SEAL

NOTE: DO NOT BREAK THE SEAL UNTIL YOU GO THROUGH THE FOLLOWING INSTRUCTIONS

MDS Entrance Test – 2010 QUESTION BOOKLET Paper — I

			*						Booklet No.
Roll No.			·				Series	$oldsymbol{C}$	210063
	(Enter	your R	oll Num	ber in tl	ne above	space)	,		

Time Allowed: 2 1/2 Hours

Max. Marks: 200

INSTRUCTIONS:

- Use only BLACK or BLUE Ball Pen.
- 2. All questions are COMPULSORY.
- 3. Check the BOOKLET thoroughly.

IN CASE OF ANY DEFECT – MISPRINTS, MISSING QUESTION/S OR DUPLICATION OF QUESTION/S, GET THE BOOKLET CHANGED WITH THE BOOKLET OF THE SAME SERIES. NO COMPLAINT SHALL BE ENTERTAINED AFTER THE ENTRANCE TEST.

- 4. Before you mark the answer, fill in the particulars in the ANSWER SHEET carefully and correctly. Incomplete and incorrect particulars may result in the non-evaluation of your answer sheet by the technology.
- 5. Write the SERIES and BOOKLET No. given at the TOP RIGHT HAND SIDE of the question booklet in the space provided in the answer sheet by darkening the corresponding circles.
- 6. Do not use any **eraser**, **fluid pens**, **blades** etc., otherwise your answer sheet is likely to be rejected whenever detected.
- 7. After completing the test, handover the OMR ANSWER SHEET to the Invigilator.

7.30015

1.	Ove	rload of denture base is caused by							
	(1)	Small base	(2)	Large base					
	(3)	Small teeth	(4)	Large teeth					
2.	Pun	ched out lesion on the alveolar ridg	ge is (due to					
	(1)	Acrylic nodule on the tissue surfa	ce of	the denture					
	(2)	Improper occlusion							
	(3)	Over extended borders of denture	s						
	(4)	Narrow Occlusal table							
3.	Will	s gauge is used to measure							
	(1)	Vertical height	(2)	Bizygomatic width					
	(3)	Intercondylar distance	(4)	Interpapillary distance					
4.	The	Kennedy classification that is mor	e sui	table for an internal attachment is					
	(1)	Class – I	(2)	Class – II					
	(3)	Class – III	(4)	Class - IV					
5.	Tiss	sue stops in an impression tray aid	s in						
	(1)	Anterior -posterior stabilization	(2)	Improved acrylic flow					
	(3)	For better retention	(4)	For better resistance					
6.	Flex	xibility of a clasp depends on							
	(1) Composition and structure of material								
	(2)	Length and Cross section of clasp							
	(3)	Amount of tapering and cold wor	king						
	(4)	All of the above							
7.	Kro	oll designed							
	(1)	RPI clasp	(2)	Bar-clasp					
	(3)	Circumferential clasp	(4)	Altered clasp					

 \mathbf{C}

8.	Tre	ndelenburg position is					
	(1)	Head down and legs up	(2)	Head up and legs down			
	(3)	Head and legs at same level	(4)	Legs perpendicularly up to head			
9.	Buf	falo hump is seen in					
	(1)	Cushing's syndrome	(2)	Addison's disease			
	(3)	Hypothyroidism	(4)	Hyperthyroidism			
10.	The	e color of nitrous oxide cylinder is					
	(1)	Red	(2)	Blue			
	(3)	White	(4)	Black			
11.	Wh	ich of the following is the preferre	ed local	anaesthetic technique for hemophiliacs?			
	(1)	Nerve Block	(2)	Supraperiosteal			
	(3)	Intraligamentary injection	(4)	Field block			
12.	Nasal antrostomy usually done from through						
	(1)	Middle concha	(2)	Inferior concha			
	(3)	Middle meatus	(4)	Inferior meatus			
13.	The diameter of the fibreoptic endoscope in perioscopy system is:						
	(1)	0.99 mm in diameter	(2)	1 mm in diameter			
	(3)	0.89 mm in diameter	(4)	0.78 mm in diameter			
14.	It i	s a short powerful Pull stroke					
	(1)	Root planning stroke	(2)	Exploratory stroke			
	(3)	Scaling stroke	(4)	All of the above			
15.	Nev	w term for Actinobacillus acinomy	ycetemo	comitans:			
	(1)	(1) Treponema actinomycetemcomitans					
	(2)	Aggregatibacter actinomycetem	comita	ins			
	(3)	Porphyromonas gingivalis					
	(4)	Fusobacterium					

16.	For	placement of endodontic im	plant the ro	ot canal should be enlarged to atleast							
	(1)	30	(2)	40							
	(3)	45	(4)	60							
17.	Whi	ich of the following is false a	about slot pro	eparation?							
	(1)	They are given in dentin									
	(2)	They have a depth of $1-1.5$ mm in occlusal of gingival wall									
	(3)	They have three walls									
	(4)	They are usually given along the width of occlusal or gingival wall									
18.	The	The average clinically acceptable Run-out of a bur is									
	(1)	0.23 mm	(2)	0.023 mm							
	(3)	0.043 mm	(4)	0.43 mm							
19.	Whi	Which of the following statement about pins is false?									
	(1)	Pins should not be closer than 2 mm from each other									
	(2)	The cavity end of the pin should be chisel or wedge shaped									
	(3)	Distance between pin surface and restorative surface should be 1.5-2 mm									
	(4)	None of the above									
20.	The first movement during forceps extraction is										
	(1)	Lingual movement	(2)	Buccal movement							
	(3)	Apical movement	(4)	Mesial movement							
21.	Which of the following is not a naturally occurring suture material?										
	(1)	Silk	(2)	Catgut							
	(3)	Gut	(4)	Polyglycolic acid							
22.	Lefe	Lefort IV fracture is									
٧	(1)	Craniofacial dysjunction and nasal bone fracture									
	(2)	Craniofacial dysjunction	and nasoorbi	toethmoidal fracture							
	(3)	Lefort II and Lefort III on	either side								
	(4)	Lefort II and Lefort III with fracture or cranial base									

