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(T1) The Large Magellanic Cloud in Phuket  [10 marks] 

The coordinates of the  Large Magellanic Cloud (LMC) are R.A. = 5h 24min and Dec = 

70 00 . The latitude and longitude of Phuket are 7 53  N and 98 24  E , respectively. What 

is the date when the LMC culminates at 9pm as seen from Phuket in the same year? You may 

note that the Greenwich sidereal time, GST, at 00h UT 1st January is about 6h 43min, and 

Phuket follows UT+7 time zone.          

 

Solution: 

 

 

 

 

 

 

 

 

When it culminates, LHA 0,    RA LST         [1.0] 

LST (L GST ) RA              

GST L RA 6h 34min 5h 24min = 1h 10min          [2.0] 

GST 24h 1h 10min     

GST 22h 50min          [1.0] 

Phuket time of 21:00 is UT14:00.        [1.0] 

 st stGST GST of 1  Jan  The angle that  moves away from 1  Jan + UT     [1.0] 

stDays that 24
22h 50min 6h 43min  24 h 14h

365.2422 days 23.9

away from 1 Jan

344

     
                

  

st 365.2422 days
Days that away from 1 Jan (22h 50min 6h 43min 14h 2min)

24h

 
    

 
 

            [2.0] 

 st stDays that away from 1 Jan 31.7 days from 1 Jan (at Greenwich)   [1.0] 

The time of the year that the LMC culminates in Phuket is on 2rd February.  [1.0]  

Local Meridian 

 
Greenwich Meridian 

L 

LHA = 0 

LST 

RA 

GST* 

GST 
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(T2) Earth’s transit zone [10 marks] 

Earth's transit zone is an area where extrasolar observers (located far away from the Solar 

system) can detect the Earth transiting across the Sun. For observers on the Earth, this area is 

the projection of a band around the Earth's ecliptic onto the celestial plane (light grey area in 

the left figure). Assume that the Earth has a circular orbit of 1 au. 

 
 

a) Find the angular width of that part of the Earth's transit zone in degrees, where the 

extrasolar observers can detect Earth's total transit (the whole Earth's disk passing in front 

of the Sun). [5] 

 

Solution: 

For Earth’s transit, the whole Earth’s disk should pass in front of the Sun 

 
From STA ETD   : [1.0] 

 

X a X

R R




 
aR

X
R R








 [1.0] 
 

The half angular size of the Earth’s Transit Zone with transit can be written as, 

 

arcsin arcsin arcsinT

R R RR

X a X a
 

    
       

     
  [1.0] 

Solution with arctanT

R R R R

a a
    

  
 

  is acceptable with full mark 
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The angular size of the Earth’s Transit Zone with transit is 

 

2 2arcsinT

R R

a
  

  
    [1.0] 

2 0.527T   [1.0]  

 

b) Find the angular width of that part of Earth's transit zone in degrees, where the extrasolar 

observers can detect at least Earth's grazing transit (any part of the Earth's disk passing in 

front of the Sun). 

 [5] 

Solution: 

For Earth’s grazing transit, any part of the Earth’s disk should pass in front of the Sun 

 
From SGB EGC   : [1.0] 

 

Y a Y

R R


  

aR
Y

R R








 [1.0] 

 

The angular size of the Earth’s Transit Zone with transit can be written as, 

 

arcsin arcsin arcsinG

R R RR

Y a Y a
 

    
       

     
 [1.0] 

Solution with arctanG

R R R R

a a
    

  
 

 is acceptable with full mark 

The angular size of the Earth’s Transit Zone with grazing transit is 

 

2 2arcsinG

R R

a
  

  
 

 [1.0] 

2 0.537G   [1.0] 
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(T3) Milky Way New Far Outer Arm  [10 marks] 

In 2011, Dame and Thaddeus found a new part of outer arm of the Milky Way by studying 

the CO line using the CfA 1.2m telescope. They detected that the distribution of CO starts at 

galactic longitude 13.25 (marked A in the figure) where it has radial velocity of         20.9 

km s-1 towards the Sun. Assume that the galactic rotation curve is flat beyond 5 kpc from the 

galactic centre. The distance between the Sun and the Galactic centre is 8.5 kpc. The velocity 

of the Sun around the Galactic centre is 220 km s-1. 

 
 

a) Find the distance from the start of the arm (point A) to the Galactic centre. [7] 

 

Solution: 

 
 

If there is the flat rotation curve beyond 2 kpc from the Galactic centre, the orbital 

velocity of the Sun and the start of the arm are both equal to  

 

LSR LSRsin( ) sin( )rv v v     [3.0] 
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 Sine law ( AGS ):  
0

sin( ) sin( )

d R


  [1.0] 

LSR LSR 0

sin( )
sin( )r R

d
v v v     [1.0] 

20.9 = 220sin(13.25°) - 220´8.5´
sin(13.25°)

d
 [1.0] 

Correctly substitute numerical values
  

14.5 kpcd   [1.0] 

 

 

b) Find the distance from the start of the arm (point A) to the Sun.  [3] 

Solution: 

 

Cosine law ( AGS ): 
2 2 2

0 02 cos( )d x R xR    [1.0] 

 
2 2 214.5 8.5 2 8.5 cos(1 .2 )3 5x x     [1.0] 

Correctly substitute numerical values 

 

2 2 2 217cos( ) 17 cos ( ) 4 (8.5 14.5 )13.25 13. 5

2

2
x

   
  

22.6 kpcx   [1.0] 
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(T4) 21-cm HI galaxy survey [10 marks] 

A radio telescope is equipped with a receiver which can observe in a frequency range from 

1.32 to 1.52 GHz. Its detection limit is 0.5 mJy per beam for a 1-minute integration time. In a 

galaxy survey, the luminosity of the HI spectral line of a typical target galaxy is 2810  W  with 

a linewidth of 1 MHz. For a large beam, the HI emitting region from a far-away galaxy can 

be approximated as a point source. The HI spin-flip spectral line has a rest-frame frequency 

of 1.42 GHz.  

 

What is the highest redshift z of a typical HI galaxy that can be detected by a survey carried 

out with this radio telescope, using a 1-minute integration time? You may assume in your 

calculation that the redshift is small and the non-relativistic approximation can be used. Note 

that 
26 -2 -11 Jy 10  Wm Hz .  

 

 

Solution: 

 

Case 1: If we only consider the frequency range where HI spectral line can be detected by 

the receiver of this radio telescope, 

 

0

0

f f
z

f


                                               [1 Mark] 

The lowest frequency, 1.32 GHz, can be used to observe the highest redshifted HI, 

at  

1.42 1.32
0.0704

1.42
z


                         [1 Mark] 

         

Alternative solution: Above is the cosmological redshift formula in frequency 

conventionally used in radio astronomy. However, if the cosmological redshift in 

optical astronomy is used, student may use 

 

         0 1.42 1.32
0.0758

1.32

f f
z

f

 
          

                                 and the student should be awarded full mark for this part. 

