

- 2. Filling up improper roll number may lead to unavailability of 'Result'.
- 3. This question paper consist of 40 questions. Each question carries equal marking of 2.5 marks each.
- 4. Mark your answer (A, B, C, D or E) on the Answer Sheet with HB Pencil or Black/Blue Ball point Pen.
- 5. This question paper contains 4 pages.
- 6. Do not start attempting the test paper until you are asked to do so.

Note: Return this question paper along with answer sheet

- 1. If $A = \{(x, y) : x^2 + y^2 = 25\}$ and $B = \{(x, y) : x^2 + y^2 = 25\}$ $x^2+9y^2 = 144$, then A \cap B contains (A) One point (B) Three points (C) Two points (D) Four points (E) None of these 2. On the set N of all natural numbers define the relation R by aRb if and only if the G.C.D. of a and b is 2, then R is (A) reflexive, but not symmetric (B) symmetric only (C) reflexive and transitive (D) reflexive, symmetric and transitive (E) None of these 3. The value of $(A \cup B \cup C) \cap (A \cap B^c \cap C^c)^c \cap C^c$, is (B) B^c∩C^c (A) B∩C^c (C) B∩C (D) $A \cap B \cap C$ (E) None of these 4. The rational number, which equals the number 2.357 with recurring decimal is 2355 2355 (A) (B) 1001 888 2355 2350 (C) <u>999</u> (D) 888 (E) None of these
- 5. Sum of the first n terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots \text{ is equal to}$ (A) $2^{n} - n - 1$ (B) $1 - 2^{-n}$ (C) $n + 2^{-n} - 1$ (D) 2^{n+1} (E) None of these 6. Suppose a, b, c are in A. P and a^{2} , b^{2} , c^{2} are

Suppose a, b, c are in A. P and a², b², c² are in G.P. If a< b< c and a + b + c = 3/2, then the value of a is

(A)
$$\frac{1}{2\sqrt{2}}$$
 (B) $\frac{1}{2\sqrt{3}}$
1 1 1 1 1

(C)
$$\frac{1}{2} - \frac{1}{\sqrt{3}}$$
 (D) $\frac{1}{2} - \frac{1}{\sqrt{2}}$

(E) None of these

7. The equation of the circle passing through (1, 1) and the points of intersection of x² + y² + 13x - 3y = 0 and 2x² + 2y² + 4x - 7y - 25 = 0 is
(A) 4x² + 4y² - 30x - 10y - 25 = 0
(B) 4x² + 4y² + 30x - 13y - 25 = 0

- (C) $4x^2 + 4y^2 17x 10y + 25 = 0$
- (D) All of these
- (E) None of these

- If the circles x² + y² + 2x + 2ky + 6 = 0, x² + y² + 2ky + k = 0 intersect orthogonally, then k is.
 - (A) $2 \text{ or } -\frac{3}{2}$ (B) $-2 \text{ or } -\frac{3}{2}$ (C) $2 \text{ or } \frac{3}{2}$ (D) $-2 \text{ or } \frac{3}{2}$
 - (E) None of these
- 9. If A and B are two events such that P(A) >

0, and P(B) \neq 1, then P $\left(\frac{\overline{A}}{\overline{B}}\right)$ is equal to (A) $1 - P\left(\frac{A}{B}\right)$ (B) $1 - P\left(\frac{\overline{A}}{B}\right)$ (a) $\frac{1 - P(A \cup B)}{B}$ (b) $1 - P\left(\frac{\overline{A}}{B}\right)$

- (C) $\frac{1 P(A \cup B)}{P(\overline{B})}$ (D) $\frac{P(A)}{P(\overline{B})}$ (E) None of these
- 10. Let A, B, C be three mutually independent events. Consider the two statements S₁ and S₂
 S₁ : A and B ∪ C are independent S₂ : A and B ∩ C are independent Then,
 (A) Both S and S are true
 - (A) Both S_1 and S_2 are true (B) Only S is true
 - (B) Only S_1 is true
 - (C) Only S₂ is true
 (D) Neither S₁ nor S₂ is true
 - (E) None of these
- 11. If f(x) =

 $\begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & (x+1)x \\ 3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \end{vmatrix}$ then f(100) is equal to (A) 0 (B) 1 (C) 100 (D) -100

- (E) None of these
- 12. If A and B are square matrices of equal degree, then which one is correct among the following?
 (A) A + B = B + A
 (B) A + B = A + B
 - (B) A + B = A B
 - (C) A B = B A
 - (D) AB = BA
 - (E) None of these