In I	MRI the image is not produced by							
(1)	Electrical field	(2)	Ionizing Radiation					
(3)	Magnetic Field	(4)	Radio Frequency					
Sat	ellite Cysts are seen in							
(1)	Dentigerous Cyst	(2)	Periapical Cyst					
(3)	Odontogenic Keratocyst	(4)	Incisive Canal Cyst					
Which of the following is a substrate with low surface energy?								
(1)	Enamel	(2)	Primed Dentin					
(3)	Hydroxyapatite	(4)	Collagen					
		which	n increases the melting temperature of the					
(1)	Copper	(2)	Platinum					
(3)	Zinc	(4)	Indium					
Which of the following does not involve an acid-base reaction during setting?								
(1)	(1) Resin modified glass ionomer cement							
(2)) Cermet							
(3)	Polycarboxylate Cement							
(4)	(4) Compomer							
Mercuroscopic expansion in amalgam								
(1)	Is the result of contamination during trituration or condensation of Amalgam							
(2)	Due to the mismatch of co-efficient of thermal expansion between the tooth and the restoration							
(3)	Is a result of electro chemical co Ag-Sn particles	rrosio	n in which mercury reacts with unreacted					
(4)	Does not occur							
	(1) (3) Sat (1) (3) Wh (1) (3) Wh (1) (2) (3) (4) Men (1) (2) (3) (4) (3)	(3) Magnetic Field Satellite Cysts are seen in (1) Dentigerous Cyst (3) Odontogenic Keratocyst Which of the following is a substrate (1) Enamel (3) Hydroxyapatite The constituent of casting gold alloys alloy is (1) Copper (3) Zinc Which of the following does not involv (1) Resin modified glass ionomer ce (2) Cermet (3) Polycarboxylate Cement (4) Compomer Mercuroscopic expansion in amalgam (1) Is the result of contamination du (2) Due to the mismatch of co-efficit the restoration (3) Is a result of electro chemical contamination of the component of the contamination	(1) Electrical field (2) (3) Magnetic Field (4) Satellite Cysts are seen in (1) Dentigerous Cyst (2) (3) Odontogenic Keratocyst (4) Which of the following is a substrate with left (1) Enamel (2) (3) Hydroxyapatite (4) The constituent of casting gold alloys which alloy is (1) Copper (2) (3) Zinc (4) Which of the following does not involve an action (2) Which of the following does not involve an action (3) Polycarboxylate Cement (4) Compomer Mercuroscopic expansion in amalgam (1) Is the result of contamination during the restoration (3) Is a result of electro chemical corrosion Ag-Sn particles					

 \mathbf{C}

An a	appliance with screw to move indiv	idual	or group of teeth is called
(1)	Activator appliance	(2)	Schwarz appliance
(3)	Hawley appliance	(4)	Twin block appliance
The	Edgewise appliance was introduce	d by	
(1)	L.F. Andrews	(2)	P.R. Begg
(3)	N. Kingsley	(4)	E.H. Angle
Post	t normal occlusion means		
(1)	Upper and lower arches are in ed	ge rel	ation
(2)	There is no contact between uppe	r and	lower arches
(3)	Lower arch placed too far back co	mpar	ed to the upper arch
(4)	Lower arch ahead of the upper ar	ch	
Cou	ple is defined as		
(1)	Force acting at a distance		
(2)	Force that tends to move a tooth		
(3)	A point at which resistance to mo	veme	ent is concentrated
(4)	Two forces equal in magnitude ar	nd op	posite in direction
The	e 18/8 Stainless steel has		
(1)	18% iron and 8% Carbon	(2)	18% carbon and 8% iron
(3)	18% nickel and 8% chromium	(4)	18% chromium and 8% nickel
Etc	hing is done using		
(1)	60% Maleic acid	(2)	25% Poly acrylic acid
(3)	30-50% Citric acid	(4)	30-50% Phosphoric acid
Foa	am Cells are seen in		
(1)	Eosinophilic Granuloma	(2)	Hand-Schuller-Christian Disease
(3)	Litterer — SIWE-Disease	(4)	Lipid — Proteinosis
	(1) (3) The (1) (3) Post (1) (2) (3) (4) Cou (1) (2) (3) (4) The (1) (3) Etc (1) (3) Foa (1)	(1) Activator appliance (3) Hawley appliance The Edgewise appliance was introduce (1) L.F. Andrews (3) N. Kingsley Post normal occlusion means (1) Upper and lower arches are in ed. (2) There is no contact between uppe (3) Lower arch placed too far back co. (4) Lower arch ahead of the upper ar. Couple is defined as (1) Force acting at a distance (2) Force that tends to move a tooth (3) A point at which resistance to mo. (4) Two forces equal in magnitude ar. The 18/8 Stainless steel has (1) 18% iron and 8% Carbon (3) 18% nickel and 8% chromium Etching is done using (1) 60% Maleic acid (3) 30-50% Citric acid Foam Cells are seen in (1) Eosinophilic Granuloma	(3) Hawley appliance (4) The Edgewise appliance was introduced by (1) L.F. Andrews (2) (3) N. Kingsley (4) Post normal occlusion means (1) Upper and lower arches are in edge rel (2) There is no contact between upper and (3) Lower arch placed too far back compar (4) Lower arch ahead of the upper arch Couple is defined as (1) Force acting at a distance (2) Force that tends to move a tooth (3) A point at which resistance to moveme (4) Two forces equal in magnitude and opport the 18/8 Stainless steel has (1) 18% iron and 8% Carbon (2) (3) 18% nickel and 8% chromium (4) Etching is done using (1) 60% Maleic acid (2) (3) 30-50% Citric acid (4) Foam Cells are seen in (1) Eosinophilic Granuloma (2)