 

      

    

Case 2: Use the information given to calculate the redshift limit set by the flux limit due 

to furthest distance that typical HI galaxy can be detected by the telescope  

 

for low z, non-relativistic redshift   
0 0

rv cz
d

H H
                         [1 Mark]    

 

The HI spectral-line flux density for a galaxy with HI luminosity L and line-width 

f  at distance d is 

-2 -1

2

1
(Wm Hz )

4

L

d f



                                                   [2 Mark] 
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Setting this to the detection limit and solve correctly, and taking special care of 

converting various units 

                                    
2

260
lim2 2

0.5 10
4

LH
S S

fc z

   


                      [1 Mark] 

 

         Therefore,                                                                            

                                            0

lim

,
4

H L
z

c fS



                                             [1 Mark] 

 

 

Correctly substitute numerical values,
1 1 28

5 1 22 1 6 29 -2 -1

67.8(km Mpc ) 10  W

2.99 10 (km s ) 3.08 10  (m Mpc ) 4 10 (Hz) 0.5 10  (Wm Hz )
z



 

  


     
 

                                          [1 Mark] 

 

     0.0929z                                                                                                [1 Mark] 

 

 

Conclusion: For typical HI galaxy, the highest redshift is limited by the receiver’s lowest 

frequency limit and we get zmax=0.0704 (or 0.0758 for alternative solution given above)                  

                                                                                                                               [1 Marks]  

 

The last part is marked only if student calculate both instrumental factors. 

If students use more precise cosmological effects, they will be marked accordingly. 
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(T5) A Synchronous Satellite  [10 marks] 

A synchronous satellite is a satellite which orbits the Earth with its period exactly equal to the 

period of rotation of the Earth. The height of these satellites is 35,786 km above the surface 

of the Earth. A satellite is put at an inclined synchronous orbit with the inclination 6.69    

to the equatorial plane. Calculate the precise value of the possible maximum altitude of the 

satellite for an observer at latitude of 51.49   . 

Solution: 

 

 

 

             

 

 

 

 

    Draw diagram and correctly identify the altitude    [1.0]  

  

  Identify another angle with the altitude h in its expression,  

  such as 90 ( ) h            [1.0]  

  

  Maximum altitude occurs when the satellite is at meridian    [1.0] 

   

  Intermediate steps that can lead to the calculation of h, such as  

    
sin( )

tan(90 ( ) )
cos( )

R
h

H R R

 
 

 


   

  
     [3.0]  

   

  Correct expression for h:        [2.0] 

  
1 sin( )

90 ( ) tan
cos( )

R
h

H R R

 
 

 

  
     

   
   

   Correct value of h   

  
1

3

35,786 km

sin(51.49 6.69 )
90 (51.49 6.69 ) tan

1 cos(51.49 6.69 )
6.38 10  km

h 

 
 

     
    

 

 

  

  38.4h            [2.0] 

 

  Maximum of 2.0 marks for solution with  90.0 51.49 6.69 45.2h        

    

Satellite 

Horizon 

H 

R 

 

h 
90º- ( - ) - h 

Equator 
 
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(T6)  Supernova 1987A  [15 marks] 

 

Supernova SN 1987A was at its brightest with apparent magnitude of +3 on about 15thMay 

1987 and then faded, finally becoming invisible to the naked eye by 4th February 1988. It is 

assumed that brightness B varied with time t  as an exponential decline, /
0

tB B e  , where 0B  

and   are constant. The maximum apparent magnitude which can be seen by the naked eye 

is +6. 

 

a) Determine the value of   in days. [5] 

Solution: 

 

0 10
0

2.5log
B

m m
B

 
    

 
 [1.0] 

0 102.5 log
t

m m e


   [1.0] 

 

The days from 15thMay 1987 to 4th February 1988 is 265 days [1.0] 

 

10

265 days
6 3 2.5 log e


   [1.0] 

 

95.9 days   [1.0] 

  

 

b) Find the last day that observers could have seen the supernova if they had a 6 inch (15.24 

cm) telescope with transmission efficiency 70%T  . Assume that the average diameter 

of the human pupil is 0.6 cm.  [10] 

Solution: 

 

Consider the energy transmission 
2 2

e TB d TB D  [3.0] 

 
2

2
e

T

B D
T

B d


 

0 10
0

2.5log
B

m m
B

 
    

 
 [1.0] 

lim 10 102.5log 5loge

D
m m T

d

 
    

 
 [1.0] 

lim 10 10

15.24 cm
6 2.5log 0.7 5log  

0.6 cm
m

 
    

 
 

lim 12.64m 
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and 

From 0 102.5 log
t

m m e


   [2.0] 

1012.64 3 2.5 log
95.9 days

t
e   [1.0] 

851.5 dayst   [1.0] 

 

The last day that observers could have seen the supernova is on 12th September 

1989  

 [1.0] 

11th - 13th September 1989 are acceptable 
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(T7) Life on Other Planets  [20 marks] 

One place to search for life is on planets orbiting main sequence stars. A good starting point 

is the planets that have an Earth-like temperature range and a small temperature fluctuation. 

Assume that for a main sequence star, the relation between the luminosity L  and the mass M  

is given by  

 3.5L M . 

You may assume that the total energy E released over the lifetime of the star is proportional 

to the mass M of the star. For the Sun, it will have a main sequence lifetime of about 10 

billion years. The stellar spectral types are given in the table below. Assume that the spectral 

subclasses of stars (0-9) are assigned on a scale that is linear in log M . 

 

Spectral Class O5V B0V A0V F0V G0V K0V M0V 

Mass ( M ) 60 17.5 2.9 1.6 1.05 0.79 0.51 

 

 

a) If it takes at least 
94 10  years for an intelligent life form to evolve, what is the spectral 

type (accurate to the subclass level) of the most massive star in the main sequence around 

which astronomers should look for intelligent life? [6] 
 

Solution: 

      Since E M L M    and 3.5L M ,  

   

2.5
M

M
 

 
  

 
        [2.0] 

      The maximum mass of the star should be  

  

1/2.51/2.5 10

9

10

4 10
M M M





  
         

          [0.5] 

  1.44M M          [0.5] 

      Use of spectral class-log M linear relation 

      
10

(log1.6 log1.44) 2.5
(log1.6 log1.05)

  
      

[2.0]

 

 

      which corresponds to the star of type F2V to F3V     [1.0] 

0.5 mark for the answer “between F0V and G0V”  
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b) Assume that the target planet has the same emissivity   and albedo a  as the Earth. In 

order to have the same temperature as the Earth, express the distance d, in au, of the planet 

to its parent main sequence star, of mass M.  [6] 
 

Solution: 

The received power by a planet of a radius r  and a distance d from the star is  

  
2 2

2 2
(1 ) (1 )

4 4
input

r L r L
P a a

d d




     , where a  is the planet’s albedo.[1.0]  

 

The released power of blackbody radiation is  

  2 44outputP r T   , where   is emissivity.     [1.0] 

 

Since we assume that the planet emits heat as blackbody radiation, 

  
2

2 4

2
(1 ) 4

4

r L
a r T

d
   .       [1.0] 

The temperatures of the planet and the Earth are similar, 

  4

2 2

(1 )(1 )

16 16

a La L
T

d d 


  .           

