			Set A
Name of the Student:			
Enrolment No:	[12 th]	PMT	

Time :- 2 Hours

General Instructions

Full Marks :- 225

C - L . A

- 1 This question booklet contains 75 questions. Divided into three sections Section A, Section B and Section C.
- 2 Each section contains 25 multiple choice questions as well as multiple choice question. Choose the most appropriate option.
- 3 Each question carrries 3 marks, for each correct answer the student will be awarded 3 marks, zero if not attempted and -1 in all other cases.
- 4 The OMR will be graded by machine so do not fold or make any stray marks on the OMR sheet.
- 5 The bubbles on the OMR sheet should be filled completely with black ball pen. Do not hard press the pen on the OMR sheet.
- 6 Fill the required details in the OMR sheet. Incomplete OMR sheets will not be considered for evaluation.
- 1. इस प्रश्न पुस्तिका में 75 प्रश्न शामिल हैं। जो तीन खंडों खड A, खंड B और खड C में विभाजित हैं।
- 2 प्रत्येक खंड में 25 प्रश्न शामिल हैं। केवल एक सही विकल्प और एक से अधिक वहुविकल्पीय प्रश्न शामिल हैं। सबसे उपयुक्त विकल्प चुनें।
- 3 प्रत्यकक प्रश्न के सही जबाब के लिए 3 अंक मिलेंगे, प्रश्न का हल नही करने पर शुन्य अंक और गलत विकल्प के लिए –1 अंक मिलेंगे।
- 4 OMR मशीन द्वारा मूल्यांकन किया जाएगा इसलिए OMR शीट पर किसी भी प्रकार का निशान या मोड़ नही बनाए।
- 5 OMR शीट पर बने गोले काले बॉल पेन के साथ पूरी तरह से भरा जाना चाहिए। OMR शीट पर कलम से हार्ड प्रेस न करें।
- 6 OMR शीट के दोनो पक्षों में आवश्यक फील्ड भरें। अधूरे OMR शीट का मूल्यांकन नहीं होगा।

Deposit the Question Booklet and OMR sheet both to the invigilator.

रिजल्ट व अन्य जानकारियाँ OMR शीट में भरे मोबाईल पर SMS से भेजी जाएगी।

<u>SECTION – A</u>

1.	The velocity of project (g=10 m/sec ²)	The velocity of projection of a projectile is $(6\hat{i} + 8\hat{j})$ m/sec. the horizontal range of the particle is (g=10 m/sec ²)		
	(a) 4.9 m	(b) 9.6 m	(c) 19.6 m	(d) 14 m
2.	the block and the surf on the block is	ace is 0.6. if the accelera	ition of the truck is 5 m/	ent of static fuction between sec ² , the frictional force acting
	(a) 5 N	(b) 6 N	(c) 10 N	(d) 15 N
3.		a body of mass 2 kg and		
	(a) 1 J	(b) 2 J	(c) 3 J	(d) 4 J
4.	•	nt radial and tangential a	•	e may be circular if
	(a) $a_r = 0$, $a_t = 0$	(b) $a_r = 0, a_t \neq 0$	(c) $a_r \neq 0$, $a_t = 0$	(d) none of these
5.	2 masses 1 g and 4 g are moving with equal K.E. the ratio of the magnitude of their linear momentum is			
	(a) 1 : 1	(b) 1 : 2	(c) 1 : 3	(d) 1 : 4
6.	There are particles of same mass. If one of the particles is at rest always and the other has an acceleration \vec{a} . Acceleration of centre of mass is			
	(a) zero	(b) 1/	2 <i>ā</i>	
	(c) <i>a</i>	(d) ce	re of mass for such a system can not be defined	
7.	The moment of inertia	a (I) for a uniform circula	r disc is	
	(a) MR ²	(b) MR ² /4	(c) MR ² /2	(d) 3/2 MR ²
8.	A constant torque acting on a uniform circular what changes its angular momentum from A_0 to 4 A_0 in 4 sec. the magnitude of this torque is			
	(a) 4 A ₀	(b) A ₀	(c) 12 A ₀	(d) 3 A ₀ /4

9.	In absence of external forces on a rigid system, which of the following quantities must remain constant?					
	(a) Angular moment (c) both (a) and (b)	um	(b) positive vector (d) none of these			
10.			on a plane moves with a sp e vertical, will be moving at	beed v. a particle on the lower speed		
	(a) zero	(b) v	(c) $\sqrt{2}$ v	(d) 2 v		
11.	frequency will			ant acceleration upward, then		
	(a) decrease	(b) increase	(c) remain constant	(d) none of these		
12.	In a SHM, if particle (a) v	oscillates with frequend (b) v/2	cy v the the frequency of os (c) 2v	scillation. Of its kinetic energy (d) 4v		
13.	Under similar condit sound will be largest	•	d pressure in which of the f	ollowing gasses, the velocity of		
	(a) H ₂	(b) N ₂	(c) He	(d) CO ₂		
14.	Let E be the electric	field and V_1 the electric	c potential at a point			
	(a) If E \pm O, cannot be 0		(b)	(b) If E = 0, v must be 0		
	(c) if v = 0, E must be	9 O	(d) none of these	(d) none of these		
15.	The force between 2	short electric dipoles	separated by a distance r is	directly proportional to		
	(a) r ²	(b) r ⁴	(c) r ⁻²	(d) r ⁻⁴		
16.	Find the current thro (a) zero	bugh the 10 Ω resistor s	shown in the figure			
	(b) 1 A			-wwL-ww		
	(c) 2 A			3 Ω 6 Ω		
	(d) 5 A					
				4.5V		