36.	Tel	l-Show-Do technique was introd	uced by					
	(1)	Eric Erickson	(2)	Addleston				
	(3)	Frankl	(4)	Binet				
37.	Dia	Diagnodent instrument is particularly useful for confirming the presence of						
	(1)	Occlusal caries	(2)	Interproximal caries				
	(3)	Buccal caries	(4)	Root caries				
38.	Dis	Distal shoe space maintainer is indicated						
	(1)	Loss of first primary molar after eruption of first permanent molar						
	(2)	Loss of second primary molar	before ei	ruption of first permanent molar				
	(3)	Loss of second primary molar	after eru	ption of first permanent molar				
	(4)	Bilateral loss of deciduous canines						
39.	In class 2 Cavity preparation of deciduous teeth, isthmus width should be							
	(1)	Approximately 1/2 of the dimension between buccal and lingual cusps						
	(2)	Approximately 1/3 of the dimension between buccal and lingual cusps						
	(3)	Approximately 1/4 of the dimension between buccal and lingual cusps						
	(4)	Approximately 1/5 of the dimension between buccal and lingual cusps						
40.	Knutson technique is used for the application of the following							
	(1)	Sodium Fluoride	(2)	Stannous Fluoride				
	(3)	Fluoride Varnish	(4)	Acidulated Phosphate				
41.	The reagent used in Salivary Reductase test is							
	(1)	Methyl Red	(2)	Diazoresorcinol				
	(3)	Bromocresol	(4)	Dextrose				
42.	The first step in treating Rampant caries cases is							
	(1)	Restoring all teeth with S.S. cr	owns					
	(2)	Endodontic treatment of all pu	lpally in	volved teeth				
	(3)	Escavation of softened tooth st	ructure	and filling with Zinc Oxide Eugenol paste				
	(4)	Extraction of all infected teeth						

43.	Flui	nazenil is a benzodiazepine		
	(1)	Agonist	(2)	Antagonist
	(3)	Group of anxiolytic	(4)	Used as muscle relaxant
44.	Lign	nocaine was prepared by		
	(1)	Alfred Einhorn	(2)	Nils Lofgren .
	(3)	Ekenstam	(4)	Takman
45.	DDA	AVP and Tranexemic acid are used	in	
	(1)	Patients with disseminated intra	vascu	llar coagulation
	(2)	Patients with Haemophilia		
	(3)	Patients with Thalassemia		
	(4)	Patients with Sickel cell disease		
46.	Pro	gnathism is a feature of		
	(1)	Cushing's disease	(2)	Acromegaly
	(3)	Symmond's diseases	(4)	She han's syndrome
47.	Scu	rvy features doesn't include the fol	lowin	g
	(1)	Perifollicular hemorrhage	(2)	Bleeding in to the joints
	(3)	Mottled Enamel	(4)	Fatigue
48.	Acu	te rheumatic fever, doesn't include	the f	following
	(1)	Carditis	(2)	Ertheme marginetum
	(3)	Subcutaneous nodules	(4)	Huntington's chorea
49.	Dis	seminated intravascular coagulatio	on (D	IC) is not evaluated by the following test
	(1)	D.Dimmer	(2)	Prothrombin time
	(3)	Platelet count	(4)	CRP levels
50.	Psu	edomembranous colitis is caused b	у	
	(1)	Clostridium difficile	(2)	Enterococci
	(3)	Salmomella	(4)	Enteamoeba histolytic

51.	Bone adjacent to periodontal ligament that contains a great number of sharpey's fibre is known as									
	(1)	Lamina propria	(2)	Lamina dura						
	(3)	Bundle bone	(4)	Lamina densa						
52.	Wha	What type of ephithelial lining maxillary sinus is								
	(1)	(1) Stratified squamous								
	(2)	(2) Pseudostratified columnar and ciliated								
	(3)	(3) Simple columnar								
	(4)									
53.	The	tooth present closest to the maxil	lary s	inus is						
	(1)	First molar	(2)	Third molar						
	(3)	First premolar	(4)	Second premolar						
54.	A pa	apilla that show both Keratinized	and N	I-Keratinized						
	(1)	Fungiform	(2)	Filiform						
	(3)	Circumvallate	(4)	Foliate						
55.	The	function of merkel cell is								
	(1)	Secretary function	(2)	Sensory function						
	(3)	Antigea preseuting cell	(4)	Nutritive function						
56.	The	deciduous canine erupts								
	(1)	After first molar	(2)	Before first molar						
	(3)	Before lateral incisor	(4)	After second molar						
57.	Roo	t completion of mandibular second	l mola	r takes place by						
	(1)	17 – 18 years	(2)	18 – 19 years						
	(3)	9-10 years	(4)	14 – 15 years						

$\overline{\mathbf{c}}$			11	MDS/2010/I			
	(3)	Anitschkow cells	(4)	Reed-sternberg cells			
	(1)	Ghost cells	(2)	Goblet cells			
64.	Cha	Characteristic malignant cells of Hodgkins disease are called					
	(3)	Osteosarcoma	(4)	Ameloblastoma			
	(1)	Pagets disease	(2)	Ewings sarcoma			
63.	Wid	lening of periodontal ligament arc	ound n	nore than two or three teeth is seen in			
	(3)	Traumatic bone cyst	(4)	Mucus retention cyst			
	(1)	Mucocele	(2)	Aneurysmal bone cyst			
62.	Wh	ich of the following is a true cyst?					
	(3)	T.B	(4)	H.S.V			
	(1)	Erysipelas	(2)	Lues			
	infl	ammation, called gumma is seen i	in				
61.	Ind	urated, nodular, ulcerated les	ion w	rhich is active site of granulomatous			
	(3)	African jaw lymphoma	(4)	Hodgkins lymphoma			
	(1)	Cherubism	(2)	Fibrous dysplasia			
60. ³	Star	rry sky appearance is seen in hist	opatho	ology of			
	(3)	Concrescence	(4)	Cemental hyperplasia			
	(1)	Fusion	(2)	Gemination			
59.		on of two adjacent teeth by cem tin is called	entum	alone, without confluence of underlying			
	(3)	Gorlin cyst	(4)	Mucocele			
	(1)	Aneurysmal bone cyst	(2)	Epstein pearls			
	_	of fusion are described as	•				
58.	Cys	ts formed by epithelial entrapmer	ıt, aloı	ng the median palatal raphe and along the			

es elemento de sobre o la composición de la composición de la composición de la composición de la composición