  
2 2

LL

d d
          [1.0] 

  

2 3.5
d L M

d L M

   
       

   
        [1.0] 

 The distance of the planet to the star is 

3.5/2
M

d
M

 
   
 

 au.               [1.0] 

 

c) The existence of a planet around a star can be shown by the variation in the radial velocity 

of the star about the star-planet system centre of mass. If the smallest Doppler shift in the 

wavelength detectable by the observer is 
10( / ) 10    , calculate the lowest mass of 

such a planet in b), in units of Earth masses, that can be detected by this method, around 

the main sequence star in a). [8] 

 

 

Solution:        

Angular speed around the center of mass can be derived by Kepler’s law. 
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2 3

2 4

( )

d
T

G M m





           [1.0] 

  
3

( )G M m

d



             [1.0] 

According to the centre of mass of the planet and the star,  

  

s

s

Md md

m
d d

M




           [1.0] 

 and 

  sv d             [1.0] 

      
( )m m G M m G

v d m
M M d Md




          

From  
v m G

c c Md






 

        [1.0] 

Use of previously derived expression The distance of the planet to the star is
 

   

3.5/2
M

d
M

 
   
 

 au.

        [1.0] 

  

3.5/2

1 au
M

M
MMd

m c c
G G

 

 

 
 

       

      
 

3.5/2
1.44 1 auM

c
G






    

  
 

3.

11 3 -1 -2

5/230 11
10 1.44 1.99 10  kg 1.44 1.50 10 m

(29979245
6.67 10

8m/s)
 m k

0
g s

1


    
 


 [1.0] 

   243.31 10 kg 0.554m M          [1.0] 
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(T8) Star of Bethlehem [20 marks] 

A great conjunction is a conjunction of Jupiter and Saturn for observers on Earth. Assume that 

Jupiter and Saturn have circular orbits in the ecliptic plane. 

 

The time between successive conjunctions may vary slightly as viewed from the Earth. 

However, the average time period of the great conjunctions is the same as that of an observer 

at the centre of the Solar system.  

 

a. Find the average great conjunction period (in years) and average heliocentric angle 

between two successive great conjunctions (in degrees).  [6] 

Solution: 

Assume that the average Earth’s orbit is at the Sun. Therefore, average great conjunction 

period equals to the synodic period between Jupiter and Saturn.  

1 1 1

Synodic Jupiter SaturnP P P
 

 [3.0] 

1 1 1

11.86 29.45SynodicP
 

 

19.86 yearsSynodicP 
 [1.0] 

From average great conjunction period, in 19.86 years Jupiter and Saturn move  

  

in an eastward direction through the zodiac, or  in a westward 

direction through the zodiac.  [2.0] 

 

 

b. The next great conjunction will be on 21st December 2020 with an elongation of 30.3◦ 

East of the Sun. Estimate in which constellation will the conjunction on 21st December 

2020 occur? (Give the IAU Latin name or IAU three-letter abbreviation of the 

constellation, i.e. Ursa Major or UMa) [2] 

Solution: 
 

On 21st December 2020 (winter solstice), the Sun will be in the constellation of 

Sagittarius. Planets are always near the ecliptic. The current 12 zodiac constellations can be 

roughly divided into 12 equal parts of 30 degrees each.  

The conjunction will locate elongation 30.3◦ East to the Sun. Therefore, the 

conjunction will be in the constellation of Capricornus (Cap).  [2.0] 

Justification is NOT necessary for the full mark for this part 
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In 1606, Johannes Kepler determined that in some years the great conjunction can be happen 

thrice in the year due to the retrograde motions of the planets. He also determined that such 

an event happened in the year 7BC, which could have been the event commonly known as 

“The Star of Bethlehem”. For the calculations below you may ignore the precession of the 

axis of the Earth. 

  

c. Estimate in which constellation did the great conjunctions in 7 BC occur? (Give the 

IAU Latin name or IAU three-letter abbreviation of the constellation, i.e. Ursa Major 

or UMa) [8] 

Solution: 

 

The duration between 7BC and 2020 is 2026 years or 2027 years .  

 

Each conjunction occurs on the average every 19.86 years. Therefore, the number of 

conjunction between 7BC and 2020 is 

 

Integer value of 2026 /19.86 102  [2.0] 

Correct number of conjunctions 1.0 mark. 

Correct number of conjunctions with integer 2.0 marks. 

 

From a conjunction to its previous successive conjunction, the conjunction moves 243° 

westwards. The position of the conjunction in 7BC is 

 

102´242.7° = 24758.33° = 278.3° [3.0] 

 

westward, or equivalently 81.7° eastward from the position of the conjunction in 2020. 

Therefore, the conjunction was in the constellation of Aries (Ari) or Pisces (Psc)          [3.0]

   

Justification is NOT necessary for the full mark for this part 

Correct answer only 

  

 

d. At the second conjunction of the series of three conjunctions in 7 BC, for the observer 

on Earth, estimate in which constellation was the Sun? (Give the IAU Latin name or 

IAU three-letter abbreviation of the constellation, i.e. Ursa Major or UMa)  [4] 

Solution: 

 

At the second conjunction, Jupiter and Saturn had retrograde motions. For observers on 

the Earth, both of them were in opposition. Therefore, the sun was in the constellation of 

Libra (Lib) (if answer c) is Aries) or Virgo (Vir) (if answer c) is Pisces). [4.0] 

This question is marked only if students get c) correctly  
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(T2) Galactic Outflow [20 marks] 

Cannon et al. (2004) conducted an HI observation of a disk starburst galaxy, IRAS 

0833+6517, with the Very Large Array (VLA). The galaxy is located at a distance of 80.2 

Mpc with an approximate inclination angle of 23 degrees. According to the HI velocity map, 

IRAS 0833+6517 appears to be undergoing regular rotation with the observed radial velocity 

of the HI gas of roughly 5850 km s-1 at a distance of 7.8 kpc from the centre (the left panel of 

the figure below).  

Gas outflow from IRAS 0833+6517 is traced by using the blueshifted interstellar absorption 

lines observed against the backlight of the stellar continuum (the right panel of the figure). 

Assuming that this galaxy is gravitationally stable and all the stars are moving in circular 

orbits,  

 

 

 

a) Determine the rotational velocity (
rotv ) of IRAS 0833+6517 at the observed radius of HI gas.                      

                             [5] 

Solution: 

The systemic or recessional velocity of IRAS 0833+6517 can be determined by the 

Hubble’s law                                                                                                                           

 

sys 0

1 1

1

67.8 km s Mpc 80.2 Mpc

5437.6 km s

v H d

 





 



   [2]     

 
The observed radial velocity can be written in terms of systemic velocity and rotational 

velocity of a galaxy as                                                                                                           

rad sys rot sin ,v = v +v i                                                             [1] 

where radv , sysv , and rotv  are the radial, systemic, and rotational velocity of the galaxy and 

i  is an inclination angle.  

 
The rotational velocity of the galaxy can thus be obtained by                                               
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1
rad sys

rot

1

5850 5437.6 km s

sin 0.39

1055 km s

v v
v

i





 
 



                                  [2] 

 

Answers between 1050 to 1060 are acceptable for full marks. 