(d) 15/2 v

17. In the ladder network shown, current through the resistor 3 Ω is 0.25 A.the input voltage V is equal

(a) 10 v

18. The ammeter shown in the figure consists of a 480 Ω coil connected in parallel to a 20 Ω shunt. Find the reading of the ammeter 10Ω

(c) 5 v

- A parallel plate condenser is connected to a battery of e.m.f. 4V. if a plate of electric constant 8 is insected into it, then the potential difference on the condenser will be
 (a) 1/2 V
 (b) 2 V
 (c) 4 V
 (d) 32 V
- 20. The material for making permanent magnets shold have
 (a) High retentivity, high coercivity
 (b) high retentivity, low coercivity
 (c) low retentivity, high coecivity
 (d) low retentivity, low coercivity

(b) 20 v

- 21. A conducting rod of length l rotates will a uniform angular velocity ω about its \perp bisector. A uniform magnetic field β exists parallel to the axis of rotation. The potential difference between the 1 ends of the end is
 - (a) $2\beta\omega l^2$ (b) $\frac{1}{2}\beta\omega l^2$ (c) $\beta\omega l^2$ (d) zero
- 22. The average power delivered to a series AC circurit is given by (symbols have their usual meaning) (a) $E_{rms} I_{rms}$ (b) $E_{rms} I_{rms} \cos \phi$ (c) $E_{rms} I_{rms} \sin \phi$ (d) zero

23.	Critical angle of light passing from glass to air is minimum for				
	(a) red	(b) green	(c) yellow	(d) violet	
24.	The critical angle o the speed of light i		um A to medium B is θ .	The speed of light in medium A is V	•
	(a) $\frac{V}{\sin \theta}$	(b) $V \sin \theta$	(c) $V \cot \theta$	(d) $V \tan \theta$	

25. When a lens of power P (in air) made of material of refractive index μ is immersed in liquid of refractive index μ_0 . Then the power of lens is

(a) $\frac{\mu - 1}{\mu - \mu_0} P$ (b) $\frac{\mu - \mu_0}{\mu - 1} P$ (c) $\frac{\mu - \mu_0}{\mu - 1} \frac{P}{\mu_0}$ (d) none of these

GAIIT CLASSES R.K. Plaza, infront of RamKrishna Mission Ashram, Nala Road, Patna-4. 0612-3219892, www.gaiit.com. Page 6-A

1.	For the gas phase reaction, $PCI_5 \Leftrightarrow PCI_3 (g) + CI_2(g)$ (a) $\Delta H < 0$ $\Delta S < 0$ (c) $\Delta H = 0$ $\Delta S < 0$	(b) ΔH > 0 ΔS < 0 (d) ΔH > 0 ΔS > 0
2.	Oxidation no. of Cr in CrO_5 (a) + 10 (b) +8	(c) + 6 (d) + 4
3.	The calomel electrode used as refe (a) PbO₂ + PbSO₄ mixture (c) Hg₂Cl₂	rence electrode contains (b) HgCl ₂ (d) ZnCl ₂
4.	atomic mass 177. The oxidation sta	
	(a) +1 (b) +2	(c) +3 (d) +4
5.	The equilibrium constant for the re CaCO ₃ (s) \rightleftharpoons CaO(s) + CO ₂ (g	
	(a) $K_c = \frac{1}{[CO_2]}$	(b) $K_c = [CO_2]$
	(c) $K_c = \frac{[CaO][CO_2]}{[CaCO_3]}$	(d) $K_c = [CaO][CO_2]$
6.	In an equilibrium reaction, for whi	h ΔG^0 = 0 the equilibrium constant K should be
	(a) zero (b) 10	(c) 1 (d) 2
7.	Isotonic solution have:(a) same boiling point(b) same vapour preosure(c) same melting point(d) same osmotic pressure	
8.	volume of the gas will	leal gas is double and the pressure is reduced to one – half the
	(a) remain unchanged	(b) be double
	(c) be halved	(d) increase fourfold

