Page 1 of 3

Model Question Paper-II with effect from 2016-17

USN

Fourth Semester B.E.(CBCS) Examination **Engineering Mathematics-IV**

(Common to all Branches)

Time: 3 Hrs

Note: Answer any FIVE full questions, choosing at least ONE question from each module. Use of statistical tables allowed.

Module-I

1. (a) Solve $\frac{dy}{dx} = x^2 y^2 + 1$, y(0) = 1 using Taylor's series method considering up to fourth degree terms and, find the y(0.1)(05 Marks)

(b) Use Runge - Kutta method of fourth order to solve $10\frac{dy}{dx} = x^2 + y^2$, y(0) = 1, to find y(0.2).

(Take h = 0.2).

(c) Given that $\frac{dy}{dx} = x(1+y^2)$ and y(1) = 2, y(2.1) = 1.2330, y(2.2) = 1.5480, & y(2.3) = 1.9790find y(1.4), using Adam-Bashforth predictor-corrector method.

OR

2. (a) Solve the differential equation $\frac{dy}{dx} = -xy^2$ under the initial condition y(0) = 2 by using modified Euler's method at the point x = 0.1. Perform three iterations at each step, taking h = 0.05. (05 Marks) (b) Use fourth order Runge - Kutta method, to find y(0.2), given $\frac{dy}{dx} = 3x + y$, y(0) = 1. (05 Marks) (06 Marks)

(c) Apply Milne's predictor-corrector formulae to compute y(1.2) given

$\frac{dy}{dx} = 3x - 4y^2$ with	x	0	0.3	0.6	0.9
dx	У	1.0	1.3020	1.3795	1.4762

Module-II

3. (a) By Runge - Kutta method, solve $\frac{d^2 y}{dx^2} = x \left(\frac{dy}{dx}\right)^2 - y^2$ for x = 0.2, correct to four decimal places, using initial conditions y(0) = 1, y'(0) = 0. (05 Marks)

(b) If α and β are two distinct roots of $J_n(x) = 0$, then prove that $\int_{\alpha}^{1} x J_n(\alpha x) J_n(\beta x) dx = 0$ if $\alpha \neq \beta$. (05 Marks)

- (c) Express $f(x) = x^3 5x^2 + 14x + 5$ in terms of Legendre polynomials. (06 Marks)
 - OR

(05 Marks)

(06 Marks)

15MAT41

Max.Marks: 80

(05 Marks)

(05 Marks)

(06 Marks)

4. (a) Apply Milne's predictor-corrector method to compute y(0.4) given the differential

equation $\frac{d^2 y}{dx^2} + \frac{dy}{dx} = 2e^x$ and the following table of initial values:

x	0	0.1	0.2	0.3]•	(05 Marks)
у	2	2.01	2.04	2.09		
y'	0	0.20	0.40	0.60		

(b) With usual notation, show that $J_{-1/2}(x) = \sqrt{(2/\pi x)} \cos x$.

(c) With usual notation, derive the Rodrigues's formula viz., $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$. (06 Marks)

Module-III

5. (a) Derive Cauchy-Riemann equation in cartesian form.

(b) evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$ where <i>C</i> is the circle $ z = 3$, using Cauchy's residue theorem.	(05 Marks)
(c) Discuss the transformation $w = z^2$.	

OR

6.	(a) Find the analytic function whose real part is $r^2 \cos 2\theta$.	(05 Marks)
	(b) State and prove Cauchy's theorem.	(05 Marks)
	(c) Find the bilinear transformation which maps the points $z = \infty$, <i>i</i> ,0 into the points $w = -1, -i, 1$.	(06 Marks)

Module-IV

7. (a) Derive mean and variance of the Poisson distribution.

(b) A random variable X has the following probability function for various values of x:

$X(=x_i)$	0	1	2	3	4	5	6	7
P(x)	0	k	2 <i>k</i>	2 <i>k</i>	3 k	<i>k</i> ²	$2k^2$	$7k^2 + k$

Find (i) the value of k (ii) P(x < 6)(iii) $P(x \ge 6)$

(c) Let X be the random variable with the following distribution and Y is defined by X^2 :

$X(=x_i)$	-2	-1	1	2
$f(x_i)$	1/4	1/4	1/4	1/4

Determine (i) the distribution of g of Y (ii) joint distribution of X and Y (iii) E(X), E(Y), E(XY). (06 Marks)

(05 Marks)

(05 Marks)

Page 2 of 3

15MAT41

8.	(a) When a coin is tossed 4 times find, using binomial distribution, the probability of getting (i) exactly	
	one head (ii) at most 3 heads (iii) at least 3 heads.	(05 Marks)
	(b) In a normal distribution, 31% of the items are under 45 and 8% of the items are over 64%. Find the	mean
	and standard deviation of the distribution.	(05 Marks)
	(c) A fair coin is tossed thrice. The random variables X and Y are defined as follows :	
	X=0 or 1 according as head or tail occurs on the first; $Y=$ Number of heads.	
	Determine (i) the distribution of <i>X</i> and <i>Y</i> (ii) joint distribution of <i>X</i> and <i>Y</i> .	(06 Marks)

OR

Module-V

9. (a) Define the terms: (i)Null hypothesis (ii)Confidence intervals (iii)Type-I and Type-II errors (05marks) (b) Ten individuals are chosen at random from a population and their heights in inches are found to be 63,63,66,67,68,69,70,70,71,71. Test the hypothesis that the mean height of the universe is 66 inches. ($t_{0.05} = 2.262$ for 9 d.f.). (05 marks)

(c) Show that probability matrix
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix}$$
 is regular stochastic matrix and find the associated unique fixed probability vector. (06 marks)

associated unique fixed probability vector.

OR

- 9. (a) A manufacture claimed that at least 95% of the equipment which he supplied to a factory conformed to specifications. An examination of a sample of 200 pieces of equipment revealed that 18 of them were faulty. Test his claim at a significance level of 1% and 5%. (05 marks) (b) Explain (i) transient state (ii) absorbing state (iii) recurrent state of a Markov chain. (05marks) (c) Three boys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C. But C is just as likely to throw the ball to B as to A. If C was the first person to
 - throw the ball, find the probabilities that after three throws (i) A has the ball (ii) B has the ball and (iii) C has the ball. (06 marks)