65.	The	blood flow in 2 mg carotid body is a	about	
	(1)	54 ml/100 gm tissue/min	(2)	420 ml/100 gm tissue/min
	(3)	200 ml/100 gm tissue/min	(4)	2000 ml/100 gm/min
66.	Fast	pain is carried by		
	(1)	A α fiber (A alpha fiber)	(2)	A δ fiber (A delta fiber)
	(3)	C fiber (C fiber)	(4)	A γ fiber (A Gamma fiber)
67.	The	Dentists Act of India was introduc	ed in	the year
	(1)	29th March 1948	(2)	29th March 1946
	(3)	29 th March 1952	(4)	29th March 1950
68.	The	first world health assembly was op	ened	in
	(1)	New York on 27th June 1948	(2)	India on 24 th June 1948
	(3)	Geneva on 24th June 1948	(4)	Thailand on 25th June 1948
69.	CPI'	TN index was developed by		
	(1)	New York	(2)	London
	(3)	Ainamo et al	(4)	Aubreychose K
70.	The	Brant ford study on water fluorida	tion '	was carried out at
	(1)	New York	(2)	London
	(3)	Ontario Canada	(4)	Netherlands
71.	The	following is a constituent of Tobac	co sm	oke
	(1)	Nicotine	(2)	Cresol
	(3)	Phenol	(4)	All of the above
72.	Disi	nfection of blankets, beds, books ar	nd oth	ner articles which cannot be boiled is
	(1)	Nitrous oxide	(2)	Carbon monoxide
	(3)	Formaldehyde	(4)	Iodine

 \mathbf{C}

$\overline{\mathbf{c}}$			13		MDS/2010/I
	(3)	Folinic acid	(4)	Zinc	
	(1)	Cadmium	(2)	Ascorbic acid	
80.	Mic	cronutrient used to treat scur	vy		•
	(3)	Rheumatoid arthritis	(4)	Osteoarthritis	
	(1)	Tuberculosis	(2)	Osteoporosis	
79.	Gol	d salts show beneficial effects	in		
	(3)	Ephedrine	(4)	Prostaglandins	
	(1)	Oxytocin	(2)	Ergometrine	
78.	Wh	ich is used in postpartum hae	morrhage?		
	(3)	INH	(4)	Spironolactone	
	(1)	Aminoglycosides	(2)	Furosemide	
77.	Nep	phrotoxicity and ototoxicity is	produced l		
	(3)	Sulfamethoxazole	(4)	Sulfadiazine	
	(1)	Sulfadoxine	(2)	Sulfasalazine	
76.		ich sulphonamide is used in th			
	(3)		, ,		
	(1)	Ticlopidine Vitamin K	(4)	Protamine Sulphate	
75.		ich is a Heparin antagonist?	(2)	Desferrioxmine	
	, ,				
ŕ	(3)	Chlorpheniramine	(4)	Diphenhydramine	
14.	(1)	Promethazine	(2)	Cetirizine	
74.	Whi	ch is a non sedative H-1 rece	otor blocke	r?	
	(3)	Cocaine	(4)	Lignocaine	
	(1)	Procaine	(2)	Benzocaine	
73.		ch of the following is a nature			

01.	Der	ital caries is caused by						
	(1)	Streptococcus sanguis	(2)	Streptococcus mitis				
	(3)	Streptococcus mutans	(4)	Streptococcus salivarius				
82.	The	e following bacilli are normal anaer	obic t	flora of human mouth except				
	(1)	Lactobacillus	(2)	Propionibacterium				
	(3)	Fusobacterium	(4)	Actinomyces				
83.	All	of the following statements are tru	e reg	arding reversible cell injury except				
	(1)	Formation of amorphous densitie	s in r	nitochondrial matrix				
	(2)	Diminished generation of ATP						
	(3)	Formation of blebs in the plasma	mem	abrane				
	(4)	Detachment of ribosomes from th	e gra	nular endoplasmic reticulum				
84.	All	of the following vascular changes a	re ob	served in acute inflammation except				
	(1)	Vasodilatation	(2)	Stasis of blood				
	(3)	Increased vascular permeability	(4)	Decreased hydrostatic pressure				
85.	The classification proposed by the International Lymphoma Study Group for NHL is known as							
	(1)	Kiel classification	(2)	REAL classification				
	(3)	WHO classification	(4)	Rappaport classification				
86.	Whi	ich of the following is a pro-coagula	ınt pr	rotein?				
	(1)	Thrombomodulin	(2)	Protein-C				
	(3)	Protein-S	(4)	Thrombin				
87.	The	epitheloid and giant cells of granu	loma	tous inflammation are derived from				
	(1)	Basophils	(2)	Eosinophilis				
	(3)	CD4 T-lymphocytes	(4)	Monocytes – macrophages				
		•						