 

 

 

 

b) Calculate the escape velocity for a test particle in the gas outflow at the radius of 7.8 kpc. 

 [9] 

  

Solution: 

 

Method 1: 

In order to determine the escape velocity, we need to know the dynamical mass of the 

system. In case of the rotation dominated galaxy, a dynamical mass can be estimated as                                                              

 

 
2

dyn rot( ) / ,M R v R G                                                        [2] 

 

where dyn ( )M R  is the dynamical mass with in the radius R .  

So the dynamical mass of IRAS 0833+6517 within the radius of 7.8 kpc is                          

 
3 1 2 3 11

dyn 11 3 1 2

42

(1055 10 m s ) 7.8 10 pc 206265au/pc 1.50 10 m/au
( )

6.67 10 m kg s

4.0 10 kg

M R


  

     
 



 

     [2] 

    or   
12

dyn ( ) 2.0 10 MM R   . 

 

Assuming the virial theorem, the escape velocity can be written as                                       

 

 esc

2GM
v

R
                                                            [2] 

 

Therefore, the escape velocity is                                                                                             

 

 

11 3 1 2 42

esc 3 11

1

2 6.67 10 m kg s 4.0 10 kg

7.8 10 pc 206265 au/pc 1.50 10 m/au

1492 km s

v
  



   


   



                        [3] 

Method 2: 

In order to determine the escape velocity, we need to know the dynamical mass of the 

system. In case of the rotation dominated galaxy, a dynamical mass can be estimated as                                                              

 

 
2

dyn rot( ) / ,M R v R G                                                      [2] 
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where dyn ( )M R  is the dynamical mass with in the radius 	R . According to the virial 

theorem, the escape velocity is                                                                                               

		
v

esc
=

2GM

R                                                                      [2] 
Substituting the dynamical mass into the above equation, we get                                          

                                                                         

2

esc rot

2
2

GM
v v

R
 

                                                       
[3] 

 

                                                                                   

1 2

1

2 (1055 km s )

1492 km s





 

                                               

[2] 

 

Answers between 1487 to 1497 are acceptable for full marks.
  

 

 

c) Examine if the outflowing gas can escape from the galaxy at this radius by considering the 

velocity offset of the C II 1335  absorption line, which is already corrected for the 

recessional velocity. (The central wavelength of the CII absorption line in labs is 1335 Å.)  

[6] 

 

 

Solution: 
 

To examine whether or not outflowing gas can escape from the galaxy, one needs to derive 

the outflow velocity of the gas from the blueshifted absorption line. 

 

The outflow velocity or the velocity offset of any emission or absorption lines can be 

calculated by the following equation:                                                                                     

 
v

c





 
                                                              [2] 
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                              Figure 1 The CII absorption line with the acceptable range of the blueshifted wavelengths. 

For the C II 1335  absorption line (Figure 1), we obtain                                                      

 
1

obs

1

1332 1335
(C II 1335) 299792.458 km s

1335

673.7 km s

v  



 
   

 

 

                     [2] 

 

Answers between -1300 km s  to -1900 km s  are acceptable with full marks. 

 

The velocity offsets of the C II 1335  absorption line is 1673.7 km s . It means that the 

outflowing gas is going out of the galaxy at this speed, which is smaller than the escape 

velocity obtained in (b).  

 

We conclude that the outflowing gas CANNOT escape from IRAS 0833+6517.           [2] 
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(T10) GOTO [25 marks] 

The Gravitational-Wave Optical Transient Observer (GOTO) aims to carry out searches of 

optical counterparts of any Gravitational Wave (GW) sources within an hour of their detection 

by the LIGO and VIRGO experiments. The survey needs to cover a big area on the sky in a 

short time to search all possible regions constrained by the GW experiments before the optical 

burst signal, if any, fades away. The GOTO telescope array is composed of 4 identical 

reflective telescopes, each with 40-cm diameter aperture and f-ratio of 2.5, working together 

to image large regions of the sky. For simplicity, we assume that the telescopes’ field-of-view 

(FoV) do not overlap with one another. 

 

a) Calculate the projected angular size per mm at the focal plane, i.e. plate scale, of each 

telescope.   [5] 

 

Solution 

 

For any two points on the sky separated by small 

angular distance  , at the focal plane of the 

telescope the distance is S 

 

tan ,
S

f
                              [0.5 Mark] 

where f is the focal length 

 

for small angle                    

 

tan                                  

 

Then plate scale is  

 

1

S f


                                   [0.5 Mark] 

 

 

 

 

 = F-ratio  Diameterf        [1 Mark]       

 

 

 
1

Plate scale = 
F-ratio  Diameter

                            [1 Mark]  

 

If student correctly quote the formula for plate scale will also get the full 

mark for the above calculation   
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2 3 1

1 180 3600 (arcsec)
Plate Scale =     [1 Mark]

2.5 40 10 (m) 10 (mm m )

                  = 206 arcsec/mm

 




  

  

   

Plate Scale = 3.44 arcmin/mm                                  [1 Mark] 

 

 

b) If the zero-point magnitude (i.e. the magnitude at which the count rate detected by the 

detector is 1 count per second) of the telescope system is 18.5 mag, calculate the minimum 

time needed to reach 21 mag at Signal-to-Noise Ratio (SNR) = 5 for a point source. We 

first assume that the noise is dominated by both the Read-Out Noise (RON) at 10 

counts/pixel and the CCD dark (thermal) noise (DN) rate of 1 count/pix/minute. The 

CCDs used with the GOTO have a 6-micron pixel size and gain (conversion factor 

between photo-electron and data count) of 1. The typical seeing at the observatory site is 

around 1.0 arcsec. [8] 

 

The signal to Noise ratio is defined by 

 

2 2 2

RON DN

2

RON pix DN pix

Total Source Count Total Source Count
SNR ,

Noise ...

RON ,   DN  ,  

i i

N N t

 

 

 
  

    

 

 

where t is the exposure time.  

        

Solution 

 

From plate scale calculated in a) size of a star for typical seeing 1 arcsec 

                          
 3

1/ 60 arcmin
 = 

3.44 arcmin/mm 6 10  mm 
  pixels                 [1 Mark] 

                = 0.8 pixel   

 

                           light from star is mostly contained within Npix=1 pixel        [1 Mark] 

 

Alternative solution:  

If a student gets the correct answer for 1 arcsec = 0.8 pixel but clearly explain 

that the chosen aperture size is N x “seeing” or a circular aperture with radius 

RNpix (where RNpix is not larger than 2x seeing) and calculate the total number of 

pixels must be the closest round-up integer.  

And correctly use 
2

pix pix

CR
SNR  

N RON (N DN )

t

t




  
 

Then the student will be awarded full mark for the relevant parts.  