- 13. If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then (A) $\alpha = a^2 + b^2$, $\beta = ab$ (B) $\alpha = 2ab$, $\beta = a^2 + b^2$ (C) $\alpha = a^2 + b^2$, $\beta = a^2 - b^2$ (D) $\alpha = a^2 + b^2$, $\beta = 2ab$ (E) None of these 14. Let $f : R \rightarrow R$ be any function. Define $g : R \rightarrow R$ by g(x) = |f(x)| for all x. Then g is (A) onto if f is onto
 - (B) one-one if f is one-one
 - (C) continuous if f is continuous
 - (D) differentiable if f is differentiable.
 - (E) None of these
- 15. Let E = {1, 2, 3, 4} and F = {1, 2}. Then the number of onto functions from E to F is
 (A) 14
 (B) 16
 (C) 12
 (D) 8
 - (E) None of these
- 16. If y = (sin x)^{tan x}, then $\frac{dy}{dx}$ is equal to
 - (A) $(\sin x)^{\tan x} (1 + \sec^2 x \log \sin x)$
 - (B) tan x (sin x) tan x-1 cos x
 - (C) $(\sin x)^{\tan x} \sec^2 x \log \sin x$
 - (D) tan x (sin x)^{tan x-1}
 - (E) None of these
- 17. Let $f: (0, \infty) \rightarrow R$ and $F(x) = \int_{0}^{1} f(t) dt$.
 - If $F(x^2) = x^2(1 + x)$, then f(4) equals
 - (A) $\frac{5}{4}$ (B) 7 (C) 4 (D) 2 (E) None of these
- 18. If $x^2 + y^2 = 1$, then
 - (A) $yy'' 2(y')^2 + 1 = 0$ (B) $yy'' + (y')^2 + 1 = 0$ (C) $yy'' + (y')^2 - 1 = 0$ (D) $yy'' + 2(y')^2 + 1 = 0$ (E) None of these
- 19. The value of the integral $\int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} dx$ is (A) sin x - 6 tan⁻¹ (sin x) + c
 - (B) $\sin x 2 (\sin x)^{-1} + c$
 - (C) $\sin x 2(\sin x)^{-1} 6\tan^{-1}(\sin x) + c$
 - (D) $\sin x 2 (\sin x)^{-1} + 5 \tan^{-1} (\sin x) + c$
 - (E) None of these

20.	If $\int_{\sin x}^{1} t^2 f(t) dt = 1 - \sin x$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is	26. Statement I: The number of ways distributing 10 identical balls in 4 distinct boxes such that no box is empty is ⁹ C.
	(A) $\frac{1}{3}$ (B) $\frac{1}{\sqrt{3}}$ (C) 3 (D) $\sqrt{3}$ (E) None of these	Statement II: The number of ways of choosing any 3 places from 9 different places is ${}^{9}C_{3}$. (A) Statement I is true, Statement II is true;
21.	The value of the integral $\int_{0}^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx is$ (A) $\pi/4$ (B) $\pi/2$	 Statement II is not a correct explanation for Statement I. (B) Statement I is true, Statement II is false. (C) Statement I is false, Statement II is true. (D) Statement I is a correct explanation for
	(C) π (D) All of these (E) None of these	Statement I. (E) None of these
22.	The area bounded by the curves y = x - 1 and $y = - x + 1$ is (A) 1 (B) 2 (C) $2\sqrt{2}$ (D) 4 (E) None of these	27. If y = y(x) and it follows the relation x cos y + y cos x= π, then y" (0) (A) 1 (B) -1 (C) π
23.	The area bounded by the parabolas $y = (x + 1)^2$ and $y = (x - 1)^2$ and the line $y = 1/4$ is	(D) $-\pi$ (E) None of these 28. The scalar \vec{n} (\vec{n} , \vec{n} , \vec{n} , \vec{n} , \vec{n}) equals:
	(A) 4 sq. units (B) $\frac{1}{6}$ sq. units (C) $\frac{4}{3}$ sq. units (D) $\frac{1}{3}$ sq. units (E) None of these	(A) 0 (B) $[\vec{A} \ \vec{B} \ \vec{C}] + [\vec{B} \ \vec{C} \ \vec{A}]$ (C) $[\vec{A} \ \vec{B} \ \vec{C}]$ (D) All of these
24.	If for a real number y, [y] is the greatest integer less than or equal to y, then the	(E) None of these 29. Let a, b, c be distinct non-negative
	value of the integral $\int_{\pi/2}^{3\pi/2} [2 \sin x] dx$ is	numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then c is
	(A) $-\pi$ (B) 0 (C) $-\frac{\pi}{2}$ (D) $\frac{\pi}{2}$ (E) None of these	 (A) the Arithmetic Mean of a and b (B) the Geometric Mean of a and b (C) the Harmonic Mean of a and b (D) equal to zero (E) None of these
25.	A solution of the differential equation $\left(\frac{dy}{dx}\right)^2 - x \frac{dy}{dx} + y = 0 \text{ is}$ (A) $y = 2$ (B) $y = 2x$ (C) $y = 2x - 4$ (D) $y = 2x^2 - 4$ (E) None of these	30. If \vec{a} , \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product $\begin{bmatrix} 2\vec{a} - \vec{b}, 2\vec{b} - \vec{c}, 2\vec{c} - \vec{a} \end{bmatrix} =$ (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$
		(E) None of these