 \mathbf{C}

	(3)	Fusion temperature	(4)	Melting temperature
	(1)	Solidus temperature	(2)	Liquidus temperature
95.	The	e temperature at which the first sol	id be	gins to form is
	(3)	Diamond cubic	(4)	Close packed hexagonal
	(1)	Body centered tetragonal	(2)	Face centered cubic
94.	Lat	tice structure of Gold is		
	(3)	55°	(4)	95°
	(1)	45°	(2)	75°
93.	The	contact angle of Hydrophobic mate	erials	is
	(3)	Pseudoliquid	(4)	Elastomeric
	(1)	Pseudoelastic	(2)	Pseudoplastic
		en the shearing rate is increased in	(0)	Dura Jania Ma
92.			llows	the material to appear to be less viscous
	(3)	Calcium Sulphate	(4)	Sodium Sulphate
	(1)	Sodium Phosphate	(2)	Calcium Phosphate
91.	Wha	at is the reactor in alginate impress		
			` '	
	(3)	70–100°C	(4)	110–120°C
30.	(1)	30–40°C	(2)	50–60°C
90.	337 L .	at is the liquefaction temperature o	f Aga	r Hydrocolloid?
	(3)	Carticotrophin releasing hormone	(4)	Gastrin
	(1)	Pyridoxine, pyridoxal	(2)	Glucagon
89.	Vita	min B ₆ is a collective term for		
	(3)	Albumin	(4)	Hemoglobin
	(1)	Bicarbonate buffer	(2)	Phosphate buffer
	/1\	Diaguhanata huffan	(9)	Dhoonhata huffar

96.	Nerve supply to circumvallate papillae is through								
	(1)	Lingual nerve	(2)	Glassopharyngeal nerve					
	(3)	Vagus nerve	(4)	Hypoglossal nerve					
97.	Por	tal vein carries blood from							
	(1)	Gut to the inferior vena cava							
	(2)	Liver to the gut							
	(3)	Anterior abdominal wall to interior vena cava							
	(4)	4) Gut to the liver							
98.	Pri	nary centres of ossification are for	med						
	(1)	before birth	(2)	soon after birth					
	(3)	at puberty	(4)	none of the above					
99.	Tho	racic duct drains into							
	(1)	Junction of left subclavian and le	ft int	ernal jugular veins					
	(2)	Junction of right subclavian and	right	internal jugular veins					
	(3)	Directly into superior vena cava							
	(4)	Directly into right atrium							
100.	Inte	ercalated disc is							
	(1)	Thickening of endomysium	(2)	Thickening of cell membrane					
	(3)	Thickening of perimysium	(4)	Indicates position of nucleus					
101.	Tae	nia coli are							
	(1)	Tapeworms in the intestine							
	(2)	Same as Taenia saginata							
	(3)	Logitudinal muscle bands of large	e inte	stine					
	(4)	Folds in the mucosa of the colon							

102.	The forces acting through a fixed partial denture on the abutment tooth should be directed						
	(1)	As far as possible at right angles t	o the	e long axis of the teeth			
	(2)	As far as possible parallel to the long axis of the teeth					
	(3)	As less as possible decreasing the	mesi	o-distal dimension			
	(4)	As less as possible decreasing the	bucc	o-lingual dimension			
103.	The	type of gold alloy used in fixed par	tial d	enture construction is			
	(1)	Soft gold	(2)	Hard gold			
	(3)	Medium gold	(4)	Extra hard gold			
104.	Egg	shaped pontic design is indicated f	or th	e replacement of			
	(1)	Mandibular posteriors	(2)	Maxillary posteriors			
	(3)	Mandibular anteriors	(4)	Maxillary anteriors			
105.		ppled childrens Programme" aids	s for	the child below 18 years in providing			
	(1)	Road and Traffic accidents	(2)	Acquired defects			
	(3)	Congenital defects	(4)	Mentally compromised			
106.	Lan	ninar glazes are used to mimic the	follov	ving structures of human skin			
	(1)	Anatomical	(2)	Physiological			
	(3)	Histological	(4)	Radiological			
107.	The	following is the disadvantage of sc	rewe	d joints			
	(1)	Retrievability	(2)	Control of gap			
	(3)	Predictable failure	(4)	Access holes			
108.	The	drill speed for placing the implant	initi	ally is			
	(1)	2,000 rpm	(2)	3,000 rpm			
	(3)	20,000 rpm	(4)	200 rpm			

109.	PEF	RIOCHIP contains		
	(1)	2.5 mg of minocycline	(2)	2.5 mg chlorhexidine gluconate
	(3)	10% doxycycline	(4)	25% metronidazole
110.	Cen	tral role in periodontal destructions	•	
	(1)	IL-1, IL-6, tumor necrosis factor	(2)	IL-1, IL-6, IL-12
	(3)	IL-12, tumor necrosis factor, IL-6	(4)	Tumor necrosis factor, IL-12, IL-1
111.	The	term PERIODONTAL PLASTIC S	URG	ERY is coined by
	(1)	Dorfman	(2)	Cohen
	(3)	Land and loe	(4)	Miller
112.	Van	cott's vaccine was		
	(1)	AIDS vaccine	(2)	Dental caries vaccine
	(3)	Periodontal vaccine	(4)	Hepatitits vaccine
113.		concentration of volatile sulfide co	mpo	unds in the Air, saliva or crevicular fluid
	(1)	Gas chromatography	(2)	Perio scan
	(3)	Organoleptic testing	(4)	Periodontometer
114.	The	instrument which has a two-point	conta	act with the tooth Surface is
	(1)	U-15/30 scaler	(2)	Hoe scaler
	(3)	Gracey curette	(4)	Chisel scaler
115.	_	BANA reaction is helpful for d	etect	ion of one of the following periodontal
	(1)	Actinomycetemcomitans	(2)	Treponema denticola
	(3)	Eikinella corrodens	(4)	Prevotella intermedia
116.		maxillary teeth if placed too far an	nterio	orly and superiorly in a complete denture
	(1)	F & V sounds	(2)	S & T sounds
	(3)	Vowels	(4)	Consonants