This is also apply to part c) 
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From the definition of the Zero-point magnitude given in the question                

102.5log (count rate)+Zero-Pointm                        [2 Mark] 

 

21,  ZP = 18.5m   

 source count rate -(21-18.5)/2.5CR = 10 = 0.1 per second         [1 Mark] 

 

Signal-to-noise ratio  

 

2

CR
SNR  

RON (DN )

t

t




 
 

 
2 2(CR ) 25(RON +(DN ))t t                           [1 Mark] 

 

 

Solve quadratic equation 

 

2 2 2

2

25DN + (25DN) 100CR RON
 

2CR
t


                                 [1 Mark] 

 

2 2 2

2

25 25
+ ( ) 100(0.1) 10

60 60
 521 s = 8.68 minutes

2 0.1
t



 


         [1 Mark] 

 

 

c) Normally when the exposure time is long and the source count is high then Poisson noise 

from the source is also significant. Determine the relation between SNR and exposure 

time in the case that the noise is dominated by Poisson noise of the source. Recalculate 

the minimum exposure time required to reach 21 mag with SNR=5 in part b) if Poisson 

noise is also taken into consideration. The Poisson noise (standard deviation) of the source 

is given by source Source Count  . In reality, there is also the sky background which 

can be important source of Poisson noise. For our purpose here, please ignore any sky 

background in the calculation.                                                 [6] 

 

Solution 

 

If we include the source Poisson noise, 

 

2

CR
SNR  

RON (DN ) CR

t

t t




   
                                                  [1 Mark] 

 

 

For the Poisson noise dominated case 

CR
SNR

CR

t

t





                                                       [1 Mark]   
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Hence                     
1

2SNR t                                                              [1 Mark] 

 

Re-calculate exposure time  

2

CR
SNR  ,

RON (DN ) CR

t

t t




   
 

 
2 2(CR ) 25(RON +(DN+CR) ))t t                                                      [1 Mark] 

Solve quadratic equation 

 

2 2 2 2

2

25(DN CR)+ 25 (DN+CR) 100CR RON
 

2CR
t

 
                         [1 marks]   

t 666 s = 11.1 minutes                               [1 marks]   

 

 

d) The typical localisation uncertainty of the GW detector is about 100 square-degrees and 

we would like to cover the entire possible location of any candidate within an hour after 

the GW is detected. Estimate the minimum side length of the square CCD needed for 

each telescope in terms of the number of pixels. You may assume that the time taken 

for the CCD read-out and the pointing change are negligible. [6] 

 

Solution  

In 1 hr, one can observe 
60

5
11.1

 .4  [1 mark]  5  pointing     

                                                              (round down to the nearest integer)      

[1 mark] 
 

Therefore, we need to cover  
2100 deg    one pointing need to cover 

2100
5 deg

(5 4 telescope)



                                        [1 mark]  

or 2.24 x 2.24 deg per pointing per telescope          [1 mark] 

 

calculate size of each CCD 
-3

2.24 deg 60
 =  pixels

(3.4 arcmin/mm)(6 10  mm)




          [1 

mark] 
 

                                              = 6588.2 pixels    6589 pixels (pixel number 

need to be integer) 

 

Therefore, we need minimum CCD size = 6589 6589 pixels   [1 

mark] 

 

Answer 6588 pixel is also eligible for the mark 
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(T11) Mass of the Local Group   [50 marks] 

 

The dynamics of M31 (Andromeda) and the Milky Way (MW) can be used to estimate the 

total mass of the Local Group (LG). The basic idea is that galaxies currently in a binary system 

were at approximately the same point in space shortly after the Big Bang. Besides, the mass 

of the local group is dominated by the masses of the MW and M31. Via Doppler shifts of the 

spectral lines, it was found that M31 is moving toward MW with a speed of 118 km s-1. This 

may be surprising, given that most galaxies are moving away from each other with the general 

Hubble flow. The fact that the M31 is moving towards MW is presumably because their 

mutual gravitational attraction has eventually reversed their initial velocities.  In principle, if 

the pair of galaxies is well-represented by isolated point masses, their total mass may be 

determined by measuring their separation, relative velocity and the time since the universe 

began.  Kahn and Woltjer (1959) used this argument to estimate the mass in the LG. 

 

In this problem we will follow this argument through our calculation as follows.  

a) Consider an isolated system with negligible angular momentum of two gravitating point 

masses 1m  and 2m  (as observed by an inertial observer at the centre of mass).  

 

 

 

 

 

Write down the expression of the total mechanical energy (E) of this system in 

mathematical form connecting 1m , 2m , 1r , 2r , 
  
v

1, 
  
v

2 , and the universal gravitational 

constant G , where 
  
v

1 and 
  
v

2  are the radial velocities of 1m  and 2m , respectively.           [5] 

 

Solution: 

 

  

1

2
m

1
v
1
2 +

1

2
m

2
v

2
2 -

Gm
1
m

2

r
1
+ r

2

=  E. Note that the total energy is negative quantity.      [5] 

Detailed Marking Scheme: 

Students get 1.5 marks for each kinetic energy term. 

Students get 1.0 mark for correct sign in from of the potential energy term and 

another 1.0 mark for the correct expression of the potential energy. 

 

 

b) Re-write the equation in a) in terms of r ,  v,  , M , and G , where 1 2r r r   is the 

separation distance between 1m  and 2m ,  v is the changing rate of the separation distance, 

m1 m2 

r2 r1 

Centre of mass 
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1 2

1 2

m m

m m
 


 is the reduced mass of the system, and 1 2M m m   is the total mass of the 

system.  [10] 

 

Solution: 

From 
  
m

1
r
1

=  m
2
r
2
 and 

  
r
1
+ r

2
= r, we have 

  

r
1

=  
m

2

m
1
+ m

2

r  and 

  

r
2

=  
m

1

m
1
+ m

2

r.  

Substituting them into the solution obtained in a), we get 

 

  

1

2
v2 -  

G(m
1
+ m

2
)

r
=

E

m
 

  

v2 -  
2GM

r
=

2E

m
 

 

Therefore, 
2 2

 
2

GM
E v

r

  
  

 
                                                                                  [10] 

Detailed Marking Scheme: 

Students get 2.0 marks for using the conservation of momentum or center of mass to get 

  
m

1
r
1

=  m
2
r
2 . 

Students get 1.0 mark for each of the relationship 

  

r
1

=  
m

2

m
1
+ m

2

r

 

or 

  

r
2

=  
m

1

m
1
+ m

2

r. (total 

2.0 marks) 

Students get 1.0 mark each for the relationships between v and v1, and between v and v2. 

(total 2.0 marks) 

For correct substitution of suitable variables into the expression for E , students get 2.0 

marks. 

Final expression for E is worth 2.0 marks.
 

 

 

c) Show that the equation in b) yields  

2
0

0

1 1
(2 ) ,  where v GM r

r r

 
  

 
 is a new constant.  

Find 0r  
in terms of  , M , G  and E. [5] 
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Solution: 

 

From b), we have 
2 2

 
2

GM
E v

r

  
  

   

or  

  

v2 -  
2GM

r
=

2E

m  

  

v2 =  
2GM

r
+

2E

m
 

                                       

1 1
(2 )GM

GMr

E



 
  

  
  
 

   

 

                                                             
0

0

1 1
(2 ) ,  where 

GM
GM r

r r E

 
    

   

Thus  

  
 r

0
= -

GMm

E
                                                              [5] 

Detailed Marking Scheme: 

Students get 4.0 marks for correct algebra and obtain the expression in the correct form. 