- 31. The equation of tangent to the curve
 - y = 2 cos x at x = $\frac{\pi}{4}$ is (A) $\gamma - \sqrt{2} = 2\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (B) $\gamma + \sqrt{2} = \sqrt{2}\left(x - \frac{\pi}{4}\right)$ (C) $\gamma - \sqrt{2} = -\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (D) $\gamma - \sqrt{2} = \sqrt{2}\left(x - \frac{\pi}{4}\right)$ (E) None of these

32. The order and degree of the differential

equation, $y = x \frac{dy}{dx}$	$\frac{d}{dt} + \sqrt{a^2 \left(\frac{dy}{dx}\right)^2 + b^2}$ are
(A) (1, 2)	(B) (2, 1)
(C) (1, 1)	(D) (2, 2)
(E) None of these	

- **33.** The shortest distance between lines
 - $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} \text{ and } \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4} \text{ is}$ (A) $\sqrt{30}$ (B) $2\sqrt{30}$ (C) $5\sqrt{30}$ (D) $3\sqrt{30}$ (E) None of these
- 34. Local maximum value of the function

(B) 1

(D) 2e

 $\frac{\log x}{x} \text{ is}$ (A) e
(C) $\frac{1}{e}$ (E) None of these

35. For a moderately skewed distribution, quartile deviation and the standard deviation are related by

(A)
$$S.D = \frac{2}{3} Q.D$$
 (B) $S.D = \frac{3}{2} Q.D$
(C) $S.D = \frac{3}{4} Q.D$ (D) $S.D = \frac{4}{3} Q.D$
(E) None of these

36. Two lines $\frac{\mathbf{x} - \mathbf{x}_1}{\mathbf{l}_i} = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{m}_i} = \frac{\mathbf{z} - \mathbf{z}_1}{\mathbf{n}_i}$ (i = 1, 2) are perpendicular to each other if their direction ratios satisfy (A) $\mathbf{l}_i = \mathbf{m}_i = \mathbf{n}_i$ (B) $\mathbf{l}_1\mathbf{l}_2 + \mathbf{m}_1\mathbf{m}_2 + \mathbf{n}_1\mathbf{n}_2 = 0$

(C)
$$\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$

- (D) All of these
- (E) None of these
- 37. The equation of the plane through (1, 2, 3)and parallel to the plane 2x + 3y - 4z = 0 is
 - (A) 2x + 3y + 4z + 4 = 4
 - (B) 2x + 3y + 4z + 4 = 0
 - (C) 2x 3y + 4z + 4 = 0
 - (D) 2x + 3y 4z + 4 = 0(E) None of these
- 38. Which of the following Venn diagram corresponds to the statement "All mothers are women"? (M is the set of all mothers, W is the set of all women)

- 39. If for two functions g and f, gof of both injective and surjective, then which of the following is true?
 - (A) g and f should be injective and surjective
 - (B) g should be injective and surjective
 - (C) f should be injective and surjective
 - (D) None of them may be surjective and injective
 - (E) None of these

40. The function $f(x) = \begin{cases} x, \text{ if } 0 \le x \le 1\\ 1, \text{ if } 1 < x \le 2 \end{cases}$ is

- (A) Continuous at all x, $0 \le x \le 2$ and differentiable at all x, except x = 1 in the interval [0, 2]
- (B) Continuous and differentiable at all x in [0, 2]
- (C) Not continuous at any point in [0, 2]
- (D) Not differentiable at any point [0, 2]
- (E) None of these