 480 Ω coil connected in parallel to a 20 Ω shunt. Find the reading of the ammeter

(a) 50/73 A	
(b) 40/53 A	
(c) 80/93 A	
(d) 73/50 A	L
	20 V

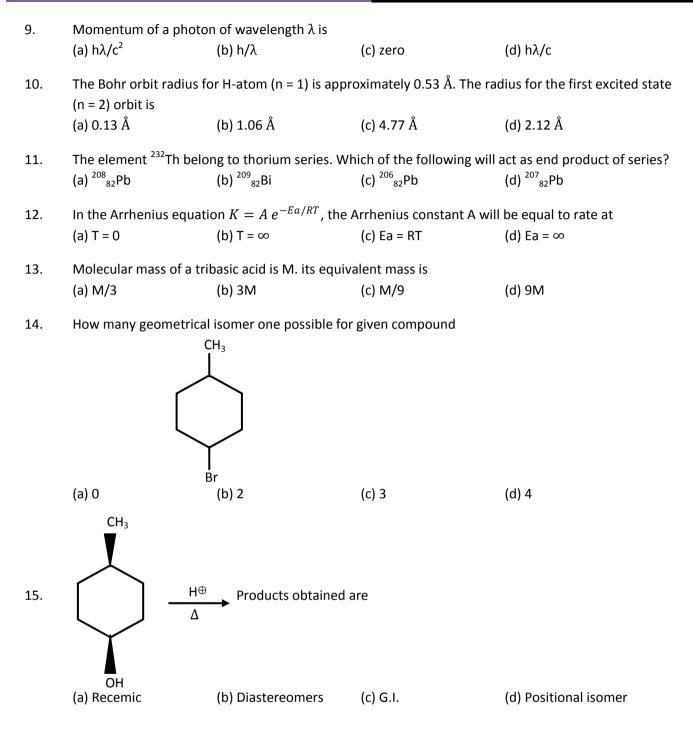
(c) 5 v

- A parallel plate condenser is connected to a battery of e.m.f. 4V. if a plate of electric constant 8 is insected into it, then the potential difference on the condenser will be
 (a) 1/2 V
 (b) 2 V
 (c) 4 V
 (d) 32 V
- 20. The material for making permanent magnets shold have
 (a) High retentivity, high coercivity
 (b) high retentivity, low coercivity
 (c) low retentivity, high coecivity
 (d) low retentivity, low coercivity

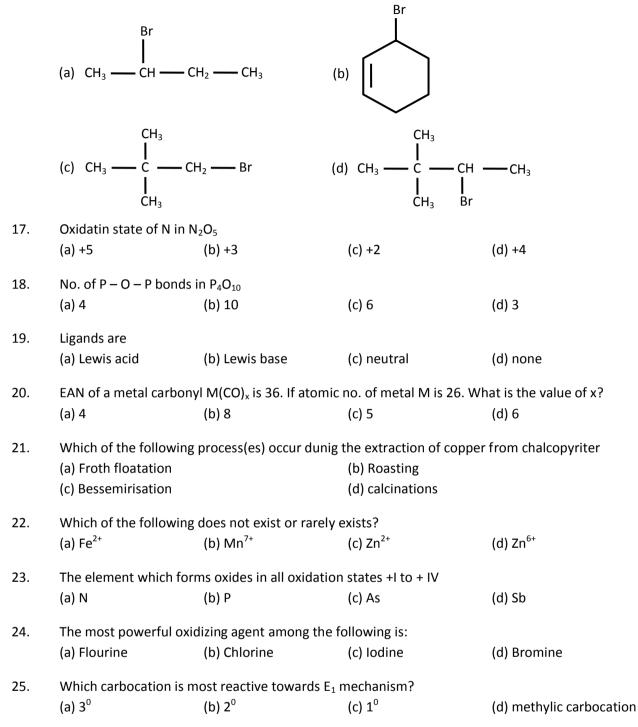
(b) 20 v

- 21. A conducting rod of length l rotates will a uniform angular velocity ω about its \perp bisector. A uniform magnetic field β exists parallel to the axis of rotation. The potential difference between the 1 ends of the end is
 - (a) $2\beta\omega l^2$ (b) $\frac{1}{2}\beta\omega l^2$ (c) $\beta\omega l^2$ (d) zero
- 22. The average power delivered to a series AC circurit is given by (symbols have their usual meaning) (a) $E_{rms} I_{rms}$ (b) $E_{rms} I_{rms} \cos \phi$ (c) $E_{rms} I_{rms} \sin \phi$ (d) zero