By correctly identifying that 
  
 r

0
= -

GMm

E
, students get 1.0 mark.  

 

The solution of the equation in b) is given below in parametric form, under the initial condition 

0r   at 0t  : 

 0( ) 1 cos ,  
2

r
r     

 

1
3 2
0( ) sin ,  

8

r
t

GM
  

 
   
 

 

where   is in radians.  

 

d) From the above parametric equations, show that an expression for 
 

vt

r
 is 

  

vt

r
=

sinq( ) q - sinq( )

1- cosq( )
2

. [10] 

Solution: 

Substituting ( )r   in the equation of part c):   
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 

2

1
0 0 0 02

1 1 1 1 2 1 cos
2 2

1 cos 1 cos

GM
v GM GM

r r r r r



 

    
              

  

 

1 2
2 2

2

2 2

0 0 0

2 (1 cos ) 2 sin 2 sin
( )

(1 cos ) (1 cos ) 1 cos

GM GM GM
v v

r r r

  


  

 
     

   
  

 

Combining ( )v  , ( )t  , and ( )r  : 

 

 

 

  

 

1 2 1 2
3

0
1 2

3
0 0

2
0 0 0

2 sin
sin

sin sin1 cos 8 2( ) ( ) 2

( ) 8 1 cos1 cos
2

rGM

r GM GMrv t

rr r r GM


 

   

 

   
    

    
   

 

  

 
  

 
2

sin sin

1 cos

vt

r

  







  

 

 

Alternative solution: 

From 
  
r(q ) =

r
0

2
(1- cosq ), we have 

0 sin
2

r
v  

 
  
   

From  

1/2
3
0( ) sin ,

8

r
t

GM
  

 
   
 

 we have 

 

 

1/2
3
01 1 cos

8

r

GM
 

 
   
   

 

 

 

  

 

1/2
3

0 0

1/2 2
3
0 0

sin sin
2 8 sin sin

 .
1 cos

1 cos (1 cos )
8 2

r r

GMvt

r
r r

GM

  
  


 

  
        

 
   

 

                  [10] 

 

 

Detailed Marking Scheme: 

Student gets 3.0 marks for substituting ( )r   in 
2v and obtaining 

0

2 1 cos

1 cos

GM

r





 
 
 

. 

 

Student gets 3.0 marks for using trigonometry to simplify the expression for ( )v  . 

 

For the correct derivation of the final answer, student gets 4.0 marks. 
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e) Now we consider 1m  and 2m  as the MW and M31 respectively. The current values of  v   

and  r  are   v = -118 km s-1
and 710 kpcr  , and t  may be taken to be the age of the 

Universe ( 13700 million years). Find   using numerical iteration. [10] 

 

Solution: 

 
1 3 1118 km s 118 10  m sv        

22710 kpc 2.19 10  mr     

6 1713700 10  years = 4.3233 10  st     

    

 ∴   
𝑣𝑡

𝑟
= −

118×103×4.3233×1017

2.1908×1022 = −2.33 =
(sin 𝜃)(𝜃−sin 𝜃)

(1−cos 𝜃)2
            [5] 

 

The negative value of the left-hand side of this equation implies that   is greater 

than .  

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                       [5] 

Detailed Marking Scheme: 

Students get 5.0 marks if numerical value and sign (2.5 marks for each) are both correct. 

Students get 5.0 marks if the obtained angle ( ) is within +/- 1 degree (or equivalent in 

radian), or 2.0 marks for answer within +/- 3 degrees (or equivalent in radian). 

      
2

sin sin / 1 cos      

200˚ = 3.49 radians -0.348 

210˚ = 3.67 radians  -0.598 

240˚ = 4.19 radians -1.95 

244˚ = 4.26 radians -2.24 

245˚ = 4.28 radians -2.32 

246˚ = 4.29 radians -2.40 

250˚ = 4.36 radians -2.77 

 

  

This gives the 

value of  

245˚ = 4.28 

radians 
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f) Use the value of   in e) to obtain the value of maxr . Hence also obtain the value of M  in 

solar masses. [10] 

Solution: 

 

From  0( ) 1 cos ,  
2

r
r    we have max 0,r r  and hence  

max

2 ( ) 2 710 kpc
998 kpc

1 cos 1 cos 245

r
r






  

  
                                   [5] 

 

This is the maximum separation between the Milky-Way Galaxy and 

Andromeda Galaxy; they started to move towards each other afterwards.

 
 
 

 

 

The value of M can be calculated from the relation  

1
3 2
0( ) sin .

8

r
t

GM
  

 
   
   

23
max sin

8 ( )

r
M

G t

 



  
    

  

. 

 

From the maximum separation of 
22

max 998 kpc = 3.0795 10  m,r  
  

245 4.276 radians    , 
6 17( ) 13700 10  years = 4.3233 10  st t     , and  

11 2 26.67 10 N m k g  G    , we obtain  

 
42

42 12

30

7.86 10
7.86 10  kg = 3.95 10

1.99 10
M M M


    


               [5]

 
 

The estimated number of stars, most of which are of less than a solar mass, for Andromeda 

and Our Galaxy are 
114 10  and 

112 10 respectively. This implies that most of mass of the 

system is DARK. 

 

Note 
 
 

Detailed Marking Scheme: 

First part which is counting for 5.0 marks for determining rmax is detailed as follow: 

Students get 2.0 marks for realizing that rmax =r0. 

Students get 1.0 mark by re-arranging rmax in term of r(θ) and θ. 

Students get 1.0 mark if they substitute the correct values given in the question. 

Students get 1.0 mark for correct numerical answer. 

 

Second part that is worth 5.0 marks for determining M is detailed as follow: 

Students get 2.0 marks for successfully expressing M in term of known variables. 
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Students get  1.0 mark by substituting the correct numerical values given in the question 

into the expression from previous step. 

Students get 2.0 marks for obtaining the correct answer in requested unit. 

 

 

 Note that  

1/2

1/2 0
0

0

(2 ) for 
r rd

v r GM r r
dt r r

 
    

 
 

1/2

1/2 0

0

(2 )
r r

GM dt dr
r r

 
   

 
   

Putting 
2

0

sin
r

r
  

 

1/2
3
0 2 sin 2

8

r
t D

GM
 

 
    
 

 

 

We choose the initial condition such that 1m  and 2m are close together, that is that 0r   at 

0t  . This implies that 0   at 0t  , hence D  must be zero. 

 

1/2
3
0 sin ,  2

8

r
t

GM
   

 
    
 

.     

 

And from 2
0 0

1
sin (1 cos 2 ),

2
r r r     we have: 

0

1
(1 cos ).