 \mathbf{C}

117.	Best	Sest radiograph for Zygomaticomaxillary complex fractures					
	(1)	Occipitomental projection	(2)	Submentovertex projection			
	(3)	PA view	(4)	Orthopantamograph			
118.	Mill	ard's rule of 10 does not include wl	hich c	of the following			
	(1)	10 weeks of age	(2)	10 gm of Hb			
	(3)	10 pounds of weight	(4)	10 inches of head circumference			
119.	Ash	ley's operation is					
	(1)	A palatal rotation flap for oroantr	al fis	tula closure			
	(2)	A modification of Caldwell-Luc ar	ntrost	comy			
	(3)	Other name for Partsch I operation	on				
	(4)	None of the above					
120.	Rec	urrent buccal space abscess is seen	in				
	(1)	Crohn's disease	(2)	Kohn's disease			
	(3)	Hemophilus influenza infection	(4)	All of the above			
121.	Fotl	nergill's disease is					
	(1)	Facial nerve paralysis	(2)	Glossopharyngeal nerve neuralgia			
	(3)	Trigeminal neuralgia	(4)	Idiopathic orofacial pain			
122.	The	amount of vasoconstrictor 1:2,00,0	000 in	1 cartridge (1.8 ml) of LA solution is			
	(1)	0.005 mg/ml	(2)	0.006 mg/ml			
	(3)	0.007 mg/ml	(4)	0.009 mg/ml			
123.	Hyp	ooglycemia is considered when bloo	d glu	cose levels are below			
	(1)	30 mg/100 ml blood	(2)	40 mg/100 ml blood			
	(3)	60 mg/100 ml blood	(4)	70 mg/100 ml blood			

124.	SCL	ip amaigam irom condensation pro	ceau	res should be stored under	
	(1)	X-Ray fixer	(2)	Diluted NaOCl	
	(3)	Saline	(4)	Discarded into drain	
125.	Ver	tical compaction of warm gutta per	cha v	vas proposed by	
	(1)	Schilder	(2)	Buchanan	
	(3)	Mc Spadden	(4)	Seltzer	
126.		non-steroidal anti inflammatory	dru	g which inhibits the periradicular bone	
	(1)	Aspirin	(2)	Indomethacin	
	(3)	Mefanamic acid	(4)	Aceatminofen	
127.	Whi	ch of the following file resembles r	at tai	l file?	
	(1)	H-file	(2)	Rispisonic	
	(3)	Barbed broach	(4)	U-file	
128.	The	fourth canal of maxillary first mol	ar is	situated	
	(1)	In the distal root			
	(2) In the mesiobuccal root, mesial to mesiobuccal orifice				
	(3) In the distobuccal root, lingual to the disotbuccal orifice				
	(4)	In the mesiobuccal root, lingual to	mes	niobuccal orifice	
129.	Mos	t common failure of replantation of	f an a	vulsed tooth is	
	(1)	Root resorption	(2)	Discoloration	
	(3)	Abscess formation	(4)	Mobility	
130.	Whi	ch of the following is not a root end	l filli	ng material?	
	(1)	Composite	(2)	Glass ionomer cement	
	(3)	Zinc oxide eugenol cement	(4)	Calcium hydroxide cement	

 \mathbf{C}

C			21	MDS/2010/I						
	(3)	10–15 seconds	(4)	15–35 seconds						
٠	(1)	1–2 Minutes	(2)	5-10 seconds						
137.	The	e Normal Partial Thrombo Plast	ic time i	s ·						
	(3)	Parvo Virus	(4)	Paramyxo virus						
	(1)	Papova Virus	(2)	Picorna Virus						
136.	Mu	mps is caused by								
	(3)	Actinic Keratosis	(4)	Sublingual Butterfly Keratosis						
	(1)	Stomatitis Nicotina	(2)	Bowen's Disease						
135.		following is not a Premalignen								
	(0)	mumple myeloma	(=)							
	(1) (3)	Multiple Myeloma	(4)	Hodgkins Disease						
134.		ce-John's Proteins are seen in Infectious Mononucleosis	(2)	Burkitt's Lymphoma						
	(3)	Erithromycin	(4)	Ochiiaioshoiiiis						
	(1)	Ciprofloxacin Frithromycin	(2) (4)	Cephalosporins						
133.		ss Sensitivity is seen between P	(2)	and Gentamycin						
100	C	G	oncillin	and						
	(4)	None of the above								
	(3)	Should be taken with food								
	(2)	Should be taken with Milk pro	ducts							
	(1)	Should not be taken with Milk								
132.	Prec	aution to be given to the patien	t while <u>j</u>	prescribing Tetracycline is						
	(4)	Epidermolysis Bullosa (Autos	omal Re	cessive)						
	(3)	Epidermolysis Bullosa (Autoso	mal Dor	ninant)						
	(2)	Familial Benighn Pemphigus								
	(1)	Pemphigus								
131.		•	nigus							

138.	Eru	ption cysts are best treated by		
	(1)	Incision and drainage	(2)	No treatment only observation
	(3)	Excision	(4)	Curettage
139.	A ch	nild visiting dentist for the first tim	ie has	s basic fear of
	(1)	Tooth extraction	(2)	Pain
	(3)	Equipment	(4)	Unknown
140.	Reco	ommended time period of splinting	for A	vulsed Anterior teeth
	(1)	2–3 weeks	(2)	1–2 weeks
	(3)	6–8 weeks	(4)	2–3 months
141.	The	example of Tissue bearing function	nal aj	opliance is
	(1)	Activator	(2)	Frankel
	(3)	Herbst	(4)	Jasper jumper
142.	Fun	ctional Matrix theory was proposed	d by	
	(1)	Angle	(2)	Scott
	(3)	Moss	(4)	Sicher
143.	Sun	day bite is related to		
	(1)	Class III skeletal and dental prob	lems	
	(2)	Class I skeletal and dental proble	ms	
	(3)	Open bite problems		
	(4)	Class II skeletal and dental proble	ems	
144.	The	Coffin spring is made from		
	(1)	1.25 mm thickness SS wire	(2)	1 mm thickness SS wire
	(3)	0.7 mm thickness SS wire	(4)	0.9 mm thickness SS wire
	• •		• •	