23.	Critical angle of light passing from glass to air is minimum for				
	(a) red	(b) green	(c) yellow	(d) violet	
24. The critical angle of light going from medium A to medium B is θ . The speed of light in the speed of light in medium B is				The speed of light in medium A is V	•
	(a) $\frac{V}{\sin \theta}$	(b) $V \sin \theta$	(c) $V \cot \theta$	(d) $V \tan \theta$	


25. When a lens of power P (in air) made of material of refractive index μ is immersed in liquid of refractive index μ_0 . Then the power of lens is

(a) $\frac{\mu - 1}{\mu - \mu_0} P$ (b) $\frac{\mu - \mu_0}{\mu - 1} P$ (c) $\frac{\mu - \mu_0}{\mu - 1} \frac{P}{\mu_0}$ (d) none of these


GAIIT CLASSES R.K. Plaza, infront of RamKrishna Mission Ashram, Nala Road, Patna-4. 0612-3219892, www.gaiit.com. Page 6-A

1.	For the gas phase reaction, $PCI_5 \Leftrightarrow PCI_3 (g) + CI_2(g)$ (a) $\Delta H < 0$ $\Delta S < 0$ (c) $\Delta H = 0$ $\Delta S < 0$	(b) ΔH > 0 ΔS < 0 (d) ΔH > 0 ΔS > 0
2.	Oxidation no. of Cr in CrO_5 (a) + 10 (b) +8	(c) + 6 (d) + 4
3.	The calomel electrode used as refe (a) PbO₂ + PbSO₄ mixture (c) Hg₂Cl₂	rence electrode contains (b) HgCl ₂ (d) ZnCl ₂
4.	atomic mass 177. The oxidation sta	
	(a) +1 (b) +2	(c) +3 (d) +4
5.	The equilibrium constant for the re CaCO ₃ (s) \rightleftharpoons CaO(s) + CO ₂ (g	
	(a) $K_c = \frac{1}{[CO_2]}$	(b) $K_c = [CO_2]$
	(c) $K_c = \frac{[CaO][CO_2]}{[CaCO_3]}$	(d) $K_c = [CaO][CO_2]$
6.	In an equilibrium reaction, for whi	h ΔG^0 = 0 the equilibrium constant K should be
	(a) zero (b) 10	(c) 1 (d) 2
7.	Isotonic solution have: (a) same boiling point (c) same melting point	(b) same vapour preosure (d) same osmotic pressure
8.	volume of the gas will	leal gas is double and the pressure is reduced to one – half the
	(a) remain unchanged	(b) be double
	(c) be halved	(d) increase fourfold

<u>SECTION – B</u>

16. Which of the following is inert towards E₂ reaction

<u>SECTION – C</u>

1.		(b) $2\cos^{-1}\left(\frac{4}{5}\right)$		s (d) $\sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{3}{5}\right)$
2.		$\overline{1} - \sqrt{x} = a$ has a solutio (b) a \geq 1	n then (c) 0 < a ≤ 1	(d) a \leq 1
3.	Sum of non-real roots (a) 1	of $(x^2 + x - 2)(x^2 + x$ (b) -1	- 3) = 12 (c) -6	(d) 6
4.	Find the sum of series (a) (55) ²	$1^2 + 2^2 + 3^2 + \dots +$ (b) 385	10 ² (c) 437	(d) None of these
5.	If $\log x^2 - \log 2x = 3$ (a) 9	log 3 — log 6 then x equ (b) 3	als (c) 4	(d) 5
6.	The number of words well as end with T is (a) 80720	that can be formed by u (b) 90720	sing the letters of the wo	ord MATHEMATIC that start as (d) 137528
7.	Valur of the expressio (a) 2 ⁽²ⁿ⁻¹⁾	n $C_0^2 + C_1^2 + C_2^2 \dots \dots \dots C_n^{(n)}$ (b)2n (²ⁿ C _n)	r_n^2 is (c) $r_n^{2n}C_n$	(d) none of these
8.	If A is an orthogonal n (a) 1	natrix then $ A $ is (b) -1	(c) ± 1	(d) 0
9.		200 ω^{2} $1 + \omega^{101} + 2\omega^{202}$ ω^{2} (b) $ A = 0$		(d) none of these
10.	common.	en at random on a chess		