2
r r          

Equation (5) and (6) form the parametric solution of equation (4). 

max 0( )r r r   
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(T12) Shipwreck  [40 mark] 

You are shipwrecked on an island. Fortunately, you are still wearing a watch that is set to 

Bangkok time. You also have a compass, an atlas and a calculator. You are initially 

unconscious, but wake up to find it has recently become dark. Unfortunately it is cloudy. An 

hour or so later you see Orion through a gap in the clouds. You estimate that the star “Rigel” 

is about 52.5º above the horizon and with your compass you find that it has an astronomical 

azimuth of 109º. Your watch says 01:00 on the 21st November 2017. You happen to remember 

from your astronomy class that Greenwich Sidereal Time (GST) at 00h UT 1st January 2017 

is about 6h 43min and that R.A. and Dec. of Rigel are 5h 15min and 8  11 , respectively.  

 

a) Find the Local Hour Angle (LHA) of Rigel. [10] 

 

Solution: 

Draw a correct celestial sphere       [4.0] 

     

 

 

 

 

 

 

 

     
sin LHA* sin A

sin sin(90 )z 



     [2.0] 

     
1 sin Asin

LHA sin
sin(90 )

z



   
    

     

                1 sin109 sin 37.5
sin

sin 98.18


 

   
 

   [2.0] 

      LHA 35.56 2h 22 min        

     LHA 24h 2h 22 min 21h 38 min     [2.0] 

LHA* 

A 

NCP 

Zenith 

 

90º-  

90º-  

z 

SCP 

N S 

E 

W 



 
  
 
 
 
 

Theoretical Examination 
Page 32 of 41 

   

b) Find the current Greenwich sidereal time (GST). [10]  

Solution: 

Bangkok time of 01:00 21st November is Universal Time (UT) 18:00 20th November 

Day number + Time = 323 day 18 h       [1.0] 

GST = GST of 1st Jan + The angle that  moves away from 1st Jan    [2.0] 

GST = 6h 43min + 
18 1 h

323 days  24
24 365.2422 day

  
  

  
+ 

24
18h

23.9344

  
  
  

 [5.0] 

GST = 6h 43min + 21h 16 min + 18h 3min 

GST = 46h 2min  

GST = 21h 58min          [2.0] 

Any other correct alternative methods that provide the correct answer also acceptable.  

 

 

c) Find the longitude of the island. [5] 

Solution: 

 

 

 

 

 

 

 

 

24h LHA RA LST

LST RA 24h LHA

  

  
 

 L RA+LHA GST          

 L 5h 15min 21h 38 min 21h 58min 4h 55min        [3.0] 

 
Greenwich Meridian 

Local Meridian 

L 

LHA 

LST 

RA 

GST 
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L 73.75 E           [2.0] 

d) Find, accurately to the nearest arcminute, the Latitude of the island. [15] 

 

Solution: 

cos(90 ) cos cos(90 ) sin sin(90 )cos Az z          

 sin sin( )sin cos( )cos Acosh h          [5.0]

sin ,  sin( ),  cos( )cosA, sinh h x              

21x x      

2 2 2 2 2( ) 2 ( ) 0x x                [1.0] 

2 2 2

2 2
x

    

 

  



        [1.0]

2 2 2

2 2

sin sin( ) cos( )cos A (cos( )cos A) sin ( ) sin
sin

sin ( ) (cos( )cos A)

h h h h

h h

 


  



  [1.0]

 24.05 ,  4.01            [2.0] 

For 24.05   A 71.0          [2.0] 

For 4.01  A 109          [2.0] 

The Latitude of the island is 4 1 N       [1.0]  

 

Alternative Solutions  

b) 

Solution: 

 

      LMT (Local Mean Time) UT                                                                          [1.0]                                                                           

Calculate sidereal day using given tropical year 

tropic

1
24 1

Sidereal time

Solar time 24

h

h

T


 
   
    
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tropic

1
1 1.002737909

T
                                                                                        [3.0]                                                                           

 

On the 21st November 2017, GST can be calculated from GST on 1st January 2017 

  

Day number + Time = 323 d 18 h                                                                            [2.0] 

0 0GST GST GST T                                                                                 [2.0] 

 

 d 18
24

d h m s

h m s

0

h m h m s

323 1.002737909

324 .6363981 15 16 24 .8

GST GST 15 16 24 .8

6 43 15 16 24 .8

 

 

 

 

 

              h m s21 59 24 .8                                                                                                                     [2.0] 

 

 

 

 d) 

Solution: 

From Cosine law: 

   

   *

sin cos sin sin cos cos

cos sin sin cos cos LHA cos

z z A

z

  

   

 

 
                                                [5.0] 

 

Correct calculation steps that can lead to the final answers.                          [5.0] 

                                                                                                            

Final answers 

          

sin 0.0698

4.00

OR

cos 0.9976

4.00











 



 

                                                                                                 [5.0]              
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(T13) Exomoon [60 marks] 

Exomoons are natural satellites of exoplanets. The gravitational influence of such a moon will 

affect the position of the planet relative to the planet-moon barycentre, resulting in Transit 

Timing Variations ( , TTVs) as the observed transit of the planet occurs earlier or later 

than the predicted time of transit for a planet without a moon.  

The motion of the planet around the planet-moon barycentre will also induce Transit Duration 

Variations ( , TDVs) as the observed transit duration is shorter or longer than the predicted 

transit duration for a planet without a moon. 

We will consider edge-on circular orbits with the following parameters 

  is the planet mass 

  is the moon mass 

   is the planet-moon barycentre’s period around the host star 

  is the moon’s period around the planet 

   is the distance of the planet-moon barycentre to the star 

  is the distance of the moon to the planet-moon barycentre 

  is the moon phase,  when the moon is in opposition to the star 

   is the mean transit duration of the planet (as if it has no moon) 

We will consider only orbit of a prograde moon with an orbit in the same plane as the planet's 

orbit. Example phases of the moon, as observed by distant observers, are shown in the figure 

below. 

 
Phase of the moon. 

Black, grey and white circles represent the star, planet and moon, respectively. 

 

a. We define where  is the predicted transit time without the moon, and  is 

the observed transit time with the moon. Show that 

 

TTV

TDV

PM

mM

PP

mP

pa

ma

mf 0mf




TTV mt t   t
mt

sin( )
2

m m p

TTV m

p p

a M P
f

a M




 
  
  
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A positive value of  indicates that the transit occurs later than the predicted time of 

transit for a planet without a moon. [10] 

Solution: 

 

From centre of mass for planet-moon system, the distance of the moon to the planet-

moon barycenter can be written as, 

 

 [2.0] 

where is distance of the planet to the planet-moon barycentre. 