MDS/2010/I

145.	Regarding	HIV	infection	all	are	true	except
------	-----------	-----	-----------	-----	-----	------	--------

- (1) A low CD4 count is associated with high mortality
- (2) 1 ml of HIV infected blood contains 10 9 HIV particles
- (3) Homosexuals are more prone for the disease
- (4) Likelyhood of developing AIDS is reduced by highly active antiretroviral therapy (HAART)

146. Regarding Branchial cyst all are true except

- (1) It develops from vestigial remnants of second branchial cleft
- (2) It is lined by columnar epithelium
- (3) Its fluid contains cholesterol crystals
- (4) It is present in the upper part of neck

147. Regarding thyroglossal fistula all are true except

- (1) It is usually congenital
- (2) It moves with protrusion of tongue
- (3) It is lined by columnar epithelium
- (4) It follows after infection or inadequate removal of thyroglossal cyst

148. Which is the most common site of fracture mandible

- (1) Ramus of the mandible
- (2) Neck of the condyle
- (3) Angle of the mandible
- (4) At the canine tooth region

149. Regarding Graves disease all are true except

- (1) It presents with diffuse enlargement of thyroid
- (2) Its exophthalmos is characteristic
- (3) It is more common in old female patients
- (4) It occurs in previously healthy gland

150.	The largest cusp in permanent mandibular first molar is				
	(1)	Mesiobuccal	(2)	Distobuccal	
	(3)	Mesiolingual	(4)	Distal	
151.	The	characteristic feature of mandibul	ar fir	st premolar is	
	(1)	Mesiobuccal groove	(2)	Mesiolingual groove	
	(3)	Distobuccal groove	(4)	Distolingual groove	
152.	Whi	ich of the following has bifid root			
	(1)	32, 42	(2)	31, 41	
	(3)	14, 24	(4)	13, 23	
153.	Too	th with smallest root is			
	(1)	Maxillary central incisor	(2)	Maxillary lateral incisor	
	(3)	Mandibular central incisor	(4)	Mandibular lateral incisor	
154.	Per	manent mandibular first molar is d	levelo	oped from how many lobes	
	(1)	3	(2)	4	
	(3)	5	(4)	6	
155.	Ena	mel formation of maxillary primar	y cus	pid is completed at	
	(1)	6 months in utero	(2)	6 months after birth	
	(3)	9 months in utero	(4)	9 months after birth	
156.	Dur	ration of the local anaesthetic activ	ity is	due to	
	(1)	Lipid Solubility	(2)	Degree of protein binding	
	(3)	pka	(4)	Non nervous tissue diffusibility	
157.	1:1	0,000 dilution of vasoconstrictor m	eans		
	(1)	1 mg in 1 ml of solution	(2)	0.1 mg in 1 ml of solution	
	(3)	0.01 mg in 1 ml of solution	(4)	10 mg in 1 ml of solution	

MDS/2010/I

158.	8. Of the following the cyst with highest recurrence rate is			
	(1)	Odontogenic Kerotocyst	(2)	Radicular cyst
	(3)	Dentigerous cyst	(4)	Lateral Periodental cyst
159.	In h	istological appearance, the followir	ng is	not a zone of enamel caries
	(1)	Translucent zone		
	(2)	Zone of fatty degeneration of tome	es fib	res
	(3)	Surface zone		
	(4)	Body of lesion		
160.	Posi	tive nikolsky's sign is characteristi	c fea	ture of
	(1)	Herpes	(2)	Psoriasis
	(3)	Apthous	(4)	Pemphigus vulgaris
161.	Mal	ignant parotid gland disease with p	perin	eural invasion is
	(1)	Cylindroma	(2)	Warthins tumour
	(3)	Malignant pleomorphic adenoma	(4)	Ductal papilloma
162.	Inte	ertwining of enamel rods at the cus	p tips	and the incisal edges of a tooth is called
	(1)	Incremental lines of woven	(2)	Incremental lines of retzius
	(3)	Gnarled enamel	(4)	Enamel spindles
163.	All	of the following are true about dent	tal pu	ılp except
	(1)	Formation of dentin		
	(2)	Sends impulses to CNS		
	(3)	Nerve supply to enamel through	fibres	
	(4)	Nerve supply to dentin		

104.	Vip	enoim study is used in		
	(1)	Oral cancer	(2)	Caries
	(3)	Periodontal disease	(4)	HIV/AIDS
165.	Cas	e control study is a		
*	(1)	Prospective study	(2)	Retrospective study
	(3)	Panel study	(4)	Cohort study
166.	. Incinerators are used to burn all the combustibles at temperatures of			
	(1)	800°C – 1100°C	(2)	$1600^{\circ}\text{C} - 1800^{\circ}\text{C}$
	(3)	$1300^{\circ}\text{C} - 1500^{\circ}\text{C}$	(4)	1700°C – 1900°C
167.	. The value in a series which occurs with the highest frequency is			
	(1)	Mean	(2)	Mode
	(3)	Median	(4)	Range
168.	Median rhomboid glossitis is a focal area of susceptibility to or is associated with			
	(1)	Chronic atrophic candidiasis	(2)	Hairy leukoplakia
	(3)	Oral submucous fibrosis	(4)	Oral cancer
169.	The following is not a feature of epithelial dysplasia			
	(1)	Nuclear hyperchromatism	(2)	Cellular pleomorphism
	(3)	Basal cell degeneration	(4)	Drop shaped retepegs
170.	Com	plete obliteration of pulp chamber	is se	en in
	(1)	Dentinogenesis imperfecta	(2)	Amelogenesis imperfecta
	(3)	Hereditary ectodermal dysplasia	(4)	Mandibulofacial dysostosis
171.	The	following is not a developmental d	efect	of oral and maxillofacial region
	(1)	Fissured tongue	(2)	Fordyce's granules
	(3)	Noma	(4)	Geographic tongue

 \mathbf{C}

172.	Organelle responsible for protein synthesis is				
	(1)	Lysosomes	(2)	Centrosomes	
	(3)	Ribosomes	(4)	Mitochondria	
173.	Half life of a neutrophil in circulation is				
	(1)	24 Hrs	(2)	48 Hrs	
	(3)	6 Hrs	(4)	120 days	
174.	. The amount of Saliva secreted per day is				
	(1)	1500 ml	(2)	500 ml	
	(3)	3000 ml	(4)	150 ml	
175.	Nor	mal duration of PR interval is			
	(1)	0.12 to 0.2 sec	(2)	0.30 to 0.40 sec	
	(3)	1.0 to 3.0 sec	(4)	0.05 to 0.1 sec	
176.	Neutrotransmitter released at the Neuro-muscular junction is				
	(1)	Acetylcholine	(2)	Dopamine	
	(3)	Serotonin	(4)	Nor adrenaline	
177.	. Hyper secretion of Growth hormone after closure of epiphysis produces			osure of epiphysis produces	
	(1)	Gigantism	(2)	Acromegaly	
	(3)	Dwarfism	(4)	Thyrotoxicosis	
178.	Each gram of hemoglobin can bind				
	(1)	1.34 ml of O ₂	(2)	3.3 ml of O ₂	
	(3)	4.4 ml of O ₂	(4)	5.5 ml of O ₂	
179.	Aqu	aporins are present in the tissues	of the	e following except	
	(1)	Kidneys	(2)	Brain	
	(3)	Lacrimal gland	(4)	Liver	

180.	The tensile strength of a healing wound depends upon						
	(1)	Formation of collagen fibers					
	(2)	Adequate fluid intake					
	(3)	B) Erythropoietin stimulation of bone marrow					
	(4)	Wound harmones					
181. Acinic cell carcinoma of the salivary gland arises most often in the			arises most often in the				
	(1)	Parotid gland	(2)	Minor salivary gland			
	(3)	Submandibular salivary gland	(4)	Sublingual salivary gland			
182. Which of the following stain is specific for amyloid?				myloid?			
	(1)	PAS	(2)	Alzerian red			
	(3)	Congo red	(4)	Von-Kossa			
183.	The general causes of pathological atrophy includes all of the following except						
	(1)	Decreased nourishment	(2)	Disuse			
	(3)	Chemical stimulation	(4)	Loss of innervation			
184. The most abundant glycoproteins present in the basement membra			the basement membrane are				
	(1)	Laminin	(2)	Fibronectin			
	(3)	Collegen type-4	(4)	Heparan sulfate			
185.	An adverse effect common to all ACE inhibitors						
	(1)	Vomitting	(2)	Dry cough			
	(3)	Throbbing headache	(4)	Blurring of vision			
186.	Which drug is used along with oximes in organophosphorous poisoning?						
	(1)	Adrenaline	(2)	Atropine			
	(3)	Propranalolol	(4)	Paracetamol			

 \mathbf{C}

187.	Pres	Pressurised adaptation of gold within the space between tooth structure is called					
	(1)	Welding	(2)	Wedging			
	(3)	Annealing	(4)	Degassing			
188.	Lost was technique in dentistry was developed by						
	(1)	Bowen	(2)	Weine			
	(3)	Taggart	(4)	G.V. Black			
189.	The Sprue length should be adjusted so that top of the wax pattern is within mm						
	(1)	3 mm	(2)	4 mm			
	(3)	5 mm	(4)	6 mm			
190.	Which of the following metal oxides is added to porcelain for brown pigmentation?						
	(1)	Copper Oxide	(2)	Nickel Oxide			
	(3)	Magnesium Oxide	(4)	Cobalt Oxide			
191.	Tre	ponema Pallidum is stained by					
	(1)	Gram's method	(2)	Zeihl Neelsen method			
	(3)	Silver impregnation method	(4)	Giemsa method			
192.	Clostridium tetani is						
	(1)	(1) Gram positive aerobic spore bearing bacillus					
	(2)	Gram negative anaerobic spore bearing bacillus					
	(3)	Gram negative aerobic spore bearing bacillus					
	(4)	Gram positive anaerobic spore bearing bacillus					
193.	Which immunoglobulin class is known as secretory immunoglobulin?						
	(1)	Ig A	(2)	Ig D			
	(3)	Ig E	(4)	Ig G			
		-					

MDS/2010/I

MDS	/201	D/I	30		\mathbf{C}			
	(3)	Hypoparathyroidism	(4)	Hyperparathyroidism				
	(1)	Hypothyroidism	(2)	Hyperthyroidism				
200.	Bas	Basal Metabolic Rate is increased in						
	(3)	Aldolase	(4)	Pyruvate dehydrogenase				
	(1)	Carbonic anhydrase	(2)	Alcohol dehydrogenase				
199.	Wh	Which is not a zinc-containing enzyme?						
	(3)	Cys-Glu-Gly	(4)	Glu-Gly-Cys				
		Glu-Cys-Gly		Gly-Glu-Cys	•			
198.		primary structure of Glutath		a. a. a				
	(3)	Thyro crytonoids	(4)	Vocalis muscle				
	(1)	Transverse arytonoids	(2)	Posterior crico arytenoids				
197.		The most important single muscle of the Larynx are						
	(4)	None of the above						
	(3)							
	(1) (2)							
196.		Mandibular division of trigeminal nerve supply						
	(4)	Columnar						
	(3)	Transitional						
	(2)	Stratified squamous non-keratinised						
195.	(1)	ning Opithelium of urotor is Pseudo-stratified columnar						
	T :							
	(4)	Parasympathetic fibers secreting adrenaline						
	(3)							
	(2)							
	(1)	Sympathetic fibers						

Space For Rough Work

Space For Rough Work