(a) 1/9 (b) 2/7 (c) 1/18 (c) none of these

11.	$3\sin\theta + 5\cos\theta = 5$ (a) 3	5 then $5 \sin \theta - 3 \cos \theta$ is (b) 8	s equal to (c) 7	(d) none of these
12.	The straight line $x + \frac{1}{2}$ (a) isosceles	y = 0, 3x + y - 4 = 0 a (b) equilateral	nd $x + 3y - 4 = 0$, form (b) right angled	ns a triangle which is (d) none of these
13.	The points (2, 3), (0, 2 (a) 5	?), (4, 5) and (0, t) are cor (b) 1	ncyclic if the value of t is (c) 17	(d) 19
14.	Equation of the norm abscissa is (a) $2x + 3y + 44 = 0$ (c) $2x + 3y - 44 = 0$		bola $y^2 = 36x$ whose or (b) $2x - 3y + 44 = 0$ (d) $2x - 3y = 0$	
15.	If ABCD is quadrilater \overrightarrow{CD} is equal to (a) $2\overrightarrow{EF}$	al and E and F are the mi (b) 3 \overrightarrow{EF}	d points of AC and BD re (c) $4 \overrightarrow{EF}$	spectively then $\overrightarrow{AB} + \overrightarrow{AD} +$ (d) 6 \overrightarrow{EF}
16.	$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and (a) 2/9	$\frac{x-3}{1} = \frac{y-k}{2} = z$ intersect (b) 1/2	at a point if K is equal to (c) 9/2	(d) 1/6
17.	The value of $\lim_{x \to -2}$ (a) 6	$\frac{(x^2 - x - 6)^2}{(x+2)^2}$ is (b) 25	(c) 9	(d) 16
18.	$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$ is (a) 0	(b) 1/2	(c) 2	(d) none of these
19.	If $\cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = \log(x)$ (a) y/x	og <i>a</i> then $\frac{dy}{dx}$ is equal to (b) x/y	(c) $\frac{x^2}{y^2}$	(d) $\frac{y^2}{r}$
	(a) y/x	(b) X/ Y	(c) $\frac{1}{y^2}$	$\left(u\right) \frac{1}{x}$

20.	If $f(x) = x^{1/x}$ then $f'(e)$ is equal to			
	(a) $e^{\frac{1}{(e-3)}}$	(b) $e^{\frac{1}{(e-2)}}$	(c) $e^{\frac{1}{e}}$	(d) none of these
21.	If $a, b > 0$, then the m	baximum value of $y = \frac{b^2}{a+1}$	$\frac{a^2}{b} + \frac{a^2}{x}, \theta < x < a$	
	(a) $\frac{a+b}{a}$	(b) $\frac{ab}{a+b}$	(c) $\frac{1}{a} + \frac{1}{b}$	(d) $\frac{(a+b)^2}{a}$
22.	The shortest distance	of (0, 0) from the curve ງ	$v = \frac{e^x + e^{-x}}{2}$ is	
	(a) 1/2	(b) 1/3	(c) 2	(d) none of these
23.	$I = \int_{-2}^{2} 1 - x^4 dx$ th	en I equals		
	(a) 6	(b) 8	(c) 12	(d) 21
24.	$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}}$ then	I equals		
	(a) π/12	(b) π/6	(c) π/4	(d) π/3
25.	The area bounded by	$y = x^2$ and $y = 1 - x^2$ i	S	
	(a) $\frac{\sqrt{8}}{3}$	(b) $\frac{16}{3}$	(c) $\frac{32}{3}$	(d) $\frac{16}{9}$