<u>SECTION – B</u>

16. Which of the following is inert towards E₂ reaction

<u>SECTION – C</u>

1.	Carrying capacity of a population is determined (a) population growth rate (c) death rate		ed by its: (b) birth rate (d) limiting resource	
2.	is			um and facing the placenta it
	(a) hemitropous	(b) orthotropous	(c) anatropous	(d) campylotropous
3.	Which cycle is directly (a) Phosphorus	driven by solar radiatio (b) Carbon	ns (c) Water	(d) Nitrogen
4.	The cranial capacity of (a) Miocene	f Australopithecus was a (b) Pliocene	bout 500 cc. it existed in (c) pliestocene	(d) both (b) and (c)
5.	In a given RNA segment AUG, ACC, UGG, ACC, CCA, UCA, if the first base gets mutated the effect of this on coding by this RNA segment will result in (a) a change of first amino acid only (b) a complete change in the types as well as the sequence of all most all amino acides (c) no change in the sequence of amino acids (d) one amino acid less in protein chain			
6.	The boundry/transitio (a) epilimnion	n between two or more (b) biome	communities sharply det (c) anticline	fined is called : (d) ecotone
7.	 In detritus food chain transfer of food is (a) detrite (dead organic matter)→ detrivores→decomposers (b) detrite → microbs → detrivores → decomposers (c) detrivores → organic matter → microbs → decomposers (d) grass → detrivores → decomposers 			
8.	Criss cross inheritance mease: (a) X chromosome from male will pass to a male of next generation (b) X chromosome from a male will pass to a female of next generation (c) X chromosome from female will pass to female of next generation (d) none of the above			

9.	Which is the correct sequence of code transfer involved in the formation of polypeptide(a) DNA - t-RNA - r-RNA - m-RNA(b) t-RNA - DNA - m-RNA - r-RNA(c) m-RNA - t-RNA - DNA - amino acid(d) DNA - m-RNA - t-RNA - amino acid		NA – r-RNA	
10.	Correct sequence among the following is (a) palaeozoic → Mesozoic → Coenozoic (c) Palaeozoic → Archaeozoic → Coenozoic		(b) Mesozoic → Archaeozoic → Proterozoic (d) Archaeozoic → palaeozoic → proterozoic	
11.	In situ conservation o (a) national parks	f genetic diversity is done (b) biosphere reserves	e in the form of (c) wildlife sanctuaries	(d) all of the above
12.	A normal man (XY) marries a colourblind women (X ^C X ^C). The progeny shall be (a) 50 % colourblind and 50 % normal sons (b) normal daughters and colourblind sons (c) carrier normal daughters and colourblind sons (d) all daughter and sons are colourblind			
13.	In polluted water, ind (a) MPN	lex of pollution is (b) BOD	(c) daphnia	(d) all of these
14.	Leydig cells of mamm (a) gland cells	alian teats are also callec (b) goblet cells	(c) interstitial cells	(d) archaecytes
15.	Which one of the foll (a) Gills (c) Post anal tail	owing features is found ir	n chordates but in non-chordates (b) Spiracles (d) Chitinous exoskeletom	
16.	When a potted planet v	was cut few inches above	soil, then water oozed o	out of the cut part. It was due
	(a) transpiration		(b) root pressure	
	(c) capillary		(d) none of above.	
17.		nt from soil to xylem is : ylem→cortex→soil→roo	t hair	

(b) cortex \rightarrow root hair \rightarrow endodermis \rightarrow pericycle \rightarrow protoxylem \rightarrow metaxylem

- (c) soil \rightarrow root hair \rightarrow cortex \rightarrow endodermis \rightarrow pericycle \rightarrow protoxylem \rightarrow metaxylem
- (d) pericycle \rightarrow soil \rightarrow root hair \rightarrow cortex \rightarrow endodermis \rightarrow protoxylem \rightarrow metaxylem.

18.	Active transport of elements across the cell membrane requires					
	(a) ATP	(b) acetyl choline	(c) phloroglucinol	(d) cyclic AMP.		
19.	. Total amount of water present in the soil is called					
	(a)chresard	(b)holard	(c)echard	(d)none of the above.		
20.	In soil, the wate	er available for root ab	sorption is			
	(a) gravitational	water	(b)capillary wa	(b)capillary water		
	(c)hygroscopic v	vater	(d)combibed v	water		
21.	The plasmalemr	na and the tonoplast is	an osmotic system whi	ch function as		
	(a)semipermeat	ole and sleetively perme	eable membrane			
	(b) impermeable	e membranes				
	(c)permeable m					
	(d)unit membra	nes				
22.	. wilting of plant occurs when occurs when					
	(a) xylem is bloc	ked	(b) phloem is blocked			
	(c) pith is remov	ed	(d) epidermis and few roots are removed.			
23.	. Water absorption in roots mainly takes place in which zone of root?					
	(a) zone of elong	gation	(b) root hair zone			
	(c) root epiderm	is	(d) maturation zone			
24.	1. In Hydra, the undigested waste material and nitrogenous waste material is removed from					
	(a) mouth and b	ody wall	(b) mouth and tenta	cles		
	(c) mouth and n	ematocyst	(d) body wall and te	ntacles		
25.	Flatworms excre	ete through				
	(a) kidney	(b) nephridia	(c) protonephridia	(d) Malphigian tubules		
		• • •	· · ·	• •		