For the observers on the Earth, projection distance of the planet to the planet-moon 

barycenter is 

 

 [3.0] 

From angular velocity, TTV signal can be calculated from 

 

 [1.0] 

 [2.0] 

 

 [2.0] 

 

 

b.  where  is the predicted transit duration without the moon, and  is 

the observed transit duration with the moon. We can assume that the planet’s velocity 

around the star is much bigger than the moon’s velocity around the planet-moon 

barycentre, and also the moon does not change phase during the transit. Show that 

 

A positive value of  indicates that the transit duration is longer than the predicted 

transit duration without a moon. [13] 

Solution: 

 

TTV

p

m pb

m

M
a a

M


pba

sin( )proj pb ma a f

TTV mt t  

trans
TTV

p







2proj

TTV

p p

a

a P




   
       
   

2

proj p

TTV

p

a P

a





sin( )
2

m m p

TTV m

p p

a M P
f

a M




 
  
  

TDV m    
m

cos( )
p m m

TDV m

m p p

P M a
f

P M a
 

 
  

  

TDV
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The velocity of planet-moon barycenter around the star is 

 [1.0] 

The velocity of planet around the planet-moon barycentre is 

 [1.0] 

Therefore, the transverse velocity of planet around the planet-moon barycentre is 

 

 [3.0] 

 

Average transit duration can be written as 

 

 [2.0] 

where  is the distance of the planet has to cross in order to complete the transit. The 

transit duration with exomoon can be written as 

 

 [2.0] 

Therefore, the TDV signal is 

 

 [1.0] 

 

In case p transv v
 
 

trans
TDV

p

v

v
 

 
   

  

 [2.0] 

 [1.0] 

 

 

An exoplanet is observed transiting a main-sequence solar type star (1 , 1 , Spectral 

class: G2V).The planet has an edge-on circular orbit with a period of 3.50 days. From the 

observational data, the planet has a mass of 120 of and a radius of 12 . The 

observed relation between and can be written as  

 

2
p p

p

v a
P




2
pb pb

m

v a
P




cos( )trans pb mv v f 

2
cos( )m

trans m m

m p

M
v a f

P M


 

p

D

v
 

D

m

p trans

D

v v
 



p

TDV m

p trans

v

v v


      



trans
TDV

p trans

v

v v
 

 
  

  

cos( )
p m m

TDV m

m p p

P M a
f

P M a
 

 
  

  

M R

M R

2

TTV 2

TDV

2 2 8 20.7432 1.933 10  daysTDV TTV     
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c. Assume that the moon’s mass is much smaller than the planet’s mass. Find the mean 

transit duration of the planet ( ) in days. [6] 

 

Solution: 

 

From Kepler’s third’s law, assume that the moon mass is much smaller than the 

planet mass, the distance of the planet-moon barycentre to the star is 

 [1.0] 

 

 

 

The mean transit duration of the planet can be calculated from the transit duration of 

exoplanet without exomoon. 

 

 [1.0] 

 [2.0] 

 

 [2.0] 

 

 

d. Find the moon’s period ( ) in days [7] 

Solution: 

 

The TTV signal is 90 degrees out of phase with the TDV signal in edge-on circular 

orbit system. Therefore, the relation between the TTV and TDV signals is, 

 [3.0] 



2
2 3

*

4

( )
p

p

P a
G M M






2
2 3

11 30 24

4
(3.5 86400)

6.67 10 (1.99 10 120 5.98 10 )
pa




 
     

96.75 10  mpa  

2
P







*12sin
2

p

p

R RP

a





 

    
 

8 6
1

9

3.5 6.96 10 12 6.38 10
sin  days

6.75 10




     
  

 

0.128 days 

mP

22

2 2 22 m m p

TDV TTV

m p p m

a M P

P a M P


  

  
       

   
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The observed relation between and can be written as  

 

Therefore 

 [2.0] 

 [2.0] 

 

 

e. Estimate the distance of the moon to the planet-moon barycentre ( ) in units of Earth 

radii. Also find the moon mass ( ) in units of Earth mass. [7] 

Solution: 

 

From Kepler third law, assuming that moon is small and can be neglected, the 

distance of the moon to the planet-moon barycentre is 

 [1.0] 

2
2 3

11 24

4
(0.933 86400)

6.67 10 (120 5.98 10 )
ma




 
   

 

a
m

=1.99´108  m = 31.2R
Å

 [2.0] 

 

From the observed relation between and , the moon mass is 

 [2.0] 

(0.128)2 (1.99´108)´M
m
´ (3.5)

(6.75´109 )´ (120)´ (0.933)

æ

è
çç

ö

ø
÷÷

2

=1.933´10-8  days2  

M
m

=1.18M
Å

 [2.0] 

 

 

f. The Hill sphere is a region around a planet within which the planet’s gravity 

dominates. The radius of the Hill sphere can be written as 

 

      where is the host star mass. 

2

TTV 2

TDV

2 2 8 20.7432 1.933 10  daysTDV TTV     

2

2
0.7432

mP

 
   
 

0.933 daysmP 

ma

mM

2
2 34

m m

p

P a
GM




2

TTV 2

TDV

2

2 8 21.933 10  days
m m p

p p m

a M P

a M P
 

 
   

 

3

*

p

h p

M
R a

xM


*M
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Find the value of the constant  (Hint: for a massive host star, the radius of the Hill 

sphere of the system is approximately equal to the distance between the planet and 

the Lagrange point L1or L2). Then find the radius of the Hill sphere of thisplanetary 

system in units of Earth radii. [11] 

Solution: 

 

For planet-moon system, the angular velocity of barycenter of planet-moon system is 

 

  

 

 [2.0] 

For exomoon at Lagrange point L1or L2, 

 

centrifugal moon star moon planet moonF F F     [1.0] 

 [3.0] 

 
 

Since  and a
pb

<< a
m

 

 [1.0] 

 

 
 

For p ma a ,  [1.0] 

 

 

 [1.0] 

 

The radius of the Hill sphere of this planetary system is 

 

24
9 3

30

120 5.98 10
6.75 10  m

3 1.99 10
hR

 
  

 
 

x

centrifugal bary star baryF F 

*2

2

( )
( )

p m

p m p p

p

GM M M
M M a

a



 

2 *

3p

p

GM

a
 

M
m
w

p

2 (a
p
± a

m
) =

GM
*
M

m

(a
p
± a

m
)2

±
GM

p
M

m

(a
pb

+ a
m

)2

M
*
(a

p
± a

m
)

a
p

3
=

M
*

(a
p
± a

m
)2

±
M

p

(a
pb

+ a
m

)2

M
p

>> M
m

M
*
(a

p
± a

m
)

a
p

3
=

M
*

(a
p
± a

m
)2

±
M

p

a
m

2

3 2 3 2 3 2

* *( ) ( )p m m p m p p p mM a a a M a a M a a a   

M
*
(±3a

p

2a
m

3 +3a
p
a

m

4 ± a
m

5 ) = ±M
p
a

p

3 (a
p
± a

m
)2

M
*
(3a

p

2a
m

3 ) » M
p
a

p

5

3 3

*3

p

m p

M
a a

M


3

*3

p

m p

M
a a

M


3x 

3

*3

p

h p

M
R a

M

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 [2.0] 

 

g. The Roche limit is the minimum orbital radius at which a satellite can orbit without 

being torn apart by tidal forces and take the Roche limit as 

 

where and are the density of the planet and moon, respectively.Rpis planet radius. 

Assuming that the moon is a rocky moon with Earth’s density, find the Roche limit of the 

system. [3] 

Solution: 

 

From Roche limit equation 

 

 

 [3.0] 

 

 

h. Does the moon have a stable orbit? [3] 

Solution: 

Stable orbit because the distance between the moon and planet-moon barycentre is 

between Roche limit and Hill sphere radius ( ) [3.0] 

 

Mark only if students get the answers for e) & g) &h). 

Students obtain full mark if answer “YES” for , and vice versa,